首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了探讨固定化包埋填料高氨氮负荷下短程硝化的稳定运行研究,以固定化技术包埋一定量硝化菌填料为载体,并利用序批次反应器进行处理人工配置的氨氮废水实验,该实验研究了实现短程硝化影响因素DO、有机物的控制范围,驯化期间,分别将温度、pH值、DO控制在(31±1)℃、7.8~8.2、1.8~2.0 mg·L~(-1)范围内,进水有机物浓度始终保持在50 mg·L~(-1)以下,体积填充率为15%,采用高游离氨(3.03~14.18 mg·L~(-1))对NOB产生抑制作用,使活性填料中的AOB成为优势菌群,通过历时55 d的培养实现了该填料短程硝化的启动及稳定运行,结果表明,进水氨氮浓度保持200 mg·L~(-1)左右,氨氮去除速率高达28.29 mg NH+4-N·(L·h)~(-1)的同时,氨氮的去除率97%,亚硝酸盐积累NO_2~--N/NO_x~--N85%,实验同时还考察了活性填料的抗冲击负荷能力与单个周期内短程硝化运行特征。  相似文献   

2.
杨宏  苏姗 《环境工程学报》2019,13(4):765-772
为开发更多的硝化填料应用形式,并为填料的实际应用提供参数借鉴,用人工配水条件下活性恢复的硝化生物活性填料直接处理市政污水,研究了填料填充方式、填充比例以及DO浓度等因素对填料氨氧化速率与装置中COD浓度的影响。结果表明,采用填料分散的填充方式,在填充率为12%、DO浓度为4~5 mg·L~(-1)条件下,填料的最大氨氧化速率为30.2 mg·(L·h)~(-1),高于传统的活性污泥法。填充率与氨氧化速率整体上呈正相关的关系,在一定程度上可通过提高填充率进一步提高填料氨氧化速率。通过填料冲洗,可阻止装置中异养菌生长,利于市政污水中COD的存留。利用硝化填料对市政污水进行直接硝化的填料应用形式,可实现在保持较优氨氧化速率的前提下为后续反硝化存留碳源,减少水处理流程中的污泥产量,具有一定可行性。  相似文献   

3.
以Comamonas aquatica LNL3为研究对象,根据其既能短程硝化又能短程反硝化的特性,采用好氧方式富集和固定化菌种,再以厌氧方式驯化,得到具有高效短程反硝化特性的纯种氨氧化菌。采用扫描电镜对固定化前后的载体进行表征,且用正交试验考察了不同环境因子(温度、pH、碳氮比、溶解氧)对Comamonas aquatica LNL3短程反硝化的影响。结果表明,所用载体与Comamonas aquatica LNL3有良好的亲和性,适于微生物的固定化;环境因子对Comamonas aquatica LNL3短程反硝化影响大小顺序为:温度>pH>DO>C/N;在环境条件改变过程中当温度为35℃,pH=8,C/N=3,DO=2.5 mg/L时,Comamonas aquatica LNL3短程反硝化速率达到最大,为32.63 mg/(L.h);研究结果还表明,Comamonas aquatica LNL3具有好氧反硝化特性,适宜处理低碳氮比废水。  相似文献   

4.
采用聚氨酯水凝胶为固定化载体制备了包埋硝化菌颗粒,并在上流式内循环反应器内以人工配制的模拟氨氮废水对包埋硝化菌颗粒进行驯化。在驯化完成后实验考察了温度变化和水力停留时间(HRT)对低温下聚氨酯水凝胶包埋硝化菌颗粒去除氨氮的影响以及出水中亚硝态氮、硝态氮的累积情况。结果表明,在进水氨氮浓度为40 mg/L,HRT为4h,水温从22℃降低到10℃时,包埋硝化菌颗粒对氨氮的去除率从97%下降到48%,调整10℃运行时的HRT,氨氮去除率可达到75%。将进水氨氮浓度降低至15 mg/L,当HRT为4 h,温度在7~13℃范围内变动时,氨氮去除率稳定在80%左右。在整个运行过程中,保持DO充足,没有出现亚硝酸盐积累的现象。  相似文献   

