首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One month old soybean (Glycine max (L.) Merrill) cv. 'Williams' plants were exposed to nitrogen dioxide (NO2 at 0.1, 0.2, 0.3, and 0.5 microl liter(-1) and carbon filtered air (control), 7 h per day for five days, under controlled environment. Data were collected on net photosynthetic rate (PN), stomatal resistance (SR), and dark respiration rate (DR), immediately following the fifth day of exposure and 24 h after termination of exposure. Chlorophyll a (Ch a), chlorophyll b (Ch b), total chlorophyll (tot Ch) and foliar nitrogen (N) were measured before and after exposures. Growth characteristics--relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR), and root shoot ratio (RSR) -- were computed for treated plants using standard growth equations. Increases of 18% and 23% in PN were observed immediately following exposure to 0.2 microl liter(-1) NO2 and after 24 h recovery period, respectively. With 0.5 microl liter(-1) NO2 treatment, reductions in PN of 23% and 50% were observed, immediately after exposure and following 24 h recovery, respectively. DR rates with 0.2 l liter(-1) treatment were higher than the control. Chlorophyll a and tot Ch showed significant reduction with 0.5 microl liter(-1) NO2 treatment. The percent reduction in Ch a and tot Ch with 0.5 microl liter(-1) NO2 were 45% and 47%, respectively. Increases in foliar nitrogen content after 0.2 and 0.3 microl liter(-1) NO2 treatments were 46% and 69%, respectively. Nitrogen dioxide at 0.5 microl liter(-1) reduced RGR and NAR by 47% and 51%, respectively. Leaf area ratio was 42% higher in 0.5 microl liter(-)1 NO2 treated plants, compared with the control; this increase was insufficient to compensate for the decrease in NAR resulting in a net decline in RGR. Nitrogen dioxide up to 0.2 microl liter(-1) increased PN and foliar-N content of soybean. With 0.5 microl liter(-1) NO2, significant decreases were observed in PN, leaf chlorophyll, foliar-N, NAR and RGR. Nitrogen dioxide up to 0.2 microl liter(-)1 has a favorable influence on overall growth characteristics of soybean; however, inhibitory effects were seen with NO2 treatment at 0.5 microl liter(-1).  相似文献   

2.
镉胁迫对向日葵幼苗生长和生理特性的影响   总被引:7,自引:0,他引:7  
采用溶液培养方法,研究了不同浓度镉(0、0.05、0.1、0.5和1 mg/L)处理7 d对向日葵幼苗生长和生理特性的影响。结果表明:随着镉处理浓度的增加,向日葵幼苗对镉的吸收显著增加。1 mg/L镉浓度处理时,叶、茎和根中镉浓度分别为0.05 mg/L镉处理时的16.3、19.2和581倍;根中积累的镉含量明显高于叶和茎, 各浓度根部积累的镉分别为叶和茎的37.8~63倍和29.4~41倍。镉胁迫显著抑制向日葵幼苗生长和叶绿素合成,当镉浓度达1 mg/L时,整株植物生物量和总叶绿素含量分别为对照的55.9%和52.6%。镉胁迫下向日葵幼苗游离脯氨酸和丙二醛(MDA)含量显著增加,1 mg/L镉浓度时,根中含量分别为对照的4和5.8倍。向日葵幼苗可溶性蛋白含量和过氧化物酶(POD)活性变化与镉胁迫浓度呈明显的倒U字型关系,可溶性蛋白含量在0.05 mg/L镉浓度时达到最大值,叶、茎、根中的POD活性分别在0.1、0.1和0.05 mg/L镉浓度时达到最大值。  相似文献   

3.

Purpose

We used a sequential extraction to investigate the effects of compost amendment on Cd fractionation in soil during different incubation periods in order to assess Cd stabilization in soil over time.

Methods

Pot experiments using rice plants growing on Cd-spiked soils were carried out to evaluate the influence of compost amendment on plant growth and Cd accumulation by rice. Two agricultural soils (Pinchen and Lukang) of Taiwan were used for the experiments. The relationship between the redistribution of Cd fractions and the reduction of plant Cd concentration due to compost amendment was then investigated.

