首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of norflurazon with alpha- and gamma-cyclodextrins (CDs) yielded the formation of inclusion complexes at a 1:1 stoichiometric ratio in solution and in the solid state. Apparent stability constants of 50.7+/-1.6 and 37+/-1.7 M(-1) and an increase in herbicide solubility by up to five and fourfold for alpha- and gamma-CD, respectively, were determined from the phase solubility diagrams at 25 degrees C in water. Three processing methods (kneading, spray-drying and vacuum evaporation) were used to prepare norflurazon-CD solid inclusion complexes, which were characterised by infrared spectroscopy, differential scanning calorimetry and scanning electron microscopy. A high increase in the norflurazon dissolution rate was obtained with all the solid complexes with gamma-CD, but when alpha-CD was used, only the solid system obtained after the vacuum evaporation process showed a higher dissolution rate. This finding is a first step in the development of new, environmentally sound formulations of norflurazon (NFL), due to the capacity for increasing its dissolution rate and hydrosolubility, and thus diminishing the use of organic solvents. On the other hand, the effect of alpha- and gamma-cyclodextrin on the solubility of norflurazon in solution was also considered as a way of modifying its behaviour in the soil environment. Desorption studies of NFL from soils in the presence of alpha- and gamma-cyclodextrin were carried out using a batch equilibration method. The results obtained showed that alpha- and gamma-cyclodextrin greatly increased the removal of norflurazon previously adsorbed, proving the potential use of these CDs for in situ remediation of pesticide-contaminated soils.  相似文献   

2.
The photodegradation of imazethapyr [2-(4,5-dihydro-4-méthyl-4-(1-méthylethyl)-5-oxo-1H-imidazol-2-yl)-5-ethyl-3-pyridinecarboxylic acid] in aqueous solution in the presence of titranium dioxide (TiO2) and humic acids (HA) at different ratios of herbicide/TiO2 and herbicide/humic acids was studied at pH 7.0. Irradiation was carried out with polychromatic light using Heraeus apparatus equipped with xenon lamp to simulate sunlight having a spectral energy distribution similar to solar irradiation (>290 nm). The concentration of remaining herbicide was followed using a High Pressure Liquid Chromatograph (HPLC) equipped with UV detector at 230 nm. In pure aqueous solution imazethapyr degrades slowly and the photodegradation leads to the formation of two metabolites labelled A and B. The presence of TiO2 caused enhancement of the degradation rate. The presence of HA induced an increase of the photodegradation of the pesticide with respect to pure aqueous solution.  相似文献   

3.
Oishi K  Toyao K  Kawano Y 《Chemosphere》2008,73(11):1788-1792
The suppressive effects of cyclodextrins (CDs) on the strong estrogenic activity of 17β-estradiol (E2) in water environments were investigated in this study. Cyclodextrins are doughnut-shaped molecules that possess a hydrophobic cavity and a hydrophilic exterior. The cavity can incorporate nonpolar molecules as guests to form inclusion complexes. β-CD and 2-hydroxypropyl-β-CD (HP-β-CD) were the most successful in forming a complex with E2 and improving its low aqueous solubility. The E2/CDs complexes bound to the estrogen receptor in a cell-free system as determined by ELISA and suppressed the hormone activities as measured by a yeast two-hybrid assay. These results indicate that hydrophobic E2 is easily transported through the lipid zone of the plasma membrane into the target cell and can bind to the nuclear receptor. However, the hydrophilic E2/β-CD and E2/HP-β-CD complexes do not penetrate the membrane. Therefore, these CDs are able to suppress the hormone activity of E2 through complex formation.  相似文献   

4.
The chlorophenoxy herbicide MCPA (4-chloro-2-methylphenoxyacetic acid), widely used for the control of broad-leaf weeds primarily in cereal and grass seed crops, still remains one of the most often used herbicides in Portugal. As the formation of inclusion complexes with cyclodextrins can improve its solubility properties, the interaction between the herbicide MCPA and β-cyclodextrin was investigated. The stability constants describing the extent of formation of the complexes have been determined by phase-solubility studies. Different analytical techniques [ultraviolet-visible spectroscopy (UV-Vis), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance spectroscopy (1H NMR)] were employed for a thorough investigation of the structural characteristics of the obtained complexes, which exhibited distinct features and properties from both “guest” and “host” molecules. FTIR and 1H NMR data obtained for the MCPA/β-CD complexes gave information about the interaction between MCPA and the nonpolar cyclodextrin cavity. The dramatic change observed in band frequency and proton displacements of OCH2 group and H6 aromatic proton confirmed the inclusion of MCPA in β-CD.

