首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
为研究液化土体侧向扩展对群桩基础动力响应的影响,设计了可液化场地流动变形对桩基础地震反应影响的小型振动台模型试验。采用"钢带法"估计不同位置、不同类型场地地基土的侧向位移,探讨了地基土侧向流动速率与桩基结构地震内力的相关性,对比分析了上部结构惯性力及场地类型对桩身内力反应的影响,研究了由倾斜场地土体侧向扩展导致的群桩偏移运动。试验结果表明,桩周及下游土体的侧向位移随着土层深度的减小而逐步增大。可液化土体发生液化时所产生的流滑效应促使土体孔压加速消散。在水平场地条件下,土体侧向扩展沿土层深度方向线性分布;而倾斜场地条件下,土体的侧向扩展沿土层深度呈"抛物线型"分布。随着地基土液化,群桩基础受到的土体侧向约束力逐渐降低,进而使得群桩的峰值位移逐渐减小。  相似文献   

2.
直接针对振动注浆机具振源设计的需要,根据实际地震液化资料和室内土动力液化试验资料,基于土体液化影响因素多元拟合相关性分析结果,通过概率处理的办法求解土体动力液化的概率模型判别式。回判检验证实,所求的概率模型判别式具有较高的回判成功率(78.8%),能够满足岩土地震工程对精度的一般要求。进一步分析表明,通过该概率模型判别式,可以建立振动注浆机具的振源特性与土的特性和埋深、振动持时之间关系,从而为振动注浆机具的研制提供必要的振源设计参数。  相似文献   

3.
以西安穿地裂缝带的地铁隧道工程为背景,利用ABAQUS软件建立了不同衬砌型式下的隧道–地裂缝–地层相互作用模型,对各有限元模型施加地铁移动荷载模拟体系的振动响应,分析了地裂缝邻近土体振动的基本特征,以及隧道断面尺寸和形状对振动响应的影响。计算表明:近振源处的土体以高频振动为主,远振源处的地表以低频振动为主;对于穿地裂缝带的分段式马蹄形隧道,隧道正上方地表地裂缝附近土体加速度响应强于远离地裂缝的土体,增大隧道断面尺寸,可以有效地减弱地表的振动;在本次模拟条件下,隧道断面形状对距隧道中心线12m范围内地表的振动有一定影响,对此范围之外的影响不显著;圆形断面下的位移响应与马蹄形和矩形的差异较大,马蹄形和矩形断面的位移响应差异不显著;地铁移动荷载下,地裂缝处上下盘土体间有一定的竖向位错量,其大小与距衬砌的距离有关。  相似文献   

4.
以大开地铁车站为工程背景,采用数值模拟方法,以中柱层间位移角为评价指标,在弹性土体与弹性结构接触、弹塑性土体与弹性结构接触、弹塑性土体与弹塑性结构接触三种工况下分别计算接触面为绑定、接触面摩擦系数为0.2和0.4时的结构地震反应,同时考虑结构-土体的相对模量对接触特性的影响。提取峰值加速度时刻、峰值位移时刻和峰值速度时刻中结构变形程度最大的时刻,将接触面为摩擦设置时的中柱层间位移角与绑定连接条件下的层间位移角数值进行对比分析。结果表明:当材料力学特性不同时,接触特性对结构反应的影响程度也不同。改变结构的埋深,研究不同围岩约束能力下接触特性对地下结构地震反应的影响,结果表明浅埋时接触特性对地下结构地震反应影响程度较大,深埋时影响程度较小,且对于浅埋结构,峰值加速度时刻为结构地震反应最大时刻,对于深埋结构,峰值位移时刻为结构地震反应最大时刻。  相似文献   

