首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Richardson JL 《Ecology》2006,87(3):780-787
Organisms in aquatic ecosystems must often tolerate variable environmental conditions, including an uncertain risk of predation. Individuals that can maintain plastic defenses against predation will increase their survival when predators are present, but will not incur the costs of these defenses when the risk of predation is low and the defense is not induced. Larvae of the pond-breeding anuran Hyla chrysoscelis develop a conspicuous phenotype in the presence of predators consisting of a brightly colored tail and a deeper tail fin. In this study, I attempted to identify the source of the chemical signal that induces this defensive morphology in this species. I tested whether metabolites alone, originating from the prey but passing through the predator, were able to induce the same morphological response as the combination of alarm signals released directly by attacked conspecifics, and metabolites. I used morphometric and tail conspicuousness data to assess tadpole response to the perceived risk of predation by larval odonate predators (Anax junius). I also tested whether this inducing cue could be recognized across species by measuring the morphological response of H. chrysoscelis tadpoles exposed to cues emitted when tadpoles of a closely related genus (Pseudacris crucifer) were consumed. Tadpoles exhibited a clean graded response of both overall shape and tail morphology in response to all cues, corresponding to their relative reliability as indicators of a risk of predation. H. chrysoscelis tadpoles were also able to respond to cues emitted when tadpoles of a closely related genus were consumed by predators. These results illustrate that tadpoles of this species are able to respond to metabolites alone without alarm signals, and that interspecific chemical communication is a primary mechanism for predator avoidance in this inducible defense system.  相似文献   

2.
Recent investigations have indicated that animals are able to use chemical cues of predators to assess the magnitude of predation risk. One possible source of such cues is predator diet. Chemical cues may also be important in the development of antipredator behaviour, especially in animals that possess chemical alarm substances. Tadpoles of the common toad (Bufo bufo) are unpalatable to most vertebrate predators and have an alarm substance. Tadpoles of the common frog (Rana temporaria) lack both these characters. We experimentally studied how predator diet, previous experience of predators and body size affect antipredator behaviour in these two tadpole species. Late-instar larvae of the dragonfly Aeshna juncea were used as predators. The dragonfly larvae were fed a diet exclusively of insects, R. temporaria tadpoles or B. bufo tadpoles. R. temporaria tadpoles modified their behaviour according to the perceived predation risk. Depending on predator diet, the tadpoles responded with weak antipredatory behaviour (triggered by insect-fed predators) or strong behaviour (triggered by tadpole-fed predators) with distinct spatial avoidance and lowered activity level. The behaviour of B. bufo in predator diet treatments was indistinguishable from that in the control treatment. This lack of antipredator behaviour is probably related to the effective post-encounter defenses and more intense competitive regime experienced by B. bufo. The behaviour of both tadpole species was dependent on body size, but this was not related to predator treatments. Our results also indicate that antipredator behaviour is largely innate in tadpoles of both species and is not modified by a brief exposure to predators. Received: 22 August 1996 / Accepted after revision: 31 January 1997  相似文献   

3.
Teplitsky C  Laurila A 《Ecology》2007,88(7):1641-1646
Competition is predicted to affect the expression of inducible defenses, but because costs of behavioral and morphological antipredator defenses differ along resource gradients, its effects on defenses may depend on the traits considered. We tested the predictions from different defense models in tadpoles of the common frog Rana temporaria, which exhibit both types of defenses. In an outdoor experiment, we exposed the tadpoles to nonlethal predators (Aeshna dragonfly larvae) and to a gradient of intraspecific competition. Morphological responses did not follow any of the expected patterns, since investment in defense was not affected by resource level. Instead, tail depth decreased in the absence of predators. Behavioral defenses followed a state-dependent model. Overall, the defense strategy of the tadpoles revealed a shift from morphological and behavioral defenses at low tadpole density to morphological defense only at high density. This difference probably reflects the different efficiency of the defenses. Hiding is an effective means of defense, but it is unsustainable when resources are scarce. Morphological responses become more important with increasing density to compensate for the increase in behavioral risk-taking. Our results indicate that competition can strongly affect reaction norms of inducible defenses and highlight the importance of integrating ecological parameters that affect the cost-benefit balance of phenotypic plasticity.  相似文献   

