首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Starch/Poly(vinylalcohol) blends in two different ratios (60:40 and 50:50) were prepared with glycerol as a plasticizer. Films were cast by a solution casting method. One set of films were filled with 10 wt% of bentonite clay and another set of films were crosslinked with epichlorohydrin in an alkaline medium. The prepared film samples were characterized with dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA). The presence of clay and crosslinking with epichlorohydrin was found to have considerable effect on the dynamic mechanical properties and thermal stability of the films. Intercomponent H-bonding between starch, Poly(vinylalcohol) and glycerol enhanced the thermal stability of the films. But incorporation of clay and crosslinking with epichlorohydrin enhanced the steric crowding and lowered the thermal stability of the films.  相似文献   

2.
Research on biodegradable materials has been stimulated due to concern regarding the persistence of plastic wastes. Blending starch with poly(lactic acid) (PLA) is one of the most promising efforts because starch is an abundant and cheap biopolymer and PLA is biodegradable with good mechanical properties. Poly(vinyl alcohol) (PVOH) contains unhydrolytic residual groups of poly(vinyl acetate) and also has good compatibility with starch. It was added to a starch and PLA blend (50:50, w/w) to enhance compatibility and improve mechanical properties. PVOH (MW 6,000) at 10%, 20%, 30%, 40%, 50% (by weight) based on the total weight of starch and PLA, and 30% PVOH at various molecular weights (MW 6,000, 25,000, 78,000, and 125,000 dalton) were added to starch/PLA blends. PVOH interacted with starch. At proportions greater than 30%, PVOH form a continuous phase with starch. Tensile strength of the starch/PLA blends increased as PVOH concentration increased up to 40% and decreased as PVOH molecular weight increased. The increasing molecular weight of PVOH slightly affected water absorption, but increasing PVOH concentration to 40% or 50% increased water absorption. Effects of moisture content on the starch/PLA/PVOH blend also were explored. The blend containing gelatinized starch had higher tensile strength. However, gelatinized starch also resulted in increased water absorption.  相似文献   

3.
Finding plastic substitutes based on sustainability, especially for short-term packaging and disposable applications has aroused scientific interest for many years. Starch may be a substitute for petroleum based plastics but it shows severe limitations due to its water sensitivity and rather low mechanical properties. To overcome these weaknesses and to maintain the material biodegradability, one option is to blend plasticized starch with another biodegradable polymer. To improve both the compatibility between the main phases and the performance of the final blend, different compatibilization strategies are reported in literature. However, the relative efficiency of each strategy is not widely reported. This paper presents three different strategies: in situ (i) formation of urethane linkages; (ii) coupling with peroxide between starch and PLA, and (iiii) the addition of PLA-grafted amylose (A-g-PLA) which has been elaborated ex situ and carefully analyzed before blending. This study compares the effect of each compatibilization strategy by investigating mechanical and thermal properties of each blend. Compatibilizing behavior of the A-g-PLA is demonstrated, with a significant increase (up to 60%) in tensile strength of starch/PLA blend with no decrease in elongation at failure.  相似文献   

4.
Thermal and Rheological Properties of Commercial-Grade Poly(Lactic Acid)s   总被引:2,自引:0,他引:2  
Poly(lactic acid) is the subject of considerable commercial development by a variety of organizations around the world. In this work, the thermal and rheological properties of two commercial-grade poly(lactic acid)s (PLAs) are investigated. A comparison of the commercial samples to a series of well-defined linear and star architecture PLAs provides considerable insight into their flow properties. Such insights are valuable in deciding processing strategies for these newly emerging, commercially significant, biodegradable plastics. Both a branched and linear grade of PLA are investigated. The crystallization kinetics of the branched polymer are inferred to be faster than the linear analog. Longer relaxation times in the terminal region for the branched material compared to the linear material manifests itself as a higher zero shear rate viscosity. However, the branched material shear thins more strongly, resulting in a lower value of viscosity at high shear rates. Comparison of the linear viscoelastic spectra of the branched material with the spectra for star PLAs suggests that the branched architecture is characterized by a span molecular weight of approximately 63,000 g/mol. The present study conclusively demonstrates that a wide spectrum of flow properties are available through simple architectural modification of PLA, thus allowing the utilization of this important degradable thermoplastic in a variety of processing operations.  相似文献   

