首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the effects of catchment characteristics (soil type and land use) on the concentration and quality of dissolved organic matter (DOM) in river water and on the bacterial degradation of terrestrial DOM. The share of organic soil was the strongest predictor of high concentrations of dissolved organic carbon, nitrogen, and phosphorus (DOC, DON, and DOP, respectively), and was linked to DOM quality. Soil type was more important than land use in determining the concentration and quality of riverine DOM. On average, 5–9 % of the DOC and 45 % of the DON were degraded by the bacterial communities within 2–3 months. Simultaneously, the proportion of humic-like compounds in the DOM pool increased. Bioavailable DON accounted for approximately one-third of the total bioavailable dissolved nitrogen, and thus, terrestrial DON can markedly contribute to the coastal plankton dynamics and support the heterotrophic food web.  相似文献   

2.
Agricultural soil is a contributor of nitrate to natural waters. High nitrate levels in water leached from soils are related to high nitrate concentrations in drinking water, and excess levels change the ecological balance of rivers and lakes. In this paper, sound solutions to the major environmental issue of limiting nitrate leaching by modifying agricultural practices are discussed. The causes of nitrate leaching from agricultural land are briefly explained and existing measures for the reduction of nitrate losses are described, analyzed and evaluated. Reduction of nutrient leaching is not a question of organic or conventional farming, but rather of the introduction and use of appropriate countermeasures. We propose the following guiding principles to minimize leaching from agricultural soils. To some extent these principles require a new way of thinking: i) environmental indexing of fields and consideration of spatial variability within fields in relation to their contribution to leaching losses within a catchment; ii) reduction of nitrogen inputs to soil to levels slightly below those expected to give the optimum yield by applying less nitrogen fertilizer and by a further reduction in animal density; and iii) use of a range of counter-measures (catch crops, minimum tillage, control of biological processes, etc.) depending on how sensitive the farming system, soil and climate are to the risk of nitrate leaching.  相似文献   

3.
Across most of the World's coastal zone there has been a geographic transition from naturally vegetated to human-altered land covers, both agricultural and urban. This transition has increased the nitrogen loads to coastal watersheds, and from watersheds to receiving estuaries. We modeled the nitrogen entering the watershed of Waquoit Bay, Massachusetts, and found that as the transition took place, nitrogen loads to watersheds increased from 1938 to 1990. The relative magnitude of the contribution by wastewater, fertilizers, and atmospheric deposition depends on the land cover mosaics of a watershed. Atmospheric deposition was the major input to the watershed surface during this period, but because of different rates of loss within the watershed. wastewater became the major source of nitrogen flowing from the watershed to the receiving estuaries. Atmospheric deposition prevails in watersheds dominated by natural vegetation such as forests, but wastewater may become a dominant source in watersheds where urbanization increases. Increased nitrogen loads resulting from conversion of natural to human-altered watershed surfaces create eutrophication of receiving waters, with attendant changes in water quality, and marked shifts in the flora and food webs of the affected estuaries. Management efforts for restoration of eutrophied estuaries require maintenance of forested land, and control of wastewater and fertilizer inputs, the major terms in most affected places subject to local management. Wastewater and fertilizer nitrogen derive from within the watershed, which means local measures may effectively be used to control eutrophication of receiving waters.  相似文献   

4.
《Environmental Forensics》2013,14(4):229-238
Hydrologic and water quality (H/WQ) models are being used with increasing frequency to devise alternative pollution control strategies. It has been recognized that such models may have a large degree of uncertainty associated with their predictions, and that this uncertainty can significantly impact the utility of the model. In this study, ARRAMIS (Advanced Risk & Reliability Assessment Model) software package was used to analyze the uncertainty of the SWAT2000 (Soil and Water Assessment Tool) outputs concerning nutrients and sediment losses from agricultural lands. ARRAMIS applies Monte Carlo simulation technique connected with Latin hypercube sampling (LHS) scheme. This technique is applied to the Warner Creek watershed located in the Piedmont physiographic region of Maryland, and it provides an interval estimate of a range of values with an associated probability instead of a point estimate of a particular pollutant constituent. Uncertainty of model outputs was investigated using LHS scheme with restricted pairing for the model input sampling. Probability distribution functions (pdfs) for each of the 50 model simulations were constructed from these results. Model output distributions of interest in this analysis were stream flow, sediment, organic nitrogen (organic-N), organic phosphorus (organic-P), nitrate, ammonium, and mineral phosphorus (mineral-P) transported with water. Developed probability distribution functions for the model provided information with desirable probability. Results indicate that consideration of input parameter uncertainty produces 64% less mean stream flow along with approximately 8.2% larger sediment loading than obtained using mean input parameters. On the contrary, mean of outputs regarding nutrients such as nitrate, ammonia, organic-N, and organic-P (but not mineral-P) were almost the same as the one using mean input parameters. The uncertainty in predicted stream flow and sediment loading is large, but that for nutrient loadings is the same as that of the corresponding input parameters. This study concluded that using a best possible distribution for the input parameters to reflect the impact of soils and land use diversity in a small watershed on SWAT2000 model outputs may be more accurate than using average values for each input parameter.  相似文献   