Results and discussion

Compost amendment in Pinchen soil (lower pH) could transform exchangeable Cd into the Fe- and Mn-oxide-bound forms. With increasing incubation time, exchangeable Cd tended to transform into carbonate- and Fe- and Mn-oxide-bound fractions. In Lukang soil (higher pH), carbonate- and Fe- and Mn-oxide-bonded Cd were the main fractions. Exchangeable Cd was low. Compost amendment transformed the carbonate-bound form into the Fe and Mn oxide form. Pot experiments of rice plants showed that compost amendment enhanced plant growth more in Pinchen soil than in Lukang soil. Compost amendment could significantly reduce Cd accumulation in rice roots in both Pinchen and Lukang soils and restrict internal transport of Cd from the roots to the shoots. Because exchangeable Cd can be transformed into the stronger bonded fractions quickly in Pinchen soil, a reduction of Cd accumulation in rice due to compost amendment of Pinchen soil was significant by 45?days of growth. However, carbonate-bonded fractions in Lukang soil may provide a source of available Cd to rice plants, and exchangeable and carbonate-bonded fractions are transformed into the other fractions slowly. Thus, reduction of Cd accumulation by rice due to compost amendment in Lukang soil was significant by 75?days of growth.

Conclusions

The results of the study suggest that the effectiveness of compost amendment used for stabilization of Cd and to decrease the phytoavailability of Cd for rice plants is different in acidic and alkaline soils. In acidic soil, Cd fractionation redistributes quickly after compost amendment and shows a significant reduction of Cd accumulation by the plant within a few weeks. In alkaline soil, due to the strongly bound fractions of Cd being in greater quantity than the weakly bound ones, a longer period (a few months) to redistribute Cd fractions is needed.  相似文献   

4.
Environmental Science and Pollution Research - Dietary intake of selenium (Se)-enriched rice has benefit for avoiding Se-deficient disease, but there is a risk of excessive cadmium (Cd) intake....  相似文献   

5.
镉胁迫对万寿菊生长及生理生态特征的影响   总被引:8,自引:0,他引:8  
通过水培实验,研究了不同Cd浓度(0、0.1、0.5、1、2和5 mg/L)胁迫对万寿菊生长及生理生化指标的影响.研究表明,低浓度Cd(<0.5 mg/L)胁迫下,万寿菊的生长末受到显著影响,说明万寿菊对低浓度Cd有一定的耐性.而Cd浓度超过0.5 mg/L时,万寿菊的相对生长速率较对照明显降低(P<0.05),最高可...  相似文献   

6.
通过区域调查与田间实验相结合的方法探讨施用石灰对土壤-水稻系统镉(Cd)污染的控制效果和潜在风险.区域调查结果显示,研究区稻米Cd超标率高达72.6%;石灰处理可降低21.1%的土壤Cd活性和9.7%的稻米Cd超标率,并小幅提升土壤pH,但存在不确定性.田间实验结果显示,经石灰处理后,稻米Cd含量从0.26 mg·kg...  相似文献   

7.
Liu JG  Liang JS  Li KQ  Zhang ZJ  Yu BY  Lu XL  Yang JC  Zhu QS 《Chemosphere》2003,52(9):1467-1473
The absorption and accumulation of Cd2+, Fe3+, Zn2+, Mn2+, Cu2+ and Mg2+ in the roots and leaves of 20 rice cultivars (Oryza sativa L.) with different genotypes under cadmium (Cd) stress were investigated with pot experiments. The results showed that there existed significant differences among the rice cultivars in the contents of six mineral elements in both roots and leaves at both heading and ripening periods. The statistical analysis showed that, for their contents in roots, significant and positive correlations between Cd2+ and Fe3+, Cd2+ and Zn2+, Cd2+ and Mn2+, Cd2+ and Cu2+ existed, but no significant correlation between Cd2+ and Mg2+, at the two periods. In the leaves, Cd also showed significant and positive correlations with Fe3+, Zn2+ and Cu2+ at the both periods, but a significant and negative correlation with Mn2+ and no significant correlation with Mg2+ at heading, a significant and positive correlation with Mg2+ and no significant correlation with Mn2+ at ripening. These results suggested that there were cooperative absorption between Cd2+ and Fe3+, Mn2+, Cu2+, Mn2+ in rice plants. Genotypic differences in Cd uptake and translocation among the rice cultivars suggested that paddy field of some rice cultivars may be irrigated with partially treated sewage water.  相似文献   

8.
Biochemical responses to joint stress of chlorimuron-ethyl and cadmium (Cd) in wheat Triticum aestivum were examined. The joint action of chlorimuron-ethyl and Cd weakened the inhibition of Cd or chlorimuron-ethyl on the formation of chlorophyll. It was deduced that wheat plants had the capability to protect themselves by increasing the activity of the antioxidant enzyme peroxidase (POD) with the exposure time. The joint effect of chlorimuron-ethyl and Cd on the superoxide dismutase (SOD) activity in leaves was additive, while the joint effect on the SOD activity in roots was determined by the interaction of chlorimuron-ethyl and Cd in wheat. It was also concluded that the change of malondialdehyde (MDA) content in wheat might not be a good biomarker in the oxidative damage by chlorimuron-ethyl, while a decrease in the soluble protein content and POD activity in roots could be considered as a biomarker in the damage of wheat by chlorimuron-ethyl and Cd.  相似文献   