5.
The influence of poly(dioxolane) (PDXL), a poly(ethylene oxide-alt-methylene oxide), as compatibilizer on poly(ɛ-caprolactone) (PCL)/tapioca starch (TS) blends was studied. In order to facilitate blending; PCL, PDXL and TS must be blended together directly; so that PDXL is partially adhered at the TS surface as shown by scanning electron microscopy. The molecular weight effect of PDXL on the PCL/TS blends showed that mechanical properties of PCL/TS/PDXL blends from low molecular weight (M n=10,000) and high molecular weight (M n=200,000) PDXL were rather dependent on TS content. The enzymatic degradability of PCL/TS/PDXL blends using α-amylase increased as the TS content increased but was independent on the dispersion of tapioca starch in the PCL matrix.  相似文献   

6.
Fibers of poly(lactic acid) (PLA) produced by two-step melt-spinning are studied. The PLA resin used contains a 98:02 ratio of l:d stereochemical centers. A range of processing conditions is explored. The cold-draw ratio is varied from 1 to 8 under conditions of constant heating. In addition, three draw ratios are studied at three different heating rates. The thermal, mechanical, and morphological properties of the resultant fibers are determined. Properties can be widely manipulated through a combination of draw ratio and draw temperature. A maximum tensile strength and modulus of 0.38 GPa and 3.2 GPa, respectively, are obtainable. Using atomic force microscopy, the fiber morphology is found to be highly fibrillar; microfibril diameters are roughly 40 nm in diameter. Very high draw ratios cause the fiber to turn from shiny and translucent to dull and white; this transition is attributed to surface crazing. Significant molecular weight loss is observed upon processing (weight-average molecular weights drops between 27% and 43%).  相似文献   

7.
Properties of Starch/PVA Blend Films Containing Citric Acid as Additive   总被引:8,自引:0,他引:8  
Starch/polyvinyl alcohol (PVA) blend films were prepared successfully by using starch, polyvinyl alcohol (PVA), glycerol (GL) sorbitol (SO) and citric acid (CA) for the mixing process. The influence of mixing time, additional materials and drying temperature of films on the properties of the films was investigated. With increase in mixing time, the tensile strength (TS), elongation (%E), degree of swelling (DS) and solubility (S) of the film were equilibrated. The equilibrium for TS, %E, DS and S value was 20.12 MPa, 36.98%, 2.4 and 0.19, respectively. The mixing time of equilibrium was 50 min. TS, %E, DS and S of starch/PVA blend film were examined adding glycerol (GL), sorbitol (SO) and citric acid (CA) as additives. At all measurement results, except for DS, the film adding CA was better than GL or SO because hydrogen bonding at the presence of CA with hydroxyl group and carboxyl group increased the inter/intramolecular interaction between starch, PVA and additives. Citric acid improves the properties of starch/PVA blend film compared to glycerol and sobitol. When the film was dried at low temperature, the properties of the films were clearly improved because the hydrogen bonding was activated at low temperature.  相似文献   

8.
Biodegradable film blends of chitosan with poly(lactic acid) (PLA) were prepared by solution mixing and film casting. The main goal of these blends is to improve the water vapor barrier of chitosan by blending it with a hydrophobic biodegradable polymer from renewable resources. Mechanical properties of obtained films were assessed by tensile test. Thermal properties, water barrier properties, and water sensitivity were studied by differential scanning calorimeter analysis, water vapor permeability measurements, and surface-angle contact tests, respectively. The incorporation of PLA to chitosan improved the water barrier properties and decreased the water sensitivity of chitosan film. However, the tensile strength and elastic modulus of chitosan decreased with the addition of PLA. Mechanical and thermal properties revealed that chitosan and PLA blends are incompatible, consistent with the results of Fourier transform infrared (FTIR) analysis that showed the absence of specific interaction between chitosan and PLA.  相似文献   

9.
The biodegradability properties of poly(ɛ-caprolactone) (PCL) and modified adipate-starch (AS) blends, using Edenol-3203 (E) as a starch plasticizer, were investigated in laboratory by burial tests of the samples in previously analyzed agricultural soil. The biodegradation process was carried out using the respirometric test according to ASTM D 5988-96, and the mineralization was followed by both variables such as carbon dioxide evolution and mass loss. The results indicated that the presence of AS-E accelerated the biodegradation rate as expected.  相似文献   

10.
The morphological changes of Poly(tetramethylene succinate) single crystal lamellae by hydrolysis are investigated, using TEM, WAXD and SAXS. And the morphology of PTMS spherulites was also observed by optical microscopy after treatments as well as single crystal lamellae. The edge region of single crystal lamella can be most easily affected in the initial stage of hydrolysis. As the hydrolysis time increases, the lamellae are separated into small fragments which may be started from the uneven or irregular parts of the surface. The WAXD results showed that crystallinity were increased with increasing of treatment time. The lamellar thickness decreased at the initial stage of hydrolysis and increased again. There were cracks on the surface of spherulites after hydrolysis and the direction of cracks were tangential direction of spherulites. This result was thought to be from the uniformity of molecular arrangement in the crystallographic unit cell.  相似文献   