4.
Abstract: This study examines the effects of the short-lived insecticide carbaryl, a neurotoxin, on amphibian communities experiencing natural stresses of competition and predation. Tadpoles of three species (  Woodhouse's toad [ Bufo woodhousii ], gray treefrog [ Hyla versicolor ], and green frog [ Rana clamitans ]), representing a commonly encountered assemblage in Missouri, were reared in outdoor polyethylene pond mesocosms. We determined the effects of initial tadpole density ( low or high), predation (newts [  Notophthalmus viridescens ] absent or present), chemical exposure (0, 3.5, or 7.0 mg /L carbaryl), and their interactions on body mass, larval period, and survival to metamorphosis. Green frogs in high-density ponds did not reach metamorphosis, but metamorphs in low-density ponds and tadpoles in high-density ponds were not significantly affected by treatments or their interaction. Carbaryl reduced survival to metamorphosis in toads and treefrogs and increased mass at metamorphosis in treefrogs. Effects of carbaryl varied with predator environment and initial larval density. Interactions of carbaryl with predator and with density may result in an indirect effect of carbaryl causing increased food resources through the elimination of zooplankton populations that may compete for similar resources. Our results indicate that differences in biotic conditions influenced the potency of carbaryl and that even low concentrations induce changes that may alter community dynamics in ways not predicted from single-factor, laboratory-based studies.  相似文献   

5.
Effective coordination of behaviors such as foraging and avoiding predators requires an assessment of cues provided by other organisms. Integrating cues from multiple sensory modalities may enhance the assessment. We studied cue integration by tadpoles of Oophaga pumilio, which live in small arboreal water pools. In this species, mothers periodically visit their tadpoles and feed them with unfertilized eggs. When mothers visit, tadpoles beg conspicuously by vibrating until fed. However, animals other than mother frogs including potential predators may visit water pools. Thus, when a visitor appears, tadpoles must use visitor cues to decide whether to beg or to remain inactive to avoid predation. To elucidate the cues that prompt these behaviors, we videotaped behavior of O. pumilio tadpoles in response to isolated and multimodal cues. Tadpoles swam more when exposed to visual or visual and chemical cues of adult O. pumilio but only exhibited begging when exposed to visual, chemical, and tactile cues together. Visual, chemical, and tactile cues from either male or female adult O. pumilio stimulated swimming and begging, but the same cues from similarly sized heterospecific frogs did not. Lastly, tadpoles exposed to a potential predator did not beg and swam less than tadpoles with no stimulus. Together, these findings suggest that O. pumilio tadpoles use multimodal cues to modulate swimming behavior accordingly in the presence of egg provisioners, predators, and other visitors and that tadpole begging is induced by multimodal cues of conspecific frogs such that tactile and perhaps chemical cues supplement visual cues.  相似文献   

6.
Marczak LB  Ho CK  Wieski K  Vu H  Denno RF  Pennings SC 《Ecology》2011,92(2):276-281
The shrub Iva frutescens, which occupies the terrestrial border of U.S. Atlantic Coast salt marshes, supports a food web that varies strongly across latitude. We tested whether latitudinal variation in plant quality (higher at high latitudes), consumption by omnivores (a crab, present only at low latitudes), consumption by mesopredators (ladybugs, present at all latitudes), or the life history stage of an herbivorous beetle could explain continental-scale field patterns of herbivore density. In a mesocosm experiment, crabs exerted strong top-down control on herbivorous beetles, ladybugs exerted strong top-down control on aphids, and both predators benefited plants through trophic cascades. Latitude of plant origin had no effect on consumers. Herbivorous beetle density was greater if mesocosms were stocked with beetle adults rather than larvae, and aphid densities were reduced in the "adult beetle" treatment. Treatment combinations representing high and low latitudes produced patterns of herbivore density similar to those in the field. We conclude that latitudinal variation in plant quality is less important than latitudinal variation in top consumers and competition in mediating food web structure. Climate may also play a strong role in structuring high-latitude salt marshes by limiting the number of herbivore generations per growing season and causing high overwintering mortality.  相似文献   