5.
为研究不同承台形式斜直交替群桩?土?结构在地震互相作用, 利用FLAC3D有限差分软件作为研究工具,采用El Centro地震波作为动荷载。分别建立了斜直交替群桩?土?结构的低承台、高承台数值模型。并对地震作用下可液化土体的孔压比变化、桩基的受力与位移、桥墩顶部的位移进行分析研究。研究结果表明:在地震作用下,土层中孔隙水压力分布是自上而下逐渐增大。振动加速度峰值时部分土体由于发生剪胀孔压出现瞬时负值。砂土层中桩基中部区域容易产生液化现象。同一模型中,直桩的最大弯矩小于斜桩的最大弯矩。在低承台模型中,直桩和斜桩的最大水平位移均发生在桩基顶端,直桩的竖向位移沿埋深是一恒值,而斜桩的竖向位移沿埋深是变化的。在高承台模型中,斜桩的水平位移沿埋深不再是单调变化,最大值发生在砂土层中。高承台模型中斜桩和直桩的竖向位移和水平位移均明显大于低承台模型桩体。两个模型的桥墩顶部最大水平位移出现的时刻基本相同。  相似文献   

6.
在强震中,位于饱和可液化地基中的地铁车站会因土层液化而发生上浮灾害,已有的抗液化上浮措施都具备一定减小结构上浮的效果,但仍有改进的空间。本文采用FE-FD耦合方法,分析了在地铁车站周围设置钢板桩截断墙、碎石土排水层及改进的截断墙和改进的碎石排水层措施的地震上浮响应情况,对比了各措施的抗上浮效果,并分析了其工作机理。结果表明:在地铁车站周围设置碎石土层和截断墙的方式都能在一定程度上抑制地铁车站上浮,其中改进的碎石土层和改进的截断墙措施的抗上浮效果都要优于其同类别的方式。改进碎石土层措施主要是通过抑制土层的超孔隙水压力累积来起到抗上浮的作用,而设置改进截断墙方法是通过抑制土体液化后的流动变形来减小结构的上浮。在这两种改进措施中,改进的截断墙方式在不同地震强度作用下其抗上浮效果都更明显,但结构加速度响应的放大效应显著。此外,这两种改进措施对结构的最大剪力和最大弯矩影响较小,但会削弱地铁站结构中柱的最大轴力,这对结构的抗震是有利的。  相似文献   

7.
采用修正惯用法,在考虑土拱效应对圆形隧道结构受力状态影响的基础上,研究了埋深对地下结构地震反应的影响规律。首先,对比分析了不考虑和考虑土拱效应时、地震荷载作用前,隧道结构内力分布及随埋深的变化规律;将作用于隧道结构上的水平地震荷载等效为围岩土体变形导致的土压力的改变值;继而探讨了考虑土拱效应后,地震荷载引起的隧道结构内力的改变,研究了不同地震动强度下,埋深对圆形隧道结构地震反应的影响规律。 研究结果显示,地震作用下,圆形隧道结构的内力随着埋置深度的增加呈现出先增大后减小或趋于稳定的趋势,即圆形隧道结构地震反应存在一个抗震关键埋深。  相似文献   

8.
在饱和砂土场地振动过程中,孔隙水的发展会影响土体的有效应力和土骨架对地震波的传播。采用离心机动力试验和数值分析手段对不同强度振动作用下的砂土场地响应进行了研究,并利用观测和计算结果对现行液化评估简化方法进行了分析验证。结果表明:当振动强度较大时,土体的液化将导致加速度急剧衰减;采用完全耦合分析能再现超静孔压的发展和液化对加速度传播的影响,但总应力分析严重高估了地表的加速度;应用简化方法进行液化评估时,确定地表处水平加速度峰值应考虑场地对地震波的放大效应,但应忽略超静孔压的影响。  相似文献   

9.
本文基于ABAQUS有限元软件建立了软土地区地表结构-土-隧道相互作用的非线性有限元模型,地表结构采用置于刚性筏板基础的单自由度体系模拟。考虑地表结构的有无,不同的土体模型及地震荷载,通过水平地震作用下的动力时程反应分析,研究了地表结构对盾构隧道周围土体以及衬砌地震响应的影响。研究表明,地表结构的存在会增大隧道周围土体地震响应,从而引起隧道结构变形以及动态内力的显著增加,同时发现采用弹塑性分析下的隧道地震响应大于采用黏弹性分析。因此,地表结构作用是影响盾构隧道响应的重要因素,综合分析地表结构-土-隧道作用下的结构动态响应有助于更合理的预测地震荷载下盾构隧道结构安全风险。  相似文献   