11.
Poly(hydroxybutyrate-co-valerate) (PHBV) is a completely biodegradable thermoplastic polyester produced by microbial fermentation. The current market price of PHBV is significantly higher than that of commodity plastics such as polyethylene and polystyrene. It is therefore desirable to develop low-cost PHBV based materials to improve market opportunities for PHBV. We have produced low-cost environmentally compatible materials by blending PHBV with granular starch and environmentally benign CaCO3. Such materials can be used for specific applications where product biodegradability is a key factor and where certain mechanical properties can be compromised at the expense of lower cost. The inclusion of granular starch (25 wt%) and CaCO3 (10 wt%) in a PHBV matrix (8% HV, 5% plasticizer) reduces the cost by approximately 40% and has a tensile strength of 16 MPa and flexural modulus of 2.0 Gpa, while the unfilled PHBV/plasticizer matrix has a tensile strength of 27 MPa and a flexural modulus of 1.6 GPa.Paper presented at the Bio/Environmentally Degradable Polymer Society—Third National Meeting, June 6–8, 1994, Boston, Massachusetts.The mention of firm names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over other firms or similar products not mentioned.  相似文献   

12.
The effect of orientation in the amorphous and crystalline regions on the biodegradability of PTMS [poly(tetramethylene succinate)] was studied using the amorphous orientation function, birefringence, and crystallinity. The crystalline and amorphous intrinsic lateral sonic moduli, E t,c 0 and E t,am 0 , were 2.61 × 103 and 0.41 × 103 MPa, respectively. Using the data on birefringence, crystalline and amorphous orientation function (f and f am), crystallinity, and sonic modulus of the oriented PTMS fibers, the intrinsic birefringence of the crystalline ( c 0 ) and amorphous ( am 0 ) regions were evaluated to be 0.0561 and 0.0634, respectively. The biodegradabilities of oriented PTMS films were reduced as the elongation increased, i.e., the amorphous orientation increased. At low elongation (100 and 150%), however, biodegradabilities remained unchanged when the degradation test was performed in activated sludge, which was attributed to the amorphous orientation occurring even at 100% elongation, though the amorphous orientation direction was perpendicular to the fiber axis.  相似文献   

13.
Methylenediphenyl diisocyanate was found to improve the interfacial interaction between poly(lactic acid)(PLA) and granular starch. The objective of this research was to study the effect of starch moisture content on the interfacial interaction of an equal-weight blend of wheat starch and PLA containing 0.5% methylenediphenyl diisocyanate by weight. Starch moisture (10% to 20%) had a negative effect on the interfacial binding between starch and PLA. The tensile strength and elongation of the blend both decreased as starch moisture content increased. At 20% moisture level, the starch granules embedded in the PLA matrix were observed to be swollen, resulting in poor strength properties and high water absorption by the blend.  相似文献   

14.
Seeds of red pepper and tomato were sowed and cultivated in a soil blended with powdery poly(l-lactide) (PLLA), and poly(butylene succinate) (PBS). PBS depressed the growth of the two plants significantly even at a concentration as low as 5%, whereas PLLA up to 35% affected negligibly or even boosted the growth of the two plants. pH and number of microbial cells in the soil after 80 days of cultivation were almost the same independently whether the soil was blended with the two polymers or not. In contrast, the molecular weight of PBS decreased much faster than that of PLLA. Because succinic acid and 1,4-butane diol, from which PBS was synthesized, exhibited toxicity to both plant and animal cells to retard the germination rate of young radish seeds and to deform the morphology of HeLa cells significantly [1], the monomers and the oligomers produced from the PBS degradation should have a detrimental influence on the growth of the two plants.  相似文献   

15.
In this paper, we report on the physical properties of films that have been synthesized by using native corn starch (NS) and chemically modified starch (RS4). NS or RS4/PVA blend films were synthesized by using the mixing process and the casting method. Glycerol (GL), sorbitol (SO), and citric acid (CA) were used as additives. The chemically modified starch (RS4) was synthesized by using sodium trimetaphosphate (STMP) and sodium tripolyphosphate (STPP) as a crosslinker. Then, the RS4 thus synthesized was confirmed by using the pancreatin-gravimetric method, swelling power and an X-ray diffractometer (XRD). Tensile strength (TS), elongation (%E), swelling behavior (SB), and solubility (S) of the films were measured. The result of the measurements indicated the RS4-added film was better than the NS-added film. Especially, the RS4/PVA blend film with CA as an additive showed the physical properties superior to other films.  相似文献   

