首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以模拟生活污水为研究对象,探讨膜曝气生物反应器在不同的曝气压力下溶解氧的分布特征,并分析了DO的分布对有机物和氮去除率的影响。研究结果表明,不同的曝气压力下,沿曝气膜径向位置DO值逐渐降低呈梯度分布,轴向位置的DO浓度变化随沿程氧分压减小逐渐降低;不同位置的DO分布差异影响反应器内微生物群落的分布情况,进而影响碳氮的去除效果。COD和NH4+-N去除主要依靠生物膜内的好氧异养菌,去除率随DO的上升而增大,当反应体系中DO浓度在1.71 mg·L-1以上时,两者的最大去除率分别为84.4%和92.1%;TN的去除率随DO的上升而减小,在低DO的主体料液中,生物膜内侧依然保持高氧低碳环境,在保证硝化反应的同时反硝化作用进行较为充分,去除率可高达76.1%。  相似文献   

2.
采用培养成熟并稳定运行一段时间的生物除铁除锰除氨氮滤柱,考察进水氨氮浓度变化对铁锰氨氮去除效果的影响。结果表明:进水氨氮从约1.2 mg·L-1逐步提高到约2.0 mg·L-1的过程中,铁、锰和氨氮的去除效果没有受到影响。当进水氨氮超过2 mg·L-1时,进水溶解氧不足,铁的去除效果不受影响;生物除锰受到氨氮升高过程中产生的亚硝氮的抑制,并且与氨氮竞争溶解氧,导致出水锰升高,然而锰氧化菌能够在低溶解氧条件下将锰氧化,出水锰数天后又降到0.05 mg·L-1以下;出水氨氮随进水氨氮的升高而升高。沿程分析发现,进水溶解氧充足时,氨氮和锰的氧化速率没有受到影响;但进水溶解氧不足时,氨氮和锰的氧化速率明显降低;铁的去除速率不受溶解氧的限制。生物净化滤柱可以在较低的溶解氧条件下运行,从而降低能耗。  相似文献   

3.
以低碳氮比实际生活污水为基质,在不外加碳源的前提下,在序批式活性污泥反应器(SBR)内培养好氧颗粒污泥(AGS)。结果表明:经过30 d的连续运行可成功培养出好氧颗粒污泥,成熟的好氧颗粒污泥SVI约为50 mL·g−1,MLSS为4.5 g·L−1左右,平均粒径达到608.3 μm;反应器连续运行超过180 d,在整个运行过程中,以C/N为2~6的实际生活污水为基质,COD平均去除率为89.5%,TN平均去除率为78.5%,TP平均去除率可达70%以上。好氧颗粒污泥脱氮除磷的沿程实验结果显示,其可实现同步高效脱氮除磷,氮的去除主要源于同步硝化反硝化,其独特的分层结构能够保证在外部较高的溶解氧环境下颗粒污泥内部同时完成反硝化过程。  相似文献   

4.
针对硝酸盐氮污染地下水,利用含水层介质培养驯化氢自养脱氮菌,借助静态实验,开展氢自养脱氮的室内研究,考察了初始NO3--N浓度、C/N、P/N、溶解氧(DO)和腐殖酸(HA)对脱氮能力的影响。结果表明,当初始NO3--N浓度为11 mg·L-1时,反应7 d后去除率为97.0%;当初始值分别为22和44 mg·L-1时,13 d后去除率为97.9%和60.7%。在C/N ≤ 2:1时,生成的NO2--N峰值达3.45 mg·L-1。当C/N=15:1~20:1时,去除率增加至97.1%~97.8%,NO2--N为0.12~0.35 mg·L-1。当P/N由0.03:1增加至0.29:1时,去除率由76.5%上升至98.1%。当DO≤1.98 mg·L-1时,去除率为93.7%~96.8%;当DO≥3.87 mg·L-1时,去除率降低至84.1%~88.5%。当HA由0.05 mg·L-1增加至38.75 mg·L-1时,去除率为96.8%~98.1%,同时与初始HA相比残留HA呈降低趋势。初始NO3--N浓度、C/N、P/N和DO显著影响氢自养脱氮性能。HA抑制自养脱氮性能,且HA存在时部分NO3--N被异养脱氮去除。  相似文献   