7.
Captive bred animals often lack the ability of predator recognition and predation is one of the strongest causes of failure of breed and release projects. Several tadpole and fish species respond defensively to chemical cues from injured or dead conspecifics, often referred to as alarm pheromones. In natural conditions and in species that school, the association of chemical cues from predators to alarm pheromones released by attacked conspecifics may lead to the learning of the predator-related danger without experiencing an attack. In the laboratory, this chemical communication can also be used in associative learning techniques to teach naïve tadpoles to avoid specific predators and improve survivorship of released animals. In our experimental trials, tadpoles of the threatened green and golden bell frog (Litoria aurea) did not avoid or decrease their activity when exposed to solutions of conspecific macerate, suggesting that the chemicals released into the water by dead/injured conspecifics do not function as an alarm pheromone. This non-avoidance of dead conspecific chemicals may explain why green and golden bell frog tadpoles have seemingly not developed any avoidance behaviour to the presence of introduced mosquito fish, and may render attempts to teach naïve tadpoles to avoid this novel predator more difficult.  相似文献   

8.
Benard MF 《Ecology》2006,87(2):340-346
In many organisms, specific predator species induce defensive phenotypes that are qualitatively different from the phenotypes induced by other predator species. This differential induction implies that there is no optimal phenotype that works best against all predators. However, few studies have actually tested the hypothesis that each predator-induced phenotype provides the highest survival rate in encounters with the predator that induced that phenotype. In this experiment, I reared Pacific treefrog (Pseudacris regilla) larvae with chemical cues from two different predators (bluegill sunfish and predaceous diving-beetle larvae), and without predator cues. The Pacific treefrog larvae in the three treatments differed in their morphology and foraging behavior. I then exposed tadpoles from each treatment to free-foraging predaceous diving beetles and bluegill sunfish. Tadpoles survived best when exposed to the predator whose cues they were reared with, and worst when exposed to the other predator. In both predator environments, the tadpoles reared in the nonpredator control treatment had intermediate survival between the two predator-induced groups. Thus, there is no generalized "antipredator" response to these predators; rather, there was a clear trade-off in survival abilities between the predators.  相似文献   

9.
Summary The threat-sensitive predator avoidance hypothesis predicts that prey can assess the relative threat posed by a predator and adjust their behaviour to reflect the magnitude of the threat. We tested the ability of larval threespine sticklebacks to adjust their foraging in the presence of predators by exposing them to conspecific predators of various sizes and recording their foraging and predator avoidance behaviours. Larvae (<30 days post-hatch) displayed predator escape behaviours only towards attacking predators. At 3 weeks post-hatch larvae approached the predator after fleeing, a behaviour which may be the precursor to predator inspection. Larvae reduced foraging and spent less time in the proximity of large and medium-sized predators compared to small predators. The reduction in foraging was negatively correlated to the predator/larva size ratio, indicating that larvae increased their foraging as they increased in size relative to the predator. We conclude that larval sticklebacks can assess the threat of predation early in their ontogeny and adjust their behaviour accordingly.Correspondence to: J.A. Brown  相似文献   

10.
Abstract:  Managing areas designed for human recreation so that they are compatible with natural amphibian populations can reduce the negative impacts of habitat destruction. We examined the potential for amphibians to complete larval development in golf course ponds in the presence or absence of overwintered bullfrog tadpoles ( Rana catesbeiana ), which are frequently found in permanent, human-made ponds. We reared larval American toads ( Bufo americanus ), southern leopard frogs ( R. sphenocephala ), and spotted salamanders ( Ambystoma maculatum ) with 0 or 5 overwintered bullfrog tadpoles in field enclosures located in ponds on golf courses or in experimental wetlands at a reference site. Survival to metamorphosis of American toads, southern leopard frogs, and spotted salamanders was greater in ponds on golf courses than at reference sites. We attributed this increased survival to low abundance of insect predators in golf course ponds. The presence of overwintered bullfrogs, however, reduced the survival of American toads, southern leopard frogs, and spotted salamanders reared in golf course ponds, indicating that the suitability of the aquatic habitats for these species partly depended on the biotic community present. Our results suggest that ponds in human recreational areas should be managed by maintaining intermediate hydroperiods, which will reduce the presence of bullfrog tadpoles and predators, such as fish, and which may allow native amphibian assemblages to flourish.  相似文献   