10.
为研究多点地震激励下埋地油气管道的地震响应,设计并制作缩尺埋地油气管道及周围土体模型,利用双台阵地震模拟振动台对其进行纵向一致及多点地震激励下的地震响应研究,分析纵向多点地震激励时不同地震动各加载工况下埋地油气管道土体加速度、位移及管道加速度、应变等地震响应的变化规律。结果表明:土箱内不同深度测点位移增量不同,致使土体间产生剪切效应,多点激励时土体变形及破坏程度相较于一致激励明显;土体加速度峰值随加载等级的提高呈增长状态,多点激励时箱内土体加速度峰值变化曲线一致性较差,土体加速度响应产生较大差异;随着加载等级的提高,管道与土体间加速度峰值差值逐渐增大,多点激励会造成管道加速度峰值产生滞后现象;管道顶部轴向应变随管轴表现为两侧小,中间大,多点激励时管道应变增长速率更快,产生的应变更大。  相似文献   

11.
以我国西南部一实际工程为背景,分析了双向地震作用下台阶型加筋边坡的动力响应特点及规律。利用经过验证的PLAXIS有限元分析方法,首先在不同地震强度下,对比了水平及双向地震分别作用后加筋边坡的动力响应,然后研究了竖向地震的影响。结果表明,地震作用下,填土的塑性变形呈弥散型分布,随着竖向地震分量的增大,加筋土体横向变形增大,筋材内力提高,同时,竖向地震的震动压实作用使土体侧向围压提高,土体发生硬化,刚度增加,坡面横向位移减小;随着竖向地震分量进一步增大,土体硬化改变了边坡自振特性,在本研究地震激励下,加筋土体动力响应加剧,上坡有发生整体剪切破坏的趋势,并向外偏转,坡面横向位移增大。竖向地震对边坡动力响应的影响随地震强度的增大变得明显。  相似文献   

12.
以南京地铁10号线过江段江北大堤附近典型截面为例,分别考虑了单线通行工况与会车8s、会车12s及会车16s3种典型会车工况,建立了隧道-土体有限元模型,分析了单圆双线隧道基底粉细砂层动力响应。结果表明,隧道基底粉细砂层加速度峰值随垂直深度增加而呈指数型衰减,到达23m深度时,4种工况加速度峰值已非常接近。基底下卧层土体最大位移随深度呈线性减小趋势,考虑各工况下各深度位置最大竖向位移,会车8s工况会车16s工况会车12s工况单车8s工况。列车动荷载所激发的粉细砂超静孔隙水压力约为静水压力的1%。粉细砂层最大超孔压随基底深度呈指数型衰减趋势。粉细砂层内最大孔隙水压力与总应力比值小于1,隧道基底粉细砂层不会发生液化。该结果可用于调控隧道控制截面位置基底粉细砂层动力响应与可液化性研究。  相似文献   

13.
抗震液化的总应力合成分析方法   总被引:2,自引:0,他引:2  
基于总应力动力分析法,运用二维显式有限差分程序FLAC对某大坝在地震荷载作用下的动力响应进行模拟分析。编制了分析大坝液化的数值模型的分析模块并与FLAC接口。分别考虑了水平、竖向地震荷载以及两个方向的耦合和不同水位深度对大坝动力特性的影响,得到了大坝在地震荷载作用下液化区域和位移矢量的分布态势。  相似文献   