The formation of an inclusion complex between MCPA and β-CD increased the aqueous solubility of this herbicide which could be a particularly advantageous property for some specific applications, namely to improve commercial formulation and for environmental protection.  相似文献   

5.
This study reports on the effect of the presence of beta-cyclodextrin (beta-CD) on the adsorption and mobility of the pesticide 2,4-dichlorophenoxyacetic acid (2,4-D) through soil columns. The previous application of beta-CD to the soil produced a retarded leaching of 2,4-D through the soil column, due probably to herbicide adsorption on the soil through beta-CD adsorbed. However, the application of beta-CD solution to the soil column where 2,4-D had been previously adsorbed, led to the complete desorption of the herbicide, due to the formation of water-soluble 1:1 inclusion complexes between 2,4-D and beta-CD. Beta-CD can be viewed as a microscopic organic-phase extractant. It can be an advantage to remove from soil pesticides which are able to form inclusion complexes with cyclodextrins, making them possible candidates for use in in situ remediation efforts.  相似文献   

6.
Cyclodextrins (CDs) possess a hydrophilic external surface and a hydrophobic cavity. They are thus highly soluble and, in the meantime, effectively form inclusion complexes with hydrophobic organic compounds to enhance their solubilities. In this study, the complexation between modified beta-CDs and the herbicide diclofop-methyl (DM), (2-(4-(2,4-dichlorophenoxy)-phenoxy) propionate), was investigated. The complexation was confirmed by the shifts in the wavelengths of maximum ultra violet (UV) absorption and fluorescence excitation/emission. The deuterium isotope effects indicate that in the presence of beta-CDs the solubility of DM was lower while that of diclofop was higher in D2O than in H2O, suggesting the primary role of hydrophobic interactions in complexation. The solubility of DM was enhanced in the presence of beta-CDs, the extent of which depended on the modification of beta-CDs. The complexation reduced the hydrolysis of DM and hence increased its stability. The small inconsistency in the power of beta-CDs between hydrolysis retardation and solubilization suggests that hydrolysis was affected by the properties of beta-CDs and the configuration of DM in the complexes. Use of beta-CDs may thus result in the mobilization of soil DM. Properly modified beta-CDs may be utilized as formulation additives for improved delivery of DM and for enhanced environmental remediation.  相似文献   

7.
Zebra mussels (Dreissena polymorpha) were exposed to different types of water containing PGE salts (PtCl4, PdSO4, RhCl3) to investigate the influence of humic substances on the aqueous solubility, uptake and bioaccumulation of noble metals. The results showed a time dependent decrease of the aqueous PGE concentrations in tank water for all groups. This could mainly be related to non-biological processes. The aqueous solubility of Pd and Rh was higher in humic water compared with non-chlorinated tap water, whereas Pt showed opposing results. Highest metal uptake rates and highest bioaccumulation plateaus were found for Pd, followed by Pt and Rh. Pd uptake and bioaccumulation was significantly hampered by humic substances, whose presence appear to increase Pt uptake and bioaccumulation. No clear trend emerged for Rh. Differences in effects of humic matter among the PGE may be explained by formation of metal complexes with different fractions of humic substances.  相似文献   

8.
Si Y  Zhou J  Chen H  Zhou D  Yue Y 《Chemosphere》2004,56(10):967-972
The photodegradation of the herbicide bensulfuron-methyl on dry soil surfaces in the presence and absence of humic substances was investigated under Xe lamp irradiation. A rapid rate of disappearance occurs in the humus-removed soil. The presence of humic acid (HA) and fulvic acid (FA) reduces degradation rates and has a quenching effect on the photodecomposition of bensulfuron-methyl. The quenching effect increases with increasing HA and FA concentration in soil. HA has a slightly greater ability to quenching the photolysis compared to FA. In addition, co-effects of HA and FA on quenching the photolysis are stronger than single effects of HA or FA.  相似文献   