5.
为研究CuO在活化过一硫酸氢盐(PMS)与过二硫酸盐(PS)降解染料时的差异,通过单因素控制实验,探究PMS/PS浓度、CuO投加量、初始pH和氯离子对CuO/PMS和CuO/PS体系降解孔雀石绿染料(MG)的影响。结果表明:常温常压下,在MG初始浓度为10 μmol·L-1,PMS浓度为250 μmol·L-1,CuO投加量为200 mg·L-1的条件下,60 min后CuO/PMS体系对MG的降解率为86.73%;当MG初始浓度为10 μmol·L-1,PS浓度为200 μmol·L-1,CuO投加量为200 mg·L-1时,60 min后CuO/PS体系对MG的降解率为79.07%,过量的CuO和过低的pH均会降低体系的氧化能力。当MG初始浓度为10 μmol·L-1,氧化剂浓度为200 μmol·L-1,CuO投加量为200 mg·L-1时,CuO/PMS体系与CuO/PS体系对MG降解率分别为80.35%和79.07%,降解效果大致相当。在地下水/工业废水中氯离子普遍存在情况下,CuO/PS体系由于不产生硫酸根自由基,则避免了氯代副产物的生成,因而相对硫酸根自由基氧化体系具有一定优势。动力学分析显示,两种体系中MG的降解均遵循一级反应动力学模型。  相似文献   

6.
空气通量是影响SPG膜微气泡曝气生物膜反应器运行性能的重要参数。在不同空气通量条件下,考察了微气泡产生特性及氧传质特性,以及SPG膜微气泡曝气生物膜反应器运行性能。结果表明,当空气通量由31.85 L/(min·m2)降低至12.74 L/(min·m2)时,产生的微气泡平均直径由62.9 μm减小到32.6 μm,氧传质系数由0.31 min-1降低至0.19 min-1,但氧传质效率由67.7%提高至90.3%。生物膜反应器DO浓度随空气通量的降低而下降,导致生物膜好氧代谢活性下降,进而COD和氨氮去除效率降低;同时,在较低DO浓度下,可实现同步硝化反硝化过程去除TN。随着空气通量的降低,生物膜反应器氧利用率增加,空气通量为12.74 L/(min·m2)时,可接近100%;同时,曝气能耗降低,在相同条件下能耗低于传统大气泡曝气。  相似文献   

7.
采用移动床生物膜反应器,通过一段式短程硝化-厌氧氨氧化耦合短程反硝化工艺处理主流厌氧消化出水。在溶解氧浓度(DO)维持在(1.45 ± 0.15)mg·L−1的条件下,出水TN低至(10.7 ± 2.4)mg·L−1${{\rm{NH}}_4^{+}} $-N转化率达到(86.8 ± 4.5)%,平均TN去除率为(78.9 ± 4.9)% (最高达84.0%)、TN去除负荷为0.38 kg·(m3·d)−1。分析氮的去除路径表明,低浓度有机物诱导反硝化菌主要发生短程反硝化,耦合系统脱氮贡献主要来源于厌氧氨氧化。在载体上,生物膜实现了厌氧氨氧化菌的有效富集,其中菌的活性为873.9 mg·(g·d)−1;而氨氧化细菌主要存在于絮体污泥中,占总菌比例为(38.7 ± 5.9)%;亚硝酸盐氧化细菌则仅占(7.8 ± 2.8)%,说明其受到一定程度抑制。本研究结果可为anammox在主流厌氧消化出水深度处理中的应用提供参考。  相似文献   