11.
Intraguild predation (IGP) occurs when one predator species consumes another predator species with whom it also competes for shared prey. One question of interest to ecologists is whether multiple predator species suppress prey populations more than a single predator species, and whether this result varies with the presence of IGP. We conducted a meta-analysis to examine this question, and others, regarding the effects of IGP on prey suppression. When predators can potentially consume one another (mutual IGP), prey suppression is greater in the presence of one predator species than in the presence of multiple predator species; however, this result was not found for assemblages with unidirectional or no IGP. With unidirectional IGP, intermediate predators were generally more effective than the top predator at suppressing the shared prey, in agreement with IGP theory. Adding a top predator to an assemblage generally caused prey to be released from predation, while adding an intermediate predator caused prey populations to be suppressed. However, the effects of adding a top or intermediate predator depended on the effectiveness of these predators when they were alone. Effects of IGP varied across different ecosystems (e.g., lentic, lotic, marine, terrestrial invertebrate, and terrestrial vertebrate), with the strongest patterns being driven by terrestrial invertebrates. Finally, although IGP theory is based on equilibrium conditions, data from short-term experiments can inform us about systems that are dominated by transient dynamics. Moreover, short-term experiments may be connected in some way to equilibrium models if the predator and prey densities used in experiments approximate the equilibrium densities in nature.  相似文献   

12.
Rudolf VH 《Ecology》2006,87(2):362-371
Nonlethal indirect interactions between predators often lead to nonadditive effects of predator number on prey survival and growth. Previous studies have focused on systems with at least two different predator species and one prey species. However, most predators undergo extreme ontological changes in phenotype such that interactions between different-sized cohorts of a predator and its prey could lead to nonadditive effects in systems with only two species. This may be important since different-sized individuals of the same species can differ more in their ecology than similar-sized individuals of different species. This study examined trait-mediated indirect effects in a two-species system including a cannibalistic predator with different-sized cohorts and its prey. I tested for these effects using larvae of two stream salamanders, Gyrinophilus porphyriticus (predator) and Eurycea cirrigera (prey), by altering the densities and combinations of predator size classes in experimental streams. Results showed that the presence of large individuals can significantly reduce the impact of density changes of smaller conspecifics on prey survival through nonlethal means. In the absence of large conspecifics, an increase in the relative frequency of small predators significantly increased predation rates, thereby reducing prey survival. However, with large conspecifics present, increasing the density of small predators did not decrease prey survival, resulting in a 14.3% lower prey mortality than predicted from the independent effects of both predator size classes. Small predators changed their microhabitat use in the presence of larger conspecifics. Prey individuals reduced activity in response to large predators but did not respond to small predators. Both predators reduced prey growth. These results demonstrate that the impact of a predator can be significantly altered by two different types of trait-mediated indirect effects in two-species systems: between different-sized cohorts and between different cohorts and prey. This study demonstrates that predictions based on simple numerical changes that assume independent effects of different size classes or ignore size structure can be strongly misleading. We need to account for the size structure within predator populations in order to predict how changes in predator abundance will affect predator-prey dynamics.  相似文献   

13.
Vaughn D 《Ecology》2007,88(4):1030-1039
While there are numerous reports of predator-induced morphological defenses for freshwater zooplankton, freshwater larvae, and benthic marine animals, a literature search revealed no reports of predator-induced morphological defenses for marine zooplankton. Rarity of predator-induced morphological defenses in marine zooplankton would imply a difference in predation risks compared to those experienced by freshwater organisms and benthic marine adults, whereas the presence of such plasticity in defenses would imply that risks are modified by developmental responses. This study reports a predator-induced change in defenses and vulnerability of a marine planktonic larva. Specifically, when reared in the presence of zoea larvae of Cancer spp., veliger larvae of the intertidal snail Littorina scutulata developed significantly smaller shell apertures and rounder shells than did cohort veligers reared in the absence of predator cues. Pairwise predation trials demonstrated that veligers reared with caged zoeas throughout development had greater survival than predator-naive veligers during short-term exposure to zoeas. The development of predator-induced morphological defenses by some marine larvae introduces a range of testable hypotheses on developmental plasticity that reduces vulnerability of planktonic larvae and other marine zooplankton to predators.  相似文献   