9.
ABSTRACT

In attempt to evaluate the effects of cyclodextrins (CDs) on enantioselectivity of chiral pesticides toxicity, this study investigated effects of three kinds of cyclodextrins including α-CD, β-CD and randomly methylated β-CD (RAMEB) on toxicity of four enantiomers of isomalathion including (1R, 3R)-isomalathion, (1S, 3S)-isomalathion, (1S, 3R)-isomalathion and (1R, 3S)-isomalathion. Generally, the addition of α-CD and RAMEB (1.5 g/L to 3.5 g/L concentration) could lead to reduction of isomalathion toxicity in most cases, while the presence of β-CD (0.3 g/L to 1.5 g/L concentration) enhanced the toxicity of isomalathion. It was speculated that higher electronic cloud density and lower water solubility of β-CD than α-CD and RAMEB might favor to combination between acetylcholinesterase (AChE) and isomalathion included by β-CD. With respect for α-CD and RAMEB, isomalathion included by them could be easily dissolved in water because of high water solubility of the two CDs. Therefore, α-CD and RAMEB can be used as remediation regent for the pollution of isomalathion, and β-CD can act as an additive in improving bioactivity of such pesticides. In addition, the presence of CDs can alter enantioselectivity of chiral pesticides. The differences on the extent of enantioselectivity variation of isomalathion induced by α-CD, RAMEB and β-CD might be ascribe to the different cavity, electron cloud density and solubility among the three CDs. In conclusion, the above results gave researchers a possibility to change enantioselectivity of chiral pesticides from undesirable outcomes to desirable ones.  相似文献   

10.
De Lisi R  Lazzara G  Milioto S  Muratore N 《Chemosphere》2007,69(11):1703-1712
Laboratory-scale studies were aimed at elucidating the physico-chemical aspects on the removal process of crystal violet (CV) from waters and solid substrates. The laponite clay (RD) and sand were chosen for the double aim at investigating them as CV adsorbents for water treatment and as substrates which mime the soil components. Sand is very effective in removing CV from waters. The cyclodextrins (CDs) were exploited as solubility-enhancement agents to remove CV from the solid substrates. They are powerful solvent media because they extract the CV from sand forming water-soluble CV/CD inclusion complexes and do not show affinity for sand. Optimum performance was shown by the modified CDs (i.e. hydroxypropyl-β-cyclodextrin and methyl-β-cyclodextrin). A linear correlation between the logarithm of the equilibrium constant for the CV/CD inclusion complexes formation (Kcpx) and the maximum amount of CV extracted from sand in the columns experiments at a flow rate of 1.5 ml min−1 was drawn. This relationship predicts that CDs with Kcpx < 180 M−1 are not suitable for CV removal from sand. CDs failed to displace CV from RD because they generate the formation of RD clusters where CV remains entrapped.  相似文献   

11.
The abiotic degradation of the imidazolinone herbicides imazapyr, imazethapyr and imazaquin was investigated under controlled conditions. Hydrolysis, where it occurred, and photodegradation both followed first-order kinetics for all herbicides. There was no hydrolysis of any of the herbicides in buffer solutions at pH 3 or pH 7; however, slow hydrolysis occurred at pH 9. Estimated half-lives for the three herbicides in solution in the dark were 6.5, 9.2 and 9.6 months for imazaquin, imazethapyr and imazapyr, respectively. Degradation of the herbicides in the light was considerably more rapid than in the dark with half lives for the three herbicides of 1.8, 9.8 and 9.1 days for imazaquin, imazethapyr and imazapyr, respectively. The presence of humic acids in the solution reduced the rate of photodegradation for all three herbicides, with higher concentrations of humic acids generally having greater effect. Photodegradation of imazethapyr was the least sensitive to humic acids. The enantioselectivity of photodegradation was investigated using imazaquin, with photodegradation occurring at the same rate for both enantiomers. Abiotic degradation of imidazolinone herbicides on the soil surface only occurred in the presence of light. The rate of degradation for all herbicides was slower than in solution, with half-lives of 15.3, 24.6 and 30.9 days for imazaquin, imazethapyr and imazapyr, respectively. Abiotic degradation of these herbicides is likely to be slow in the environment and is only likely to occur in clear water or on the soil surface.  相似文献   