14.
液化引起河流阶地横向流滑会对长江下游的自然环境和建筑环境造成巨大破坏。然而,长江下游宽河谷场地尺寸达几千米,场地存在厚且松软的沉积层,土层分布极不均匀。土壤的非线性和千米级横向变形限制了该类场地数值模拟的可计算性。针对长江下游宽河谷场地地形的复杂性和地层的特殊性,并结合实际工程所在场地地质剖面,建立了长江下游宽河谷场地精细化模型。采用已建立的砂土液化大变形粘弹塑性本构模型和 ALE 方法, 解决了该类场地流滑大变形模拟困难。考虑地震波类型和强度的影响,分析了宽河谷微倾斜场地液化分布特征和侧向流滑规律。结果表明:微倾斜可液化场地坡底处土层的液化程度最为严重,微倾斜岸坡场地河床发生了明显的液化侧向扩展地震破坏,揭示了宽河谷微倾斜可液化岸坡场地侧向扩展的空间变位特征,上述原因主要是由于宽河谷不同位置处土单元应力状态差异性所造成;通过与场地液化侧向扩展震害等级评价标准进行对比,进一步明确了该长江下游宽河谷微倾斜岸坡场地液化流滑侧向扩展的震害特征及其程度。  相似文献   

15.
天津Z2线工程软土场地震陷分析∗   总被引:1,自引:1,他引:0       下载免费PDF全文
天津Z2线轨道交通工程地处滨海软土地区。基于《软土地区岩土工程勘察规程》中简化的分层总和法,采用一维土层非线性地震响应分析程序EERA替代Seed经验公式计算土层的动应力,同时采用修正的软土残余应变势简化计算公式,开展了天津Z2线全部98个钻孔的软土震陷计算。结果表明,地表震陷主要源自较浅土层,地表深度20 m以下的震陷可不考虑;隧道由地下线过渡到高架线的上升段震陷较大,应考虑采取防控措施;场地震陷主要由淤泥质土层产生,占地表震陷的70%~80%以上。研究对于类似工程具有一定参考价值。  相似文献   

16.
基于BP神经网络的饱和砂土液化判别方法   总被引:5,自引:0,他引:5  
基于唐山地震中大量的砂土液化现场实测资料,选取描述地震动特性的烈度、震中距、地面峰值加速度和描述砂土层埋藏环境条件的地下水位、标贯点深度(土层深度)、上覆非液化覆盖土层厚度、有效覆盖压力,以及表示砂土自身属性的标准贯入锤击数、平均粒径、不均匀系数、修正标贯击数共11个指标的不同组合作为输入变量,采用快速BP算法和LM算法构造了饱和砂土液化判别的BP神经网络预测模型.通过所建网络模型的训练、验证和应用,结果表明:(1)所建14个BP神经网络模型都是有效的,液化判别的准确度与模型输入变量的不同组合有关;(2)增加网络模型的节点(考虑因素较多)并不一定能够提高BP神经网络模型的液化判别准确度,反而增加了BP神经网络模型的复杂性和学习时间;(3)两种算法的BP神经网络模型都有很高的液化判别准确度,LM算法的计算速率要比快速BP算法快得多,但在计算过程中需要更多的内存,建议采用LM算法;(4)采用所提BP神经网络模型的权值与阈值进行其它预测样本的液化判别时,判别结果可能偏于保守;(5)从影响砂土液化的主要因素、获取指标难易程度考虑,在与<建筑抗震设计规范>砂土液化判别公式考虑指标一致的情况下,建议采用BP神经网络模型M4或M5a,该模型简单、方便,且其预测准确度远高于<建筑抗震设计规范>的砂土液化判别准确度.  相似文献   

17.
建立城市地下综合管廊典型节点二维有限元模型,分析在不同地震波不同峰值加速度、不同地震波相同峰值加速度,以及是否考虑土-结构接触面的接触作用下的地震响应。结果表明:①在不同地震波不同峰值加速度作用下,随地震波峰值的增大管廊节点的侧向位移、峰值加速度、峰值应力随之增大;②在不同地震波相同峰值加速度作用下,地震波的频谱特性对节点地震响应有显著影响;③是否考虑土-结构接触面的接触作用对管廊节点地震响应有较大影响。  相似文献   

18.
为使场地液化危害程度的估计建立在以概率论为基础的可靠性分析之上,本文提出二种估计场地液化危害程度的概率方法,二种方法分别采用不同的途径处理地震和岩土的不确定性,不仅分析了一点液化的概率,而且提供了估计整个土层住状液化概率的方法,文中最后通过算例简要讨论了液化概率分析结果的工程应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号