9.
10.
生物菌肥与石灰配施对水稻吸收积累Cd的影响   总被引:3,自引:0,他引:3  
采用田间随机区组试验的方法,研究了基施生物菌肥(Bi处理)与追施石灰(L处理)及其配合施用(Bi+L处理)对晚稻湘晚籼12号生物量、水稻对土壤Cd的富集情况、4个生育期内各部位间转运系数以及各部位中Cd含量的影响。结果表明,水稻各部位间Cd含量从大到小依次为根部、茎鞘、穗部、叶片,随不同生育期对营养物质的需求而改变,各处理不会影响水稻生物量及转运系数,并能降低水稻各部位富集Cd能力,使水稻糙米中Cd含量显著降低,其中以生物菌肥与石灰配施的降Cd效果最佳。  相似文献   

11.

With the boom in industrialization, there is an increase in the level of heavy metals in the soil which drastically affect the growth and development of plants. Nickel is an essential micronutrient for plant growth and development, but elevated level of Ni causes stunted growth, chlorosis, nutrient imbalance, and alterations in the defense mechanism of plants in terms of accumulation of osmolytes or change in enzyme activities like guiacol peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD). Ni-induced toxic response was studied in seedlings of finger millet, pearl millet, and oats in terms of seedling growth, lipid peroxidation, total chlorophyll, proline content, and enzymatic activities. On the basis of germination and growth parameters of the seedling, finger millet was found to be the most tolerant. Nickel accumulation was markedly lower in the shoots as compared to the roots, which was the highest in finger millet and the lowest in shoots of oats. Plants treated with a high concentration of Ni showed significant reduction in chlorophyll and increase in proline content. Considerable difference in level of malondialdehyde (MDA) content and activity of antioxidative enzymes indicates generation of redox imbalance in plants due to Ni-induced stress. Elevated activities of POD and SOD were observed with high concentrations of Ni while CAT activity was found to be reduced. It was observed that finger millet has higher capability to maintain homeostasis by keeping the balance between accumulation and ROS scavenging system than pearl millet and oats. The data provide insight into the physiological and biochemical changes in plants adapted to survive in Ni-rich environment. This study will help in selecting the more suitable crop species to be grown on Ni-rich soils.

  相似文献   

12.
Genotypic and environmental variation in Cr, Cd and Pb concentrations of rice grains and the interaction between these metals were investigated by using 138 rice genotypes grown in three contaminated soils. There were significant genotypic differences in the three heavy metal concentrations of rice grains, with the absolute difference among 138 genotypes in grain Cr, Cd and Pb concentrations being 24.5-, 9.1- and 23.8-folds, respectively, under the slightly contaminated soil (containing 4.61mgkg(-1) Cr, 1.09mgkg(-1) Cd and Pb 28.28mgkg(-1), respectively). A highly significant interaction occurred between genotype and environment (soil type) in the heavy metal concentrations of rice grains. Cr concentration in rice grains was not correlated with Cd and Pb concentration. However, there was a significant correlation between Cd and Pb in slightly and highly contaminated soils. The results suggest the possibility to develop the rice cultivars with low Cd and Pb concentrations in grain.  相似文献   

13.
Ecotoxicological effects of cadmium on three ornamental plants   总被引:8,自引:0,他引:8  
Wang XF  Zhou QX 《Chemosphere》2005,60(1):16-21
Ecotoxicological effects of cadmium (Cd) on three ornamental plants African marigold (Tagetes erecta), scarlet sage (Salvia splendens) and sweet hibiscus (Abelmoschus manihot) were investigated. Seeds of these plants were exposed to five different concentrations of Cd (0-50 mgl(-1)). Ecotoxicological indexes based on inhibition rate (IC) of seed germination, root and shoot elongation, biomass (fresh weight and dry weight), as well as IC50 (Cd concentration when 50% plants show inhibition) and tolerance indexes (the ratio of maximum root length in an experimental group to that in a control group) were determined. The results indicated that Cd had little effects (p>0.05) on seed germination of the three plants and shoot elongation of scarlet sage (S. splendens). Cadmium had significant (p<0.05) inhibitory effects on root elongation of the three plants and shoot elongation of African marigold (T. erecta). The fresh weight biomass of scarlet sage (S. splendens) was most sensitive to Cd, while that of sweet hibiscus (A. manihot) was least sensitive. On a dry weight basis, African marigold (T. erecta) was the least sensitive, and scarlet sage (S. splendens) was the most sensitive to Cd. Based on IC50 of seed germination, sweet hibiscus (A. manihot) was the most insensitive plant with an IC50 value as high as 428.0 gl(-1). According to Cd-tolerance indexes under the same Cd concentration, sweet hibiscus (A. manihot) was the most tolerant plant whereas scarlet sage (S. splendens) was the most sensitive one.  相似文献   