5.
采用序批式活性污泥反应器(SBR),在富集亚硝态氮氧化菌(NOB)的基础上,考察了DO对连续进水模式下硝化过程中N_2O减量化的影响。结果表明,在污泥氨氧化菌(AOB)和NOB的比耗氧速率(SOUR)分别为(2.36±0.31)、(7.62±0.43)mg/(L·h)条件下,不外加碳源进行小试实验,氨氮均小于1.0mg/L,亚硝态氮均小于0.5mg/L。DO由0.2mg/L增至3.0mg/L过程中,随着DO增加,积累的硝态氮浓度逐渐上升,而累计产生的N_2O浓度先上升后下降。DO为0.2mg/L时,积累的硝态氮和累计产生的N_2O浓度最低,可以实现N_2O的最大减量化。在进水连续投加氨氮的方式下,氨氮氧化速率不是引起N_2O生成的关键步骤,碳源缺乏的情况下NOB硝化系统中低DO可以有效控制N_2O的释放。  相似文献   

6.
讨论了影响同步硝化反硝化反应的各参数,并进行了单因素实验与正交实验,获得了同步硝化反硝化生物脱氮工艺运行的最佳条件:DO浓度控制在0.5~2 mg/L,COD浓度为600~800mg/L,混合液悬浮固体(MLSS)为5000 mg/L,pH值在8.0左右,反应时间为6 h.在此条件下,氨氮及COD的去除率都较高,分别达85%和95%,总氮去除率为68 5%.  相似文献   

7.
同步硝化反硝化工艺中DO浓度对N2O产生量的影响   总被引:1,自引:0,他引:1  
采用序批式生物膜反应器(SBBR),在连续曝气全程好氧的运行条件下,考察不同溶解氧浓度对同步硝化反硝化脱氮性能及N2O产量的影响.控制溶解氧浓度恒定在1、2、2.5和3 mg/L.结果表明,DO为2 mg/L和2.5 mg/L时,氨氮去除率分别为97.9%和98.5%,同步硝化反硝化率均为99%.DO为2 mg/L时,...  相似文献   

8.
同步硝化反硝化生物脱氮技术研究   总被引:5,自引:0,他引:5  
讨论了影响同步硝化反硝化反应的各参数,并进行了单因素实验与正交实验,获得了同步硝化反硝化生物脱氮工艺运行的最佳条件:DO浓度控制在0.5~2mg/L,COD浓度为600~800mg/L,混合液悬浮固体(MLSS)为5000mg/L,pH值在8.0左右,反应时间为6h。在此条件下,氨氮及COD的去除率都较高,分别达85%和95%,总氮去除率为68.5%。  相似文献   

9.
通过调节进水流量,维持混合液氨氮浓度在某一设定值,在保持混合液中挥发性悬浮固体(VSS)浓度稳定的条件下,采用数学模拟和实验方法研究混合液氨氮浓度对短程硝化的影响。数学模拟结果表明,维持一定的混合液氨氮浓度对实现短程硝化有帮助,较低温和较高DO条件下,可通过提高混合液氨氮浓度来实现短程硝化;混合液DO分别为0.6、1.5、3.0mg/L的条件下,20℃时需要维持混合液氨氮分别为2.0、3.0、5.0mg/L以上才能达到100%的亚硝酸盐氮累积率,维持短程硝化,10℃时则需要维持混合液氨氮分别为5.0、30.0、30.0mg/L以上。实验结果表明,在混合液DO为1.5mg/L条件下,通过调节进水流量维持混合液氨氮为20.0mg/L,实现了短程硝化过程,初步证明了数学模拟的结论。  相似文献   

10.
采用序批式生物膜反应器(SBBR),在连续曝气全程好氧的运行条件下,考察不同溶解氧浓度对同步硝化反硝化脱氮性能及N2O产量的影响。控制溶解氧浓度恒定在1、2、2.5和3 mg/L。结果表明,DO为2 mg/L和2.5 mg/L时,氨氮去除率分别为97.9%和98.5%,同步硝化反硝化率均为99%。DO为2 mg/L时,系统中N2O产生量最低,为0.423 mg/L,占氨氮去除量的1.4%;DO为3 mg/L时N2O的产生量最高,为2.01 mg/L,是DO为2 mg/L时的4.75倍。系统中亚硝酸盐的存在可能是高溶解氧条件下N2O产量增加的主要原因,同步过程中没有NOx-的积累即稳定的SND系统有利于降低生物脱氮过程中N2O的产生量。  相似文献   