8.
采用多级潮汐流人工湿地(multi-stage tidal flow constructed wetlands, MTF-CWs)处理城市污水处理厂剩余污泥厌氧消化液(excess sludge anaerobic digester liquids, ES-ADL),以垂直潮汐流的运行方式强化硝化,并根据进水NH4+-N和TN浓度分为2种不同工况。实验结果表明:在进水COD、NH4+-N和TN浓度分别为(293.68±9.62)、(845.70±11.53)和(847.00±11.47)mg·L-1的条件下(工况1),出水COD、NH4+-N和TN浓度分别为(84.47±8.10)、(8.81±1.74)和(351.50±7.78)mg·L-1,COD、NH4+-N和TN的平均去除率分别为72.45%、98.93%和56.48%;在进水COD、NH4+-N和TN浓度分别为(413.31±7.47)、(1 023.85±8.32)和(1 025.78±8.31)mg·L-1的条件下(工况2),出水COD、NH4+-N和TN浓度分别为(51.60±6.05)、(9.58±3.13)和(359.92±7.68)mg·L-1。COD、NH4+-N和TN的平均去除率分别为87.34%、99.05%和64.68%。在上述2种工况条件下,可将城市污水处理厂ES-ADL回流引起的氮循环累积量分别降低58.50%和62.19%。溶解氧消耗计算结果表明:MTF-CWs并没有提供NH4+-N的氧化(全程硝化或短程硝化过程)所需要的溶解氧;氮平衡计算结果表明:2种工况条件下通过非传统硝化-反硝化途径(如厌氧氨氧化)去除的总氮负荷分别占据总氮去除负荷的86.30%和82.53%。采用Miseq高通量测序技术进行菌群分析,结果表明:在反硝化脱氮贡献最大的人工湿地单元存在大量的厌氧氨氧化细菌Candidatus Kuenenia,且其占比随着取样深度(0.05~0.20 m)增加而增加(其丰度由5.08%增加到13.18%),表明MTF-CWs处理ES-ADL时存在厌氧氨氧化途径。  相似文献   

9.
针对常规水处理工艺难以去除原水中低浓度有机氯农药的问题,采用新型高级氧化技术——紫外(UV)活化过硫酸钠(PS)去除水中有机氯农药三唑酮(triadimefon,TDF),分别研究了TDF初始浓度、PS浓度、初始pH、氯离子浓度以及腐殖酸(HA)浓度对TDF降解效果的影响。结果表明:随着TDF浓度的增加,其去除率逐渐降低;PS浓度从100 μmol·L-1增到250 μmol·L-1,TDF去除率可以提高6.83%;初始pH为5时,TDF的去除率最大;氯离子的存在会抑制TDF降解;存在HA时会降低TDF去除效果。当TDF浓度为200 μg·L-1、PS投加量为250 μmol·L-1、pH为5、温度为(25±2) ℃和反应时间为600 s的反应条件下,TDF的去除率达到99.83%。相比于单独采用UV辐照和PS氧化技术,UV/PS技术对TDF的去除率分别提高了64.2%和86.22%。TDF的降解机制是紫外直接光解和以硫酸根自由基(SO4?-)为主的自由基氧化的共同作用。  相似文献   

10.
主要研究了2种沉积物粒径(35 μm和130 μm)及底床微地形对沉积物中内源溶解性有机磷释放的影响。选取某浅水湖泊沉积物为研究对象,对其人工污染溶解性有机磷,利用室内循环直流水槽顶盖驱动流模拟风生流,考察静态和风生流作用下,不同粒径沉积物及底床微地形对溶解性有机磷释放的影响。实验结果表明:在20 cm·s-1及38 cm·s-1 2种驱动流速条件下,35 μm粒径沉积物实验组中沉积物有机磷释放速率均大于130 μm实验组。对于35 μm粒径沉积物实验组,在20 cm·s-1驱动水流扰动下,沉积物有机磷的平衡释放量为0.44 mg·L-1,在38 cm·s-1驱动水流扰动下为0.49 mg·L-1;对于130 μm粒径沉积物实验组,在20 cm·s-1和38 cm·s-1 2种扰动下的沉积物有机磷平衡释放量分别为0.29 mg·L-1、0.30 mg·L-1;驱动流速的提高促使达到平衡状态时的释放量提高,小粒径沉积物,提高驱动流速更利于平衡释放量的提高,且高驱动流速缩短达到释放平衡所需的时间。在底床微地形(对地形的描述采用y=0.1sin2πx)实验中发现,静态条件下,波峰处上覆水有机磷浓度首先逐渐降低至0.18 mg·L-1,其后升高至0.40 mg·L-1并达到平衡,而波谷处则不断上升至极大值0.87 mg·L-1,其后下降至0.77 mg·L-1并达到平衡;而在20 cm·s-1的驱动水流扰动下,波峰波谷处上覆水有机磷浓度变化较为一致,均逐渐增长至极大值0.39 mg·L-1和0.45 mg·L-1后达到平衡状态。此外,在静态和动态条件下,波谷处上覆水中有机磷含量始终高于波峰处。  相似文献   