14.
Ahsan N  Lee DG  Lee SH  Kang KY  Lee JJ  Kim PJ  Yoon HS  Kim JS  Lee BH 《Chemosphere》2007,67(6):1182-1193
Copper is an essential micronutrient for plants. Present at a high concentration in soil, copper is also regarded as a major toxicant to plant cells due to its potential inhibitory effects against many physiological and biochemical processes. The interference of germination-related proteins by heavy metals has not been well documented at the proteomic level. In the current study, physiological, biochemical and proteomic changes of germinating rice seeds were investigated under copper stress. Germination rate, shoot elongation, plant biomass, and water content were decreased, whereas accumulation of copper and TBARS content in seeds were increased significantly with increasing copper concentrations from 0.2mM to 1.5mM followed by germination. The SDS-PAGE showed the preliminary changes in the polypeptides patterns under copper stress. Protein profiles analyzed by two-dimensional electrophoresis (2-DE) revealed that 25 protein spots were differentially expressed in copper-treated samples. Among them, 18 protein spots were up-regulated and 7 protein spots were down-regulated. These differentially displayed proteins were identified by MALDI-TOF mass spectrometry. The up-regulation of some antioxidant and stress-related proteins such as glyoxalase I, peroxiredoxin, aldose reductase, and some regulatory proteins such as DnaK-type molecular chaperone, UlpI protease, and receptor-like kinase clearly indicated that excess copper generates oxidative stress that might be disruptive to other important metabolic processes. Moreover, down-regulation of key metabolic enzymes like alpha-amylase or enolase revealed that the inhibition of seed germinations after exposure to excess copper not only affects starvation in water uptake by seeds but also results in failure in the reserve mobilization processes. These results indicate a good correlation between the physiological and biochemical changes in germinating rice seeds exposed to excess copper.  相似文献   

15.
镉属于环境中持久性污染物,毒性大,对环境及人类造成严重危害,"镉米"事件已引起了对环境镉污染尤其是土壤镉污染的高度关注。利用镉米生产酒精不但能为企业能源生产提供新的原料来源,而且可解决有害大米的出路问题。通过摇瓶和UASB厌氧反应器实验,重点研究了Cd2+在厌氧处理过程中的迁移途径。结果表明,90%以上的Cd2+主要以微溶的形式富集于厌氧污泥里。厌氧泥离心分离:泥中镉浓度为0.35~0.40 mg/kg,水中镉浓度低于0.025 mg/kg。厌氧出水镉浓度在0.010~0.015 mg/kg,可以实现达标排放。出水VFA基本维持在300~500 mg/L,COD的去除率达65%~80%。实验结果可为镉米能源化利用提供一定的理论依据和技术支撑。  相似文献   

16.
以鸢尾(Iris tectorum)为试验植物,构建垂直流人工湿地,分析不同浓度NaCl胁迫下鸢尾生理特性变化及人工湿地对污水中COD、TN和TP的净化效果。结果表明,在NaCl质量分数为1.0%污水胁迫下,胁迫第6周时鸢尾叶片的丙二醛(MDA)相比对照组(CK)增加了23.24%;在NaCl质量分数为0.5%污水胁迫下,胁迫第6周时鸢尾叶片脯氨酸(Pro)相比CK增加了79.51%;超氧化物歧化酶(SOD)活性在胁迫第3周达到最大值;在NaCl质量分数为1.0%污水胁迫下,鸢尾叶片的叶绿素大幅度降低,胁迫第6周时相比CK降低58.69%。相对于CK,两种人工湿地处理NaCl质量分数为1.0%污水时,无植物人工湿地对COD、TN和TP的去除率分别下降了13.94百分点、11.48百分点、19.11百分点,鸢尾人工湿地对COD、TN和TP的去除率分别下降了12.76百分点、12.88百分点、19.48百分点。鸢尾在盐胁迫下细胞膜和酶保护系统发生损伤,自身的渗透调节和光合作用能力下降;鸢尾在人工湿地污水处理系统中发挥重要作用,污水盐度越低人工湿地处理效果越好。  相似文献   