11.
多孔碳表面自养硝化生物膜的培养及其性能研究   总被引:1,自引:0,他引:1  
在pH值7.5~7.8、温度28℃、DO≥3mg/L的条件下,分别以NaNO2和K2HPO4为氮源和磷源,按N∶P=50∶1的比例混合,对自养硝化菌进行液相培养并在一种新型材料多孔碳的表面挂膜,进而对其特征、性能等进行了研究。实验得到了稳定的自养硝化生物膜;当NO-2浓度为206.82mg/L时,生物膜的稳定硝化速率可达260mg/L·d;经鉴定,硝化速率最高的N20菌株属硝化杆菌属(Nitrobactersp.)。  相似文献   

12.
晚期垃圾渗滤液短程硝化影响因素研究   总被引:1,自引:2,他引:1  
采用固定化微生物曝气生物滤池(I-BAF),探讨了水力停留时间(HRT)、游离氨(FA)、pH、溶解氧(DO)对晚期垃圾渗滤液短程硝化的影响和碳氮比(C/N)对同步脱氮的影响。试验结果表明,在HRT为2 d,对应氨氮负荷为0.26~0.3 g/L·d,保持出水FA在1 mg/L以上,pH在79左右,DO控制在1.3±0.2 mg/L时,最利于实现短程硝化。DO是影响短程硝化的决定性因素,DO>1.6 mg/L时,短程硝化可能向全程硝化转化。投加碳源NaAc并控制C/N在1.6~2.2,可以使部分亚硝氮直接通过同步反硝化去除,提高总氮去除率。  相似文献   

13.
采用牡蛎壳为曝气生物滤池填料,以含NaCl的生活污水为处理对象,在SBR操作条件下,系统考察进水NaCl浓度、曝气时间及进水pH值等对硝化性能的影响。结果表明,进水NaCl浓度为10~15 g/L时,平均氨氮去除率可稳定在97%以上;较高浓度NaCl对亚硝酸化菌活性影响较弱,对硝酸化菌活性影响较强,特别是在日曝气时间少于12 h时,其出水中亚硝氮的含率大于50%;当进水pH值在6~9变化时,反应器内pH值可稳定在6.5~7.5,硝化性能良好,表明牡蛎壳填料可为硝化反应提供碱度。  相似文献   

14.
多孔碳表面自养硝化生物膜的培养及其性能研究   总被引:1,自引:0,他引:1  
在pH值7.5~7.8、温度28℃、DO≥3mg/L的条件下,分别以NaNO2和K2HPO4为氮源和磷源,按N:P=50:1的比例混合,对自养硝化菌进行液相培养并在一种新型材料多孔碳的表面挂膜,进而对其特征、性能等进行了研究。实验得到了稳定的自养硝化生物膜;当NO2^-浓度为206.82mg/L时,生物膜的稳定硝化速率可达260mg/L·d;经鉴定,硝化速率最高的N-20菌株属硝化杆菌属(Nitrobacter sp.)。  相似文献   

15.
基于DO控制实现SBR短程硝化过程   总被引:1,自引:0,他引:1  
采用序批式反应器(SBR)处理模拟氨氮废水,研究了固定供氧模式下氨氮降解过程和溶解氧变化规律,并对DO控制实现短程硝化机理进行了探讨.实验结果表明,当DO<1 mg/L时,体系产生亚硝酸盐积累,当亚硝化反应结束后,DO出现跃升现象,并且pH值对短程硝化有一定影响,充足的碱度和较高的pH值有利于建立以DO为控制参数实现短程硝化过程控制.短程硝化启动后,亚硝酸盐积累率达90%以上,并且经过度曝气5d后,系统仍保持稳定运行.  相似文献   