11.
在污水处理工艺末端嵌入固体碳源反硝化滤池,可以不改变污水处理厂的原有工艺提高总氮去除效率,方便应对污水厂的提标压力和低碳源污水的脱氮问题。针对生化池尾水硝酸盐特性,以聚己内酯(PCL)作为填充床构建了固体碳源反硝化生物滤池,研究了该反应器的脱氮性能以及生物滤池的沿程生物量和微生物群落结构。结果表明,TN为32.0~37.7 mg·L-1、硝态氮为30.2~34.9 mg·L-1的生化池尾水进入该固体碳源反硝化池后,在HRT为1.5 h的情况下,出水TN在1.1~3.5 mg·L-1之间,硝态氮低于1 mg·L-1,平均去除率均大于94%。研究发现,固体碳源反硝化滤池对硝态氮的转化去除主要发生在40 cm填料以下;生物量的大小也随滤层高度的增加逐渐降低,且与滤层高度呈良好的线性负相关关系(y=-0.471x+38.77,R2=0.976)。采用PCR-DGGE技术研究了固体碳源反硝化滤池的沿程微生物群落结构特征,发现滤层底部(进水端)尽管生物量多,但微生物多样性低,滤池的中部是生物多样性最丰富的区域,香农威尔指数分别为1.95和2.40。DGGE图谱特征条带的16S rDNA序列分析表明生物膜中微生物变形菌门(Proteobacteria)占优势,主要微生物包括能降解PCL的细菌Comamonas,以及常见的反硝化细菌Dechloromonas、Rubrivivax和发酵产乙酸的硫酸盐还原菌Desulfobacter,从微生物群落关系结构角度支撑了固体碳源反硝化过程的顺利进行。  相似文献   

12.
采用4级生物膜反应器串联处理煤气化废水,分析了反应器的启动过程、污染物去除能力及沿程水质特征,考察了水力停留时间(HRT)、进水污染物负荷对处理效果的影响。结果表明:系统在16 d的培养时间内可快速完成微生物的驯化及固定化;在连续进水、持续曝气的运行方式下,各反应器均具备对NH4+-N、COD、TN及SS的同步去除能力,在HRT=55.6 h、ρ(NH4+-N)=245~363 mg·L-1、ρ(COD)=761~1 764 mg·L-1、ρ(TN)=262~377 mg·L-1、ρ(SS)=121~143 mg·L-1的进水条件下,反应器出水NH4+-N、COD、TN及SS的质量浓度分别为0.23~1.37、16.3~26.1、91.6~139和12.3~18.5 mg·L-1,平均去除率分别为99.8%、98.1%、65.8%和88.2%,同步硝化反硝化效率为70.1%;在HRT≥39.2 h、进水NH4+-N负荷≤0.203 kg·(m3·d)-1、进水COD负荷≤1.357 kg·(m3·d)-1的条件下,出水NH4+-N、COD浓度均能满足GB 31571-2015排放标准要求。  相似文献   

13.
采用两级串联间歇曝气序批式反应器(intermittent aeration sequencing batch reactor,IASBR)处理高氨氮低碳氮比的垃圾渗滤液,研究在控温(25±2)℃,进水碳氮比(COD/TN)为3.0条件下的脱氮性能。进水氨氮(NH4+-N)和总氮(TN)浓度分别为(1 100±70)mg·L-1和(1 520±65)mg·L-1,1级和2级IASBR的水力停留时间(HRT)分别为5 d和4 d。运行结果表明,经1级IASBR处理后,出水TN浓度降低至约250 mg·L-1,其中以有机氮(TON)为主,NH4+-N浓度约25 mg·L-1;经2级IASBR处理后,出水TN和NH4+-N 浓度分别稳定在40 mg·L-1和20 mg·L-1以下,TON去除率高达90%以上。两级串联IASBR组合工艺表现出良好的深度脱氮性能,出水TN浓度稳定达到《生活垃圾填埋场污染控制标准》(GB16889-2008)中TN ≤ 40 mg·L-1的排放标准;同时,1级IASBR出水COD浓度高达1 150 mg·L-1,经过2级IASBR处理后出水COD降至约770 mg·L-1。  相似文献   