17.
A deterministic model for long-term behaviour of contaminants in the rootzone is developed that includes sorption, leaching, and plant uptake. The model is applied to cadmium accumulation in a sandy soil and uptake of cadmium by barley. Sensitivity analysis showed that the sensitivity of the leaching rate to changes in soil chemical and soil physical parameters decreases as a function of time, and becomes zero when steady state is reached. In contrast, accumulation of cadmium in soil and the plant uptake rate of barley are increasingly sensitive to soil chemical and soil physical parameters as time preceeds. To analyse cadmium behaviour in a field that is heterogeneous with respect to soil physical properties, the interstitial flow velocity was assumed to be a random, lognormally distributed variate. Using Monte Carlo simulation, the average plant uptake rate appeared to be much higher in the stochastic analysis than in the deterministic approach. Steady state is reached after a very long period of time. For a lognormally distributed proton activity, causing heterogeneity with respect to the sorption capacity of the soil, the model predicted similar deviations from the deterministic approach. It is concluded that reference values for groundwater and crop quality are exceeded earlier in a heterogeneous field than in a homogenous soil profile. Moreover, when average values suggest an acceptable situation, variability of the leaching rate and the plant uptake rate can still cause exceedance of reference values in part of the field. Therefore, it is reasoned that environmental quality standards should take soil heterogeneity into account.  相似文献   

18.
The interactions between Zn and Cd on the concentration and tissue distribution of these metals in lettuce and spinach were studied at levels corresponding to background and Zn-Cd contaminated sites. Plants were grown in nutrient solutions containing 0.398-8.91 microM Zn and 0.010-0.316 microM Cd. Cadmium accumulated more in old than in young leaves of both crops at any solution Cd level, whereas Zn followed that pattern only at Zn levels > or = 3.16 microM. Increasing solution Cd increased Zn concentrations in young leaves of lettuce but not of spinach, regardless of Zn levels. Cadmium concentrations in young leaves of both crops decreased exponentially with increasing solution Zn at low (0.0316 microM) but not at high (0.316 microM) solution Cd. The Zn: Cd concentration ratios in young leaves of lettuce and spinach grown at 0.316 microM Cd became greater as the solution Zn increased. Cadmium and Zn concentrations in young leaves were related more closely to the relative concentrations of Zn and Cd in solution than were the concentrations in old leaves, especially in lettuce. Studies of Zn-Cd interactions and Cd bioavailability should differentiate between basal and upper leaves of lettuce and spinach. Compared to Cd-only pollution, Zn-Cd combined pollution may not decrease Cd concentrations in lettuce and spinach edible tissues, but because it increases their Zn concentrations it lowers plant Cd bioavailability.  相似文献   

19.
周青  黄晓华 《环境污染与防治》2002,24(4):201-203,221
采用叶圆片法研究了模拟 Pb- Cd胁迫污染对 5种树木若干生理生化指标的影响。结果表明 ,Pb- Cd胁迫 ( Pb70 0 m g·L-1 ,Cd2 0 m g/ L)使 5种树木的叶绿素含量、质膜透性、过氧化氢酶活性、叶片内 Pb和 Cd的富集量均产生明显变化。经 Sm- G ly-VB6处理的 5种树木 ,上述各项指标的变幅明显减小 ,说明 Sm- G ly- VB6对重金属伤害植物有一定的缓解作用  相似文献   

20.
Fourteen cultivars of bai cai (Brassica campestris L. ssp. chinensis var. communis) were grown in the nutrient solutions containing 0-0.5 microg mL(-1) of cadmium (Cd) to investigate genotypic differences in the effects of Cd exposure on the plant growth and uptake and distribution of Cd in bai cai plants. The Cd exposure significantly reduced the dry and fresh weights of roots and shoots, the dry weight ratio of shoot/root (S/R), total biomass, and chlorophyll content (SPAD value). Cd concentrations in bai cai ranged from 13.3 to 74.9 microg g(-1) DW in shoots and from 163.1 to 574.7 microg g(-1) DW in roots under Cd exposure, respectively. The considerable genotypic differences of Cd concentrations and accumulations in both shoots and roots were observed among 14 bai cai cultivars. Moreover, Cd mainly accumulated in the roots. Cd also caused the changes of uptake and distribution of nutrients in bai cai and under the influence of cadmium, the concentration of potassium (K) decreased in shoot and increased in root. However, the concentrations of magnesium (Mg), phosphorus (P), manganese (Mn), boron (B), and iron (Fe) increased in shoots and decreased in roots. In addition, Cd exposure resulted in an increase in calcium (Ca), sulphur (S), and zinc (Zn) concentrations in both shoots and roots but had no significant effects on the whole uptake of the examined mineral nutrients except for S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号