16.
固定化活性污泥实现短程硝化反硝化处理畜禽废水   总被引:4,自引:1,他引:3  
以畜禽废水为处理对象,通过分别控制水力停留时间(HRT)、溶解氧(DO)、pH值、温度和碳氮比(C/N)等影响亚硝化的主要单因子,以使固定化活性污泥颗粒实现短程硝化反硝化反应,在连续流运行模式下进行废水脱氮实验,实验结果表明,单因子HRT为10 h,溶解氧为4 mg/L,pH值为8.5,温度为30℃,碳氮比为10时,对TN和COD的去除率分别为81.98%、93.79%;87.32%、98.35%;83.82%、93.93%;85%、97%;85.37%、97.28%,达到了理想的去除效果。  相似文献   

17.
以水性聚氨酯(WPU)为载体利用活性污泥制作成包埋固定化颗粒,置于序批式反应器(SBR)中在22.5~25.5℃、DO=2.0 mg·L~(-1)条件下,逐步提高进水氨氮浓度(100~200 mg·L~(-1))驯化13 d后包埋颗粒亚硝化率(NAR)成功实现至90.98%。运行30 d后NAR保持在95%以上,小试分析表明NOB活性受抑制,亚硝化处于稳定状态。然后调节曝气量,研究不同DO对亚硝化稳定性的影响。提高DO至4.5 mg·L~(-1),NAR仍保持在83.99%,说明活性污泥经包埋固定后对DO有较好的耐受性。通过扫描电镜(SEM)对反应器内包埋颗粒进行了微观分析。结果表明,包埋颗粒内接种污泥中细菌形态多样,含长杆、短杆及球状菌,随着运行的延续,细菌形态呈现了向短杆状球状转变的态势。  相似文献   

18.
固定化氨氧化细菌短程硝化特性研究   总被引:1,自引:0,他引:1  
以高分子聚合物为载体,采用固定化细胞增殖技术固定氨氧化细菌,研究温度、pH、碱度和溶解氧等因素对短程硝化过程的影响.实验结果表明,最适宜的温度、pH分别是30℃和8.5;当碱度/NH4 -N(质量比)=6.75时,亚硝化率为87.5%;溶解氧浓度影响氨氧化速率,但对亚硝化率影响不大,溶解氧的适宜质量浓度为403 mg/L.  相似文献   

19.
采用序批式间歇反应器(SBR)处理生活污水,温度控制在(25.0±0.5)℃,研究好氧曝气与缺氧搅拌时间比(间歇曝气比)分别为30min∶30min(A模式)和40min∶20min(B模式)对亚硝酸盐氮积累、污泥性能参数、反应速率(比氨氮氧化速率、比硝酸盐氮产生速率、比亚硝酸盐氮产生速率)、氨氧化菌(AOB)和亚硝酸盐氧化菌(NOB)活性的影响。A模式下运行64个周期时,出水亚硝酸盐氮质量浓度为19.04mg/L,亚硝酸盐氮积累率高达99.21%;B模式下运行75个周期时,出水亚硝酸盐氮质量浓度为19.42mg/L,亚硝酸盐氮积累率高达95.47%;研究表明缺氧时间所占比例越大越有利于短程硝化的实现。在实现短程硝化过程中,A模式在38个周期之后AOB活性超过NOB活性;B模式在34个周期之后AOB活性超过NOB活性。  相似文献   

20.
为强化潜水含水层生物反硝化能力和提高反硝化速率,利用批实验,开展堆肥物作为有机碳源强化生物反硝化的可行性和有效性研究,探讨反硝化的性能和氮素的变化,考察温度、DO、ClO_4~-和零价铁(ZVI)的影响。结果表明,随着接触时间的增加,残留NO_3~-呈降低趋势。当接触时间12h时,硝酸盐氮减少量远远大于亚硝酸盐氮和氨氮生成量之和,且氨氮生成量逐渐降低至小于0.6mg/L。接触时间为36h时,15.0、21.0、32.0℃时的反硝化速率分别是10.0℃时的1.30、1.70、2.26倍。当初始DO质量浓度为0.2mg/L时,接触时间为8h的NO_3~-去除率达26.6%。当ZVI为40.00g时,NH+4生成量最高(峰值8.1mg/L)。在初始ClO_4~-质量浓度为0~50.0 mg/L时,NO_3~-去除率变化不大。堆肥物作为有机碳源强化反硝化可行且高效。除了ClO_4~-外,水温、DO和ZVI均显著影响强化过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号