14.
为改善微藻细胞固定化培养过程中的光传递与气体传质性能,设计一种具有气液分离特性的膜式光生物反应器系统,并开展光照强度影响下小球藻细胞生物膜成膜及代谢特性研究。通过检测反应器中小球藻生物膜细胞的生物量、细胞组成、叶绿素以及油脂组分,分析光照条件对小球藻生物膜的形成、生长及油脂合成等调控特性。研究发现:高光强胁迫正调控胞内油脂积累,在光照强度为230 μmol·(m2·s)-1条件下小球藻生物量产率和油脂产率最高,分别为5.50 g·(m2·d)-1和1.71 g·(m2·d)-1;细胞内叶绿素a和b及淀粉含量随光照强度增加呈先增加后减少的趋势,但类胡萝卜素和蛋白质的含量变化较小;在小球藻的油脂组成中,在光照强度为46 μmol·(m2·s)-1时,得到最大的C16~C18碳链脂肪酸含量及不饱和脂肪酸含量,而除C16~C18碳链脂肪酸外的其他脂肪酸组分则随光照强度的增加逐渐增加。  相似文献   

15.
取消初沉池的污水处理厂,粒径小于200 μm细微无机颗粒物将直接进入生化池,或悬浮或沉积,进而影响生化池的运行。以山地城市某污水处理厂为例,跟踪监测了夏季2个月的6次降雨过程中旋流沉砂池进出水无机颗粒物的粒径和浓度,并同期测定了生化池活性污泥浓度以及污泥MLVSS/MLSS比值。研究发现:旱季旋流沉砂池进出、水中的无机颗粒物平均粒径分别为65.25 μm及54.14 μm,浓度均值分别为146 mg·L-1及128 mg·L-1,无机颗粒去除率12.33%;降雨旋流沉砂池进出、水中的无机颗粒物峰值平均粒径分别为140.48 μm及94.54 μm,峰值平均浓度分别为2 167 mg·L-1及1 591 mg·L-1,无机颗粒去除率26.58%;旋流沉砂池对粒径≥200 μm颗粒的去除较稳定,对细微无机颗粒物的去除效率约10%。研究进一步发现,降雨中颗粒物浓度分别与雨前晴天数及平均雨强呈线性正相关关系。通过核算生化池无机颗粒物的物料平衡关系,得知研究期间生化池累积无机颗粒物总量410.25 t,其中399.45 t沉积在底部,其余悬浮于活性污泥混合液中。活性污泥MLVSS/MLSS由0.52降至0.40,MLVSS由1 410 mg·L-1降至930 mg·L-1,污泥活性下降,系统运行效能受到影响。  相似文献   

16.
开发出一种两段进水生物膜法好氧/好氧/缺氧-膜生物反应器(OOA-MBR)强化生物脱氮工艺,以模拟生活污水为研究对象,重点考察了流量分配比、曝气方式和水力负荷等因素对系统运行效果的影响,并对工艺控制参数进行了优化。实验结果表明,在系统HRT 4.8 h,流量分配比为1:1,后置MBR池曝气方式采取Air-on 4 min/Air-off 6 min模式,进水COD(380±20)mg·L-1、NH4+-N(35±5)mg·L-1、TN(35±5)mg·L-1时,出水COD、NH4+-N和TN去除率分别达到93.9%、91.8%和77.7%,出水水质满足《城镇污水处理厂污染物排放标准》(GB 18918-2002)一级A标准。  相似文献   