14.
Parents may increase the probability of offspring survival by choosing suitable rearing sites where risks are as low as possible. Predation and competition are major selective pressures influencing the evolution of rearing site selection. Poison frogs look after their clutches and deposit the newly hatched tadpoles in bodies of water where they remain until metamorphosis. In some species, cannibalism occurs, so parents deposit their tadpoles singly in very small pools. However, cannibalism also occurs in species that deposit tadpoles in larger pools already occupied by heterospecific or conspecific larvae that could be either potential predators or competitors. Here, I test the hypothesis that, given the choice, males of Dendrobates tinctorius would deposit their newly hatched tadpoles in low-risk sites for their offspring. I characterised the pools used by D. tinctorius for tadpole deposition, conducted experiments to determine the larval traits that predict the occurrence of and latency to cannibalism, and tested whether parents deposit their tadpoles in low-risk pools. I found that (1) neither pool capacity nor the presence of other larvae predict the presence/absence or number of tadpoles; (2) cannibalism occurs often, and how quickly it occurs depends on the difference in size between the tadpoles involved; and (3) the likelihood of males depositing their tadpoles in occupied pools increases with the size of the resident tadpole. I suggest that predation/cannibalism is not the only factor that parents assess when choosing deposition sites, and that the presence of larger conspecifics may instead provide information about pool quality and stability.  相似文献   

15.
Species interactions are widely assumed to be stronger at lower latitudes, but surprisingly few experimental studies test this hypothesis, and none ties these processes to observed patterns of species richness across latitude. We report here the first experimental field test that predation is both stronger and has a disproportionate effect on species richness in the tropics relative to the temperate zone. We conducted predator-exclusion experiments on communities of sessile marine invertebrates in four regions, which span 32 degrees latitude, in the western Atlantic Ocean and Caribbean Sea. Over a three-month timescale, predation had no effect on species richness in the temperate zone. In the tropics, however, communities were from two to over ten times more species-rich in the absence of predators than when predators were present. While micro-and macro-predators likely compete for the limited prey resource in the tropics, micropredators alone were able to exert as much pressure on the invertebrate communities as the full predator community. This result highlights the extent to which exposure to even a subset of the predator guild can significantly impact species richness in the tropics. Patterns were consistent in analyses that included relative and total species abundances. Higher species richness in the absence of predators in the tropics was also observed when species occurrences were pooled across two larger spatial scales, site and region, demonstrating a consistent scaling relationship. These experimental results show that predation can both limit local species abundances and shape patterns of regional coexistence in the tropics. When preestablished diverse tropical communities were then exposed to predation for different durations, ranging from one to several days, species richness was always reduced. These findings confirmed that impacts of predation in the tropics are strong and consistent, even in more established communities. Our results offer empirical support for the long-held prediction that predation pressure is stronger at lower latitudes. Furthermore, we demonstrate the magnitude to which variation in predation pressure can contribute to the maintenance of tropical species diversity.  相似文献   

16.
Amphibians are able to learn to recognize their future predators during their embryonic development (the ghost of predation future). Here, we investigate whether amphibian embryos can also acquire additional information about their future predators, such as the level of threat associated with them and the time of day at which they would be the most dangerous. We exposed woodfrog embryos (Rana sylvatica) to different concentrations of injured tadpole cues paired with the odor of a tiger salamander (Ambystoma tigrinum) between 1500 and 1700 hours for five consecutive days and raised them for 9 days after hatching. First, we showed that embryos exposed to predator odor paired with increasing concentrations of injured cues during their embryonic development subsequently display stronger antipredator responses to the salamander as tadpoles, thereby demonstrating threat-sensitive learning by embryonic amphibians. Second, we showed that the learned responses of tadpoles were stronger when the tadpoles were exposed to salamander odor between 1500 and 1700 hours, the time at which the embryos were exposed to the salamander, than during earlier (1100–1300 hours) or later (1900–2100 hours) periods. Our results highlight the amazing sophistication of learned predator recognition by prey and emphasize the importance of temporal considerations in experiments examining risk assessment by prey.  相似文献   

17.
Summary. Recent studies indicate that amphibian eggs are capable of hatching plasticity in response to chemical cues released by predators feeding on conspecific eggs or larvae. However, information is scarce on the relative importance of predator and conspecific cues in such a process. In particular, no attempt has been made to compare the effects of embryonic exposures to chemical cues indicative of a predation risk for eggs and larvae, although both life stages can co-occur in natural habitats. In this context, common frog embryos (Rana temporaria) were raised until hatching in the presence of crushed conspecific extracts from eggs and tadpoles to assess their respective influences on some hatching and larval traits. While a significant delay in hatching time was observed in embryos exposed to chemical cues from tadpole extract, this life-history shift appeared unaffected by embryonic exposure to egg extract. Hatchlings derived from eggs incubated in the presence of both conspecific extracts showed a significantly greater weight than unexposed controls. However, such an effect was no longer apparent 15, 30 and 50 days after hatching, suggesting that embryonic exposure to chemical cues from damaged conspecific eggs and tadpoles has no influence on larval growth. Lastly, morphological measurements performed on hatchlings and older tadpoles (15, 30 and 50 days old) revealed no significant effect of embryonic treatments on the shape of body and tail.  相似文献   