5.
The purpose of this study was to develop simple, accurate, and inexpensive measurement protocols for dissolved organic nitrogen (DON) and dissolved non-reactive phosphorus (DNRP) at low levels in wastewater effluents. Two protocols are presented--one to measure DON exclusively, and the other to measure DON and DNRP simultaneously. Currently, DON and DNRP are calculated indirectly by subtracting the dissolved inorganic fractions from the total dissolved concentration, resulting in significant errors. To increase the accuracy of DON measurements, effluent sample pretreatment using ion exchange to remove nitrate was applied. Spectrometric methods were selected to measure the inorganic fractions-the second derivative UV spectroscopy method for nitrate, and the malachite green method for orthophosphate. These methods, combined with the optimized persulfate digestion of the samples, can be used to measure total dissolved nitrogen and phosphorus accurately. The measurement ranges attained were 0.05 to 3 mg N/L for DON and 0.01 to 0.5 mg P/L for DNRP.  相似文献   

6.
To investigate the effects of golf course construction and operation on the water chemistry of Shield streams, we compared the water chemistry in streams draining golf courses under construction (2) and in operation (5) to streams in forested reference locations and to upstream sites where available. Streams were more alkaline and higher in base cation and nitrate concentrations downstream of operational golf courses. Levels of these parameters and total phosphorus increased over time in several streams during golf course construction through to operation. There was evidence of inputs of mercury to streams on two of the operational courses. Nutrient (phosphorus and nitrogen) concentrations were significantly related to the area of unmanaged vegetation in a 30 x 30 m area on either side of the sampling sites, and to River Bank Quality Index scores, suggesting that maintaining vegetated buffers along the stream on golf courses will reduce in-stream nutrient concentrations.  相似文献   

7.
Riparian zones are known to function as buffers, reducing non-point source pollution from agricultural land to streams. In the Netherlands, riparian zones are subject to high nitrogen inputs. We combined hydrological, chemical and soil profile data with groundwater modelling to evaluate whether chronically N loaded riparian zones were still mitigating diffuse nitrate fluxes. Hydraulic parameters and water quality were monitored over 2 years in 50 piezometres in a forested and grassland riparian zone. Average nitrate loadings were high in the forested zone with 87 g NO(3)(-)-N m(-2) y(-1) and significantly lower in the grassland zone with 15 g NO(3)(-)-N m(-2) y(-1). Groundwater from a second aquifer diluted the nitrate loaded agricultural runoff. Biological N removal however occurred in both riparian zones, the grassland zone removed about 63% of the incoming nitrate load, whereas in the forested zone clear symptoms of saturation were visible and only 38% of the nitrate load was removed.  相似文献   

8.
A network of eight monitoring stations was established to study the atmospheric nitrogen concentration and deposition in the State of Connecticut. The stations were classified into urban, rural, coastal and inland categories to represent the geographical location and land use characteristics surrounding the monitoring sites. Nitrogen species including nitrate, ammonium, nitric acid vapor and organic nitrogen in the air and precipitation were collected, analyzed and used to infer nitrogen concentrations and dry and wet deposition flux densities for the sampling period from 1997 through 1999, with independently collected meteorological data. Statistical analyses were conducted to evaluate the spatial variations of atmospheric concentration and deposition fluxes of total nitrogen in Connecticut. A slightly higher atmospheric concentration of total nitrogen was observed along the Connecticut coastline of Long Island Sound compared to inland areas, while the differences of nitrogen deposition fluxes were insignificant between coastal and inland sites. The land use characteristics surrounding the monitoring sites had profound effects on the atmospheric nitrogen concentration and dry deposition flux. The ambient nitrogen concentration over the four urban sites was averaged 38.9% higher than that over the rural sites, resulting a 58.0% higher dry deposition flux in these sites compared to their rural counterparts. The local industrial activities and traffic emissions of nitrogen at urban areas had significant effects on the spatial distribution of atmospheric nitrogen concentration and dry deposition flux in the State. Wet and total deposition fluxes appeared to be invariant between the monitoring sites, except for high flux densities measured at Old Greenwich, a monitoring station near to and downwind of the New York and New Jersey industrial complexes.  相似文献   