16.
A Literature Review of Poly(Lactic Acid)   总被引:32,自引:0,他引:32  
A literature review is presented regarding the synthesis, and physicochemical, chemical, and mechanical properties of poly(lactic acid)(PLA). Poly(lactic acid) exists as a polymeric helix, with an orthorhombic unit cell. The tensile properties of PLA can vary widely, depending on whether or not it is annealed or oriented or what its degree of crystallinity is. Also discussed are the effects of processing on PLA. Crystallization and crystallization kinetics of PLA are also investigated. Solution and melt rheology of PLA is also discussed. Four different power-law equations and 14 different Mark–Houwink equations are presented for PLA. Nuclear magnetic resonance, UV–VIS, and FTIR spectroscopy of PLA are briefly discussed. Finally, research conducted on starch–PLA composites is introduced.  相似文献   

17.
Systematic screening of 45 soil fungi for degradation polyhydroxyalkanoic acids (PHAs) has led to the selection of 6 potent Aspergillus isolates belonging to A. flavus, A. oryzae, A. parasiticus, and A. racemosus. Degradation of PHAs as determined by tube assay method revealed that these Aspergillus spp. were more efficient in degrading poly(3-hydroxybutyrate) [P(3HB)] compared to copolymer of 3-hydroxybutyric acid and 3-hydroxyvaleric acid (P3HB-co-16% 3HV). Moreover, the extent of degradation in mineral base medium was much better than those in complex organic medium. For all the Aspergillus spp. tested, maximum degradation was recorded at a temperature of 37°C with significant inhibition of growth. The optimum pH range for degradation was 6.5–7.0 with degradation being maximum at pH 6.8. The extent of polymer degradation increased with increase in substrate concentration, the optimum concentration for most of the cultures being 0.4% and 0.2% (w/v) for P(3HB) and P(3HB-co-16%3HV) respectively. Supplementation of the degradation medium with additional carbon sources exerted significant inhibitory effect on both P(3HB) and P(3HB-co-16%3HV) degradation.  相似文献   

18.
There has been considerable interest in the use of the biodegradable polymer poly(lactic acid) (PLA) as a replacement for petroleum derived polymers due to ease of processability and its high mechanical strength. Other material properties have however limited its wider application. These include its brittle properties, low impact strength and yellow tint. In an attempt to overcome these drawbacks, PLA was blended with four commercially available additives, commonly known as masterbatches. The effect of the addition of 1.5 wt% of the four masterbatches on the mechanical, thermal, optical and surface properties of the polymer was evaluated. All four masterbatches had a slight negative effect on the tensile strength of PLA (3–5% reduction). There was a four fold increase in impact resistance however with the addition of one of the masterbatches. Differential scanning calorimetry demonstrated that this increase corresponded to a decrease in the polymer crystallinity. However there was an associated increase in polymer haze with the addition of this masterbatch. The clarity of PLA was improved through the addition of an optical brightener masterbatch, but the impact resistance remained low. The glass transition and melting temperatures of PLA were not affected by the addition of the masterbatches, and no change was observed in surface energy. Some delay in PLA degradation, in a PBS degradation medium at 50 °C, was observed due to blending with these masterbatches.  相似文献   

19.
A poly(3-hydroxybutyrate) (PHB) depolymerase was purified from a fungus, Penicillium funiculosum (IFO6345), with phenyl-Toyopearl and its properties were compared with those of other PHB depolymerases. The molecular mass of the purified enzyme was estimated at about 33 kDa by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis. The pH optimum and pI were 6.5 and 6.5, respectively. The purified protein showed affinity to Con A-Sepharose, indicating that it is a glycoprotein. Diisopropylfluorophosphate and dithiothreitol inhibited the depolymerase activity completely. The N-terminal amino acid sequence of the purified enzyme was TALPAFNVNPNSVSVSGLSSGGYMAAQL, which contained a lipase box sequence. This purified enzyme is one of the extracellular PHB depolymerase which belong to serine esterase. The purified enzyme showed relatively strong hydrolytic activity against 3-hydroxybutyrate oligomers compared with its PHB-degrading activity. PHB-binding experiments showed that P. funiculosum depolymerase has the weakest affinity for PHB of all the depolymerases examined.  相似文献   

20.
Poly[(R)-3-hydroxyalkanoates] (PHAs) are biopolymers stored by bacteria, which are currently receiving much attention because of their potential as renewable and biodegradable plastics. Most well-known representatives are poly[(R)-3-hydroxybutyrate] and its copolymers with 3-hydroxyvalerate, which have been commercialized under the trademark Biopol. In addition to these rigid materials, the elastomeric medium-chain length PHAs (mcl-PHAs) produced by fluorescent Pseudomonads are now emerging. The present review aims to survey the important developments concerning research and application prospects of mcl-PHAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号