18.
Summary Behavioral resource depression occurs when the behavior of prey individuals changes in response to the presence of a predator, resulting in a reduction of the encounter rate of the predator with its prey. Here I present experimental evidence on the response of two species of gerbils (Gerbillus allenbyi and G. pyramidum) to the presence of barn owls. I conducted the experiments in a large aviary. Both gerbils responded to the presence of barn owl predators by foraging in fewer resource patches (seed trays) and by quitting foraged resource patches at a higher resource harvest rate (giving-up density of resource; GUD). This reduced the amount of time gerbils were exposed to owl predation, and hence the encounter rate of owls with gerbils, i.e., behavioral resource depression. Thus, the presence of owls imposes a foraging cost on gerbils due to risk of predation, and also on the owls themselves due to resource depression. I then examined how resource depression relaxed over time following exposure to owls. In the days following an encounter with the predator, the reduction in foraging activity for both gerbil species eased. Increasing numbers of trays were foraged each day, and GUDs in seed trays declined. The two gerbils differed in their rate of recovery, with G. pyramidum returning to prepredator levels of foraging after 1 or 2 nights and G. allenbyi taking 5 nights or longer. Interspecific differences in recovery rates may be based on differences between the species in vulnerability to predation and/or ability to detect the presence of predators. The differences in recovery rates may be due to optimal memory windows or decay rates, where differences between species are based on risk of predation or on how perceived risk changes with time since a predator was last encountered. Finally, differences between or among competitors in recovery from resource depression may provide foraging opportunities in time for the species which recover most quickly and may have implications for species coexistence.  相似文献   

19.
In aquatic environments, many prey rely on chemosensory information from injured (alarm cues) or stressed conspecifics (disturbance cues) to assess predation risk. Alarm cues are considered as a sign of higher risk than disturbance cues. These cues could be used by prey to learn potential new predators. In this study, we tested whether Iberian green frog tadpoles (Pelophylax perezi) exhibited antipredator responses to alarm and disturbance cues of conspecifics and whether tadpoles could associate new predators with alarm or disturbance cues. Tadpoles reduced their activity in the presence of disturbance cues, but only weakly when compared with their response to alarm cues. Also, tadpoles learned to recognize new predators from association with alarm or disturbance cues. However, the period of retention of the learned association was shorter for disturbance than alarm cues. Our results indicate that tadpoles are able to modify their antipredatory behavior according to (1) the degree of risk implied by the experimental cues (2) their previous experience of chemical cues of the predator.  相似文献   

20.
Vonesh JR  Warkentin KM 《Ecology》2006,87(3):556-562
Predation risk can cause organisms to alter the timing of life history switch points. Theory suggests that increased risk in an early life stage should select for switching earlier and smaller, while increased risk in the subsequent stage should select for switching later and larger. This framework has frequently been applied to metamorphosis in amphibians, with mixed results. Few studies examining the effect of larval predation risk on metamorphosis have observed the predicted pattern, and no studies, to our knowledge, have examined the effect of increased risk during and after metamorphosis on the timing of this switch point. Here we examine the effect of larval and post-metamorphic predation risk on metamorphosis in the red-eyed treefrog, Agalychnis callidryas. We raised tadpoles in the presence or absence of cues from caged water bugs fed larvae and cues from spiders fed emerging metamorphs. Water bugs are effective larval predators, while spiders are poor larval predators but prey on metamorphs. Furthermore, since spiders forage on the water surface it is possible that tadpoles could assess future risk from this predator. Predators induced opposite shifts in life history. Tadpoles emerged smaller and less developed in response to water bugs, but later and larger in response to spiders. Interestingly, predator effects on larval duration were not independent; tadpoles delayed emerging in response to spiders, but only in the absence of water bugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号