12.
The abiotic degradation of the imidazolinone herbicides imazapyr, imazethapyr and imazaquin was investigated under controlled conditions. Hydrolysis, where it occurred, and photodegradation both followed first-order kinetics for all herbicides. There was no hydrolysis of any of the herbicides in buffer solutions at pH 3 or pH 7; however, slow hydrolysis occurred at pH 9. Estimated half-lives for the three herbicides in solution in the dark were 6.5, 9.2 and 9.6 months for imazaquin, imazethapyr and imazapyr, respectively. Degradation of the herbicides in the light was considerably more rapid than in the dark with half lives for the three herbicides of 1.8, 9.8 and 9.1 days for imazaquin, imazethapyr and imazapyr, respectively. The presence of humic acids in the solution reduced the rate of photodegradation for all three herbicides, with higher concentrations of humic acids generally having greater effect. Photodegradation of imazethapyr was the least sensitive to humic acids. The enantioselectivity of photodegradation was investigated using imazaquin, with photodegradation occurring at the same rate for both enantiomers. Abiotic degradation of imidazolinone herbicides on the soil surface only occurred in the presence of light. The rate of degradation for all herbicides was slower than in solution, with half-lives of 15.3, 24.6 and 30.9 days for imazaquin, imazethapyr and imazapyr, respectively. Abiotic degradation of these herbicides is likely to be slow in the environment and is only likely to occur in clear water or on the soil surface.  相似文献   

13.
Cyclodextrins (CDs) possess a hydrophilic external surface and a hydrophobic cavity. They are thus highly soluble and, in the meantime, effectively form inclusion complexes with hydrophobic organic compounds to enhance their solubilities. In this study, the complexation between modified β-CDs and the herbicide diclofop-methyl (DM), (2-(4-(2,4-dichlorophenoxy)-phenoxy) propionate), was investigated. The complexation was confirmed by the shifts in the wavelengths of maximum ultra violet (UV) absorption and fluorescence excitation/emission. The deuterium isotope effects indicate that in the presence of β-CDs the solubility of DM was lower while that of diclofop was higher in D2O than in H2O, suggesting the primary role of hydrophobic interactions in complexation. The solubility of DM was enhanced in the presence of β-CDs, the extent of which depended on the modification of β-CDs. The complexation reduced the hydrolysis of DM and hence increased its stability. The small inconsistency in the power of β-CDs between hydrolysis retardation and solubilization suggests that hydrolysis was affected by the properties of β-CDs and the configuration of DM in the complexes. Use of β-CDs may thus result in the mobilization of soil DM. Properly modified β-CDs may be utilized as formulation additives for improved delivery of DM and for enhanced environmental remediation.  相似文献   

14.
Cyclodextrin (CyD) effects on photodegradations of organophosphorus pesticides in humic water were monitored on the basis of the increase percentage of the photodegradation rate constant for CyD-containing humic water. Remarkable promotion effects of CyDs were observed in humic water for photo-induced radical generation. The promotion effects could be mainly assigned to the inclusion effects of CyDs to catalyze interactions of pesticides with reactive radicals generated by the humin photosensitizer and inclusion-trapped in CyDs.  相似文献   

15.
Cyclodextrins (CDs) can improve the apparent solubility and bioavailability of a variety of organic compounds through the formation of inclusion complexes; accordingly, they are suitable for application in innovative remediation technologies of contaminated soils. However, the different interactions in the tertiary system CD/contaminant/soil matrix can affect the bioavailability of the inclusion complex through the possible sorption of CD and CD complex in the soil matrix, as well as with the potential of the sorbed CD to form the complex, concurrent with the desorption processes. This work focuses in changes produced by three different CDs in soil sorption-desorption processes of chlorpyrifos (CPF), diazinon (DZN), and chlorothalonil (CTL), and their major degradation products, 3,5,6-trichloro-2-pyridinol (TCP), 2-isopropyl-6-methyl-4-pyrimidinol, and hydroxy-chlorothalonil (OH-CTL). Cyclodextrins used were β-cyclodextrin (β-CD), methyl-β-cyclodextrin (Mβ-CD), and 2-hydroxypropyl-β-cyclodextrin (HPβ-CD). The studied soils belong to the orders Andisol, Ultisol, and Mollisol with different organic matter contents, mineral composition, and pH. The apparent sorption constants were significantly lower for the three pesticides in the presence of all CDs. The highest displacement of sorption equilibria was produced by the influence of Mβ-CD, with the most pronounced effect for CPF, a pesticide strongly sorbed on soils. The same was obtained for TCP and OH-CTL, highlighting the need to assess the risk of generating higher levels of groundwater contamination with polar metabolites if degradation rates are not controlled. The highest desorption efficiency was obtained for the systems CPF-β-CD, DZN-Mβ-CD, and CTL-Mβ-CD. Since the degree of adsorption of the complex is relevant to obtain an increase in the bioavailability of the contaminant, a distribution coefficient for the complexed pesticide in all CD–soil–pesticide system was estimated by using the apparent sorption coefficients, the stability constant for each CD–pesticide complex, and the distribution coefficients of free pesticide.  相似文献   