9.
Export of nitrogen from catchments: a worldwide analysis   总被引:2,自引:0,他引:2  
This study reviews nitrogen export rates from 946 rivers of the world to determine the influence of quantitative (runoff, rainfall, inhabitant density, catchment area, percentage of land use cover, airborne deposition, fertilizer input) and qualitative (dominant type of forest, occurrence of stagnant waterbodies, dominant land use, occurrence of point sources, runoff type) environmental factors on nitrogen fluxes. All fractions (total, nitrate, ammonia, dissolved organic and particulate organic) of nitrogen export showed a left-skewed distribution, which suggests a relatively pristine condition for most systems. Total nitrogen export showed the highest variability whereas total organic nitrogen export comprised the dominant fraction of export. Nitrogen export rates were only weakly explained by our qualitative and quantitative environmental variables. Our study suggests that the consideration of spatial and temporal scales is important for predicting nitrogen export rates using simple and easy-to-get environmental variables. Regionally based modelling approaches prove more useful than global-scale analyses.  相似文献   

10.
Land use pattern is an effective reflection of anthropic activities, which are primarily responsible for water quality deterioration. A detailed understanding of relationship between water quality and land use is critical for effective land use management to improve water quality. Linear mixed effects and multiple regression models were applied to water quality data collected from 2003 to 2010 from 36 stations in the Huai River basin together with topography and climate data, to characterize the land use impacts on water quality and their spatial scale and seasonal dependence. The results indicated that the influence of land use categories on specific water quality parameter was multiple and varied with spatial scales and seasons. Land use exhibited strongest association with dissolved oxygen (DO) and ammonia nitrogen (NH3-N) concentrations at entire watershed scale and with total phosphorus (TP) and fluoride concentrations at finer scales. However, the spatial scale, at which land use exerted strongest influence on instream chemical oxygen demand (COD) and biochemical oxygen demand (BOD) levels, varied with seasons. In addition, land use composition was responsible for the seasonal pattern observed in contaminant concentrations. COD, NH3-N, and fluoride generally peaked during dry seasons in highly urbanized regions and during rainy seasons in less urbanized regions. High proportion of agricultural and rural areas was associated with high nutrient contamination risk during spring. The results highlight the spatial scale and seasonal dependence of land use impacts on water quality and can provide scientific basis for scale-specific land management and seasonal contamination control.  相似文献   

11.
Environmental Science and Pollution Research - The characteristics of land use/land cover (LULC) types may affect the thermal environment of urban zones. In this study, the urban zones of the Pearl...  相似文献   

12.
The research objective was to adapt the ultraviolet (UV)-photolysis method to determine dissolved organic nitrogen (DON) in aqueous extracts of aerosol samples. DON was assumed to be the difference in total concentration of inorganic nitrogen forms before and after sample irradiation. Using a 2(2) factorial design the authors found that the optimal conversion of urea, amino acids (alanine, aspartic acid, glycine, and serine), and methylamine for a reactor temperature of 44 degrees C occurred at pH 2.0 with a 24-hr irradiance period at concentrations <33 microM of organic nitrogen. Different decomposition mechanisms were evident: the photolysis of amino acids and methylamine released mainly ammonium (NH4+), but urea released a near equimolar ratio of NH4+ and nitrate (NO3-). The method was applied to measure DON in the extracts of aerosol samples from Tampa, FL, over a 32-day sampling period. Average dissolved inorganic (DIN) and DON concentrations in the particulate matter fraction PM10 were 78.1 +/- 29.2 nmol-Nm(-3) and 8.3 +/- 4.9 nmol-Nm(-3), respectively. The ratio between DON and total dissolved nitrogen ([TDN] = DIN + DON) was 10.1 +/- 5.7%, and the majority of the DON (79.1 +/- 18.2%) was found in the fine particulate matter (PM2.5) fraction. The average concentrations of DIN and DON in the PM2.5 fraction were 54.4 +/- 25.6 nmol-Nm(-3) and 6.5 +/- 4.4 nmol-Nm(-3), respectively.  相似文献   

13.
High nutrient inputs and eutrophication continue to be one of the highest priority water quality problems. Bioretention is a low-impact development technology that has been advocated for use in urban and other developed areas. This work provides an in-depth analysis on removal of nutrients from a synthetic stormwater runoff by bioretention. Results have indicated good removal of phosphorus (70 to 85%) and total Kjeldahl nitrogen (55 to 65%). Nitrate reduction was poor (< 20%) and, in several cases, nitrate production was noted. Variations in flowrate (intensity) and duration had a moderate affect on nutrient removal. Mass balances demonstrate the importance of water attenuation in the facility in reducing mass nutrient loads. Captured nitrogen can be converted to nitrate between storm events and subsequently washed from the system. Analysis on the fate of nutrients in bioretention suggests that accumulation of phosphorus and nitrogen may be controlled by carefully managing growing and harvesting of vegetation.  相似文献   