17.
为考察不同地下渗滤系统装置沿程脱氮效果的差异和脱氮微生物群落结构的分布状况,构建了2套改良装置(煤渣-生物基质的1#、煤渣的2#),对沿程出水的COD、氨氮、TN浓度和填料内的脱氮微生物丰度进行了测定分析。结果表明:系统在水力负荷为15 cm·d-1下,1#和2#装置对氨氮平均去除率分别为75.59%、80.00%,对TN平均去除率分别为60.63%、57.96%,1#的脱氮效果略优于2#装置;由沿程氮污染物浓度变化可知,2套装置的TN去除范围主要在层高60~80 cm处。与2#装置相比,添加生物基质的1#装置TN去除率提高了9.60%,且其装置内的Bradyrhizobium、Pseudolabrys、Dongia、Rhodanobacter、Rudaea等脱氮细菌的丰度也分别提升了0.51%、1.52%、1.02%、10.49%和3.15%。因此,生物基质可促进SWIS内部脱氮微生物丰度提升,并通过提供反硝化的碳源来强化脱氮效果。  相似文献   

18.
运行OHR(Original Hydrodynamic Reaction)混合器微气泡曝气生物膜反应器,比较不同曝气方式下,生物膜反应器对污染物的去除性能及能耗情况。结果表明,微气泡曝气生物膜反应器可以实现废水中碳氮同步去除,连续曝气时COD、NH3-N和TN平均去除率分别为88.5%、53.4%和43.4%,平均去除负荷分别为1.60、0.089和0.092 kg·(m3·d)-1。生物膜反应器采用微气泡间歇曝气,随着曝气时间的减少,溶解氧(DO)浓度下降,反应器COD和NH3-N去除性能随之降低;COD和NH3-N去除效果下降与生物膜好氧生物活性降低相一致。受硝化作用抑制影响,同步硝化反硝化过程对TN的去除性能也有所降低。采用微气泡间歇曝气能够降低曝气能耗。同时,随着曝气时间的减少,单位COD去除所需能耗降低,单位NH3-N去除所需能耗有所升高,单位TN去除所需能耗基本不变。  相似文献   

19.
以驯化好的反硝化除磷污泥为研究对象,通过批式实验考察了NO2--N和NaCl浓度对反硝化除磷率及N2O释放的影响。当进水亚硝酸盐的浓度由15 mg·L-1升高至25和40 mg·L-1时,除磷率由68.81%±0.5%降至66.25%±1%和62.88%±0.8%,TN的去除率由90.6%±0.7%降至74.55%±1.5%和51.65%±2%,N2O释放量分别为4.82、13.83和17.06 mg。当NaCl质量分数为0%、0.5%、1%和2%时,TN的去除率由74.55%±1%降至68%±2%、64.2%±1%和54.3%±2.5%,除磷率由66.37%±1.5%降至61.29%±1%、50.47%±2%和36.7%±0.5%,N2O-N转化率为41.1%±2%、41.4%±2.5%、48.94%±0.6%和51.03%±2%。因此,NO2--N和NaCl质量分数的升高均会降低脱氮除磷效率,但增加了N2O释放量;兼顾脱氮除磷效率前提下,NO2--N为25 mg·L-1、NaCl质量分数为1%是N2O释放量增加的优化条件。  相似文献   

20.
通过连续流实验研究了低浓度乙酸盐诱导下厌氧氨氧化颗粒污泥与异养反硝化菌的耦合脱氮性能,同时采用批试实验考察耦合系统中的氮素转化及去除途径。结果表明:采用低浓度乙酸盐对厌氧氨氧化颗粒污泥进行驯化,可以实现厌氧氨氧化与异养反硝化的高效耦合脱氮。系统在稳定时期,进水NH4+-N为30~40 mg·L-1、NO2--N为45~55 mg·L-1、CH3COONa为60~80 mg·L-1,NH4+-N、NO2--N和TN的去除率分别为93.84%、94.62%和86.46%。耦合系统中的颗粒污泥同时存在厌氧氨氧化特性、硝化特性和反硝化特性。颗粒污泥表现出良好的厌氧氨氧化特性,总氮去除速率为12.46 mg·(g MLSS·h)-1。系统中存在的硝化细菌可以消耗进水中的溶解氧从而缓解溶解氧对ANAMMOX菌的抑制,其中AOB活性高于NOB活性。系统中颗粒污泥对硝氮的反硝化作用强于对亚硝氮的反硝化作用,亚硝氮反硝化和硝氮反硝化的降解速率分别为1.89和3.59 mg·(g MLSS·h)-1。当亚硝氮和硝氮同时存在时,反硝化菌优先将硝氮还原成亚硝氮。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号