16.
Photolysis of 14C-sulfadiazine in aqueous solution under simulated sunlight followed first-order kinetics. The impact of H2O2, humic acid, fulvic acid and acetone to enhance the photodegradation of sulfadiazine (SDZ) was studied. Six photoproducts, 4-OH-SDZ, 5-OH-SDZ, N-formyl-SDZ, 4-[2-iminopyrimidine-1(2H)-yl] aniline, 2-aminopyrimidine, and aniline were identified. Extrusion of SO2 was found to be the main degradation process during irradiation. These photoproducts can occur in water and soil upon sunlight exposure, when soil is treated with SDZ contained in manure. Due to photodegradation the experimental half-life of the SDZ in water was 32h and in the presence of photosensitizers the half-life values were 19.3-31.4h, 17.2-31.4h, 12.6-29.8h, and 3.8-30.7h for H2O2, humic acid, fulvic acid, and acetone, respectively depending on the concentration of the photosensitizers. The presence of photosensitizers markedly reduced SDZ persistence, indicating that indirect photolytic processes are important factors governing the photodegradation of SDZ in aqueous environments. Investigation revealed further persistence behavior of SDZ in manure. The half-life value of SDZ in manure was 158h.  相似文献   

17.
《Chemosphere》2008,70(11):1703-1712
Laboratory-scale studies were aimed at elucidating the physico-chemical aspects on the removal process of crystal violet (CV) from waters and solid substrates. The laponite clay (RD) and sand were chosen for the double aim at investigating them as CV adsorbents for water treatment and as substrates which mime the soil components. Sand is very effective in removing CV from waters. The cyclodextrins (CDs) were exploited as solubility-enhancement agents to remove CV from the solid substrates. They are powerful solvent media because they extract the CV from sand forming water-soluble CV/CD inclusion complexes and do not show affinity for sand. Optimum performance was shown by the modified CDs (i.e. hydroxypropyl-β-cyclodextrin and methyl-β-cyclodextrin). A linear correlation between the logarithm of the equilibrium constant for the CV/CD inclusion complexes formation (Kcpx) and the maximum amount of CV extracted from sand in the columns experiments at a flow rate of 1.5 ml min−1 was drawn. This relationship predicts that CDs with Kcpx < 180 M−1 are not suitable for CV removal from sand. CDs failed to displace CV from RD because they generate the formation of RD clusters where CV remains entrapped.  相似文献   

18.
Quan X  Zhao X  Chen S  Zhao H  Chen J  Zhao Y 《Chemosphere》2005,60(2):266-273
Enhancement of p,p'-DDT photodegradation on soil surfaces using TiO2 induced by UV-light was mainly investigated in this work. After being spiked with p,p'-DDT, soil samples loaded with different doses of TiO2 (0%, 0.5%, 1%, 2%, and 3% wt) were exposed to UV-light irradiation for 24 h. The results indicated that the photodegradation of p,p'-DDT followed the pseudo-first-order kinetics. TiO2 accelerated the photodegradation of p,p'-DDT significantly as indicated by the half-life reduction from 23.3 h to 10.4 h, corresponding to the TiO2 content from 0% to 3% respectively. In addition, the effects of soil pH, photon flux and humic substances on p,p'-DDT degradation were investigated. The photodegradation rate increased with the increase of the soil pH and photon flux. The humic substances (2% wt) inhibited the p,p'-DDT photodegradation by reducing the amount of light available to excite the p,p'-DDT and TiO2 or by quenching radicals capable of oxidizing p,p'-DDT. p,p'-DDE, p,p'-DDD and DDMU were main degradation intermediates and they were further degraded in the presence of TiO2.  相似文献   

19.
Environmental Science and Pollution Research - Most of the organic compounds contaminating the environment can form inclusion complexes with cyclodextrins resulting in enhanced solubility (a...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号