14.
A regional modeling system was applied with inputs from global climate and chemistry models to quantify the effects of global change on future biogenic emissions and their impacts on ozone and biogenic secondary organic aerosols (BSOA) in the US. Biogenic emissions in the future are influenced by projected changes in global and regional climates and by variations in future land use and land cover (LULC). The modeling system was applied for five summer months for the present-day case (1990–1999, Case 1) and three future cases covering 2045–2054. Individual future cases were: present-day LULC (Case 2); projected-future LULC (Case 3); and future LULC with designated regions of tree planting for carbon sequestration (Case 4). Results showed changing future meteorology with present-day LULC (Case 2) increased average isoprene and monoterpene emission rates by 26% and 20% due to higher temperature and solar insolation. However when LULC was changed together with climate (Case 3), predicted isoprene and monoterpene emissions decreased by 52% and 31%, respectively, due primarily to projected cropland expansion. The reduction was less, at 31% and 14% respectively, when future LULC changes were accompanied by regions of tree planting (Case 4). Despite the large decrease in biogenic emission, future average daily maximum 8-h (DM8H) ozone was found to increase between +8 ppbv and +10 ppbv due to high future anthropogenic emissions and global chemistry conditions. Among the future cases, changing LULC resulted in spatially varying future ozone differences of ?5 ppbv to +5 ppbv when compared with present-day case. Future BSOA changed directly with the estimated monoterpene emissions. BSOA increased by 8% with current LULC (Case 2) but decreased by 45%–28% due to future LULC changes. Overall, the results demonstrated that on a regional basis, changes in LULC can offset temperature driven increases in biogenic emissions, and, thus, LULC projection is an important factor to consider in the study of future regional air quality.  相似文献   

15.
The regional observatory Kosetice is a central European background station. Unique continuous monitoring from 1988 on is held here. POP (persistent organic pollutant) concentration values of air samples from Kosetice taken between 1996 and 2005 were statistically processed. Values of Czech ambient air quality standards were not exceeded. Concentrations of polycyclic aromatic hydrocarbons reached two maxima, in 1996 and 2001-2002. Polychlorinated biphenyls concentrations reached the highest values in 1997 and 1998 and hexachlorocyclohexanes concentrations in 1998. DDTs, hexachlorobenzene and pentachlorobenzene were analysed as well. Long-range transport of pollutants between 2002 and 2005 was evaluated using the Potential Source Contribution Function hybrid receptor model. Indicated potential source areas of PCBs coincide with many well-known urban and industrialised areas, while the indicated potential source areas of HCHs and DDTs coincide with many agricultural and/or forested regions and the potential source areas of HCB comprise all land use types.  相似文献   

16.
Lakes are generally subjected to wastewater discharges from various sources. Certain chemicals, such as nitrogen, phosphorus and carbon, in the right concentrations can distort and disrupt aquatic ecosystems by overfeeding. Eutrophication of inland bodies of water has become synonymous with the deterioration of water quality, which interferes with most of the beneficial uses of waters. Eutrophication is the consequence of a lake.s nutrient enrichment. In recent years, this problem has been increasingly acute due to the discharge of nutrients. The principal sources of nutrient inputs are municipal wastes, industrial wastes, agricultural runoff and atmospheric fallout. Lake Sapanca, which is located in the northern part of Marmara region of Turkey, is the subject of this paper. In this study, the eutrophication of the lake was evaluated.  相似文献   

17.
The Reedy River branch of Lake Greenwood, SC, has repeatedly experienced summertime algal blooms, upsetting the natural system. A series of experiments were carried out to investigate atmospheric nitrogen (N) input into the lake. N was examined because of the insignificant phosphorus dry atmospheric flux and the unique nutrient demands of the dominant algae (Pithophora oedogonia) contributing to the blooms. Episodic atmospheric measurements during January and March 2001 have shown that the dry N flux onto the lake ranged from 0.9 to 17.4 kg N/ha-yr, and on average is caused by nitric acid (HNO3; 31%), followed by nitrogen dioxide (NO2; 23%), fine ammonium (NH4+; 20%), coarse nitrate (NO3-; 16%), fine NO3 (5%), and coarse NH4+ (5%). Similar measurements in Greenville, SC (the upper watershed of the Reedy River), showed that the dry N deposition flux there ranged from 1.4 to 9.7 kg N/ha-yr and was mostly caused by gaseous deposition (40% NO2 and 40% HNO3). The magnitude of this dry N deposition flux is comparable to wet N flux as well as other point sources in the area. Thermodynamic modeling showed low concentrations of ammonia, relative to the particulate NH4+ concentrations.  相似文献   

18.
Hypoxia has occurred intermittently over the Holocene in the Baltic Sea, but the recent expansion from less than 10 000 km2 before 1950 to >60 000 km2 since 2000 is mainly caused by enhanced nutrient inputs from land and atmosphere. With worsening hypoxia, the role of sediments changes from nitrogen removal to nitrogen release as ammonium. At present, denitrification in the water column and sediments is equally important. Phosphorus is currently buried in sediments mainly in organic form, with an additional contribution of reduced Fe-phosphate minerals in the deep anoxic basins. Upon the transition to oxic conditions, a significant proportion of the organic phosphorus will be remineralized, with the phosphorus then being bound to iron oxides. This iron-oxide bound phosphorus is readily released to the water column upon the onset of hypoxia again. Important ecosystems services carried out by the benthic fauna, including biogeochemical feedback-loops and biomass production, are also lost with hypoxia. The results provide quantitative knowledge of nutrient release and recycling processes under various environmental conditions in support of decision support tools underlying the Baltic Sea Action Plan.  相似文献   

19.
The composition of municipal wastewater and sewage sludge reflects the use and proliferation of elements and contaminants within society. In Sweden, official statistics show that concentrations of toxic metals in municipal sewage sludge have steadily decreased, by up to 90 %, since the 1970s, due to environmental programmes and statutory limits on metals in sludge and soil. Results from long-term field experiments show that reduced metal pollution during repeated sewage sludge application has reversed negative trends in soil biology. Despite this Swedish success story, organic waste recycling from Swedish towns and cities to arable land is still limited to only about 20 % of the total amount produced. Resistance among industries and consumers to products grown on land treated with sewage sludge may not always be scientifically grounded; however, there are rational obstacles to application of sewage sludge to land based on its inherent properties rather than its content of pollutants. We argue that application of urban organic wastes to soil is an efficient form of recycling for small municipalities, but that organic waste treatment from large cities requires other solutions. The large volumes of sewage sludge collected in towns and cities are not equitably distributed back to arable land because of the following: (i) The high water and low nutrient content in sewage sludge make long-distance transportation too expensive; and (ii) the low plant availability of nutrients in sewage sludge results in small yield increases even after many years of repeated sludge addition. Therefore, nutrient extraction from urban wastes instead of direct organic waste recycling is a possible way forward. The trend for increased combustion of urban wastes will make ash a key waste type in future. Combustion not only concentrates the nutrients in the ash but also leads to metal enrichment; hence, direct application of the ash to land is most often not possible. However, inorganic fertiliser (e.g. mono-ammonium phosphate fertiliser, MAP) can be produced from metal-contaminated sewage sludge ash in a process whereby the metals are removed. We argue that the view on organic waste recycling needs to be diversified in order to improve the urban–rural nutrient cycle, since only recycling urban organic wastes directly is not a viable option to close the urban–rural nutrient cycle. Recovery and recycling of nutrients from organic wastes are a possible solution. When organic waste recycling is complemented by nutrient extraction, some nutrient loops within society can be closed, enabling more sustainable agricultural production in future.  相似文献   

20.
This study was designed to investigate the leaching response of an upland moorland to long-term (10 yr) ammonium nitrate additions of 40, 80 and 120 kg N ha(-1) yr(-1) and to relate this response to other indications of potential system damage, such as acidification and cation displacement. Results showed increases in nitrate leaching only in response to high rates of N input, in excess of 96 and 136 kg total N input ha(-1) yr(-1) for the organic Oh horizon and mineral Eag horizon, respectively. Individual N additions did not alter ammonium leaching from either horizon and ammonium was completely retained by the mineral horizon. Leaching of dissolved organic nitrogen (DON) from the Oh horizon was increased by the addition of 40 kg N ha(-1) yr(-1), but in spite of increases, retention of total dissolved nitrogen reached a maximum of 92% and 95% of 80 kg added N ha(-1) yr(-1) in the Oh and Eag horizons, respectively. Calcium concentrations and calcium/aluminium ratios were decreased in the Eag horizon solution with significant acidification mainly in the Oh horizon leachate. Nitrate leaching is currently regarded as an early indication of N saturation in forest systems. Litter C:N ratios were significantly lowered but values remained above a threshold predicted to increase leaching of N in forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号