首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用移动床生物膜反应器,通过一段式短程硝化-厌氧氨氧化耦合短程反硝化工艺处理主流厌氧消化出水.在溶解氧浓度(DO)维持在(1.45±0.15)mg·L-1的条件下,出水TN低至(10.7±2.4)mg·L-1、NH4+-N转化率达到(86.8±4.5)%,平均TN去除率为(78.9±4.9)%(最高达84.0%)、TN...  相似文献   

2.
以模拟生活污水为研究对象,探讨膜曝气生物反应器在不同的曝气压力下溶解氧的分布特征,并分析了DO的分布对有机物和氮去除率的影响。研究结果表明,不同的曝气压力下,沿曝气膜径向位置DO值逐渐降低呈梯度分布,轴向位置的DO浓度变化随沿程氧分压减小逐渐降低;不同位置的DO分布差异影响反应器内微生物群落的分布情况,进而影响碳氮的去除效果。COD和NH_4~+-N去除主要依靠生物膜内的好氧异养菌,去除率随DO的上升而增大,当反应体系中DO浓度在1.71 mg·L~(-1)以上时,两者的最大去除率分别为84.4%和92.1%;TN的去除率随DO的上升而减小,在低DO的主体料液中,生物膜内侧依然保持高氧低碳环境,在保证硝化反应的同时反硝化作用进行较为充分,去除率可高达76.1%。  相似文献   

3.
空气通量是影响SPG膜微气泡曝气生物膜反应器运行性能的重要参数。在不同空气通量条件下,考察了微气泡产生特性及氧传质特性,以及SPG膜微气泡曝气生物膜反应器运行性能。结果表明,当空气通量由31.85 L/(min·m2)降低至12.74 L/(min·m2)时,产生的微气泡平均直径由62.9μm减小到32.6μm,氧传质系数由0.31 min-1降低至0.19 min-1,但氧传质效率由67.7%提高至90.3%。生物膜反应器DO浓度随空气通量的降低而下降,导致生物膜好氧代谢活性下降,进而COD和氨氮去除效率降低;同时,在较低DO浓度下,可实现同步硝化反硝化过程去除TN。随着空气通量的降低,生物膜反应器氧利用率增加,空气通量为12.74 L/(min·m2)时,可接近100%;同时,曝气能耗降低,在相同条件下能耗低于传统大气泡曝气。  相似文献   

4.
开发出一种两段进水生物膜法好氧/好氧/缺氧-膜生物反应器(OOA-MBR)强化生物脱氮工艺,以模拟生活污水为研究对象,重点考察了流量分配比、曝气方式和水力负荷等因素对系统运行效果的影响,并对工艺控制参数进行了优化。实验结果表明,在系统HRT 4.8 h,流量分配比为1∶1,后置MBR池曝气方式采取Air-on 4 min/Air-off 6 min模式,进水COD(380±20)mg·L-1、NH+4-N(35±5)mg·L-1、TN(35±5)mg·L-1时,出水COD、NH+4-N和TN去除率分别达到93.9%、91.8%和77.7%,出水水质满足《城镇污水处理厂污染物排放标准》(GB 18918-2002)一级A标准。  相似文献   

5.
为考察不同地下渗滤系统装置沿程脱氮效果的差异和脱氮微生物群落结构的分布状况,构建了2套改良装置(煤渣-生物基质的1~#、煤渣的2~#),对沿程出水的COD、氨氮、TN浓度和填料内的脱氮微生物丰度进行了测定分析。结果表明:系统在水力负荷为15 cm·d~(-1)下,1~#和2~#装置对氨氮平均去除率分别为75.59%、80.00%,对TN平均去除率分别为60.63%、57.96%,1~#的脱氮效果略优于2~#装置;由沿程氮污染物浓度变化可知,2套装置的TN去除范围主要在层高60~80 cm处。与2~#装置相比,添加生物基质的1~#装置TN去除率提高了9.60%,且其装置内的Bradyrhizobium、Pseudolabrys、 Dongia、 Rhodanobacter、 Rudaea等脱氮细菌的丰度也分别提升了0.51%、 1.52%、 1.02%、 10.49%和3.15%。因此,生物基质可促进SWIS内部脱氮微生物丰度提升,并通过提供反硝化的碳源来强化脱氮效果。  相似文献   

6.
采用多级潮汐流人工湿地(multi-stage tidalflow constructed wetlands,MTF-CWs)处理城市污水处理厂剩余污泥厌氧消化液(excess sludge anaerobic digester liquids,ES-ADL),以垂直潮汐流的运行方式强化硝化,并根据进水NH_4~+-N和TN浓度分为2种不同工况。实验结果表明:在进水COD、NH_4~+-N和TN浓度分别为(293.68±9.62)、(845.70±11.53)和(847.00±11.47)mg·~(L-1)的条件下(工况1),出水COD、NH_4~+-N和TN浓度分别为(84.47±8.10)、(8.81±1.74)和(351.50±7.78)mg·L~(-1),COD、NH_4~+-N和TN的平均去除率分别为72.45%、98.93%和56.48%;在进水COD、NH_4~+-N和TN浓度分别为(413.31±7.47)、(1 023.85±8.32)和(1 025.78±8.31)mg·L~(-1)的条件下(工况2),出水COD、NH_4~+-N和TN浓度分别为(51.60±6.05)、(9.58±3.13)和(359.92±7.68)mg·L~(-1),COD、NH_4~+-N和TN的平均去除率分别为87.34%、99.05%和64.68%。在上述2种工况条件下,可将城市污水处理厂ES-ADL回流引起的氮循环累积量分别降低58.50%和62.19%。溶解氧消耗计算结果表明:MTF-CWs并没有提供NH_4~+-N的氧化(全程硝化或短程硝化过程)所需要的溶解氧;氮平衡计算结果表明:2种工况条件下通过非传统硝化-反硝化途径(如厌氧氨氧化)去除的总氮负荷分别占据总氮去除负荷的86.30%和82.53%。采用Miseq高通量测序技术进行菌群分析,结果表明:在反硝化脱氮贡献最大的人工湿地单元存在大量的厌氧氨氧化细菌Candidatus Kuenenia,且其占比随着取样深度(0.05~0.20m)增加而增加(其丰度由5.08%增加到13.18%),表明MTF-CWs处理ES-ADL时存在厌氧氨氧化途径。  相似文献   

7.
取消初沉池的污水处理厂,粒径小于200μm细微无机颗粒物将直接进入生化池,或悬浮或沉积,进而影响生化池的运行。以山地城市某污水处理厂为例,跟踪监测了夏季2个月的6次降雨过程中旋流沉砂池进出水无机颗粒物的粒径和浓度,并同期测定了生化池活性污泥浓度以及污泥MLVSS/MLSS比值。研究发现:旱季旋流沉砂池进出、水中的无机颗粒物平均粒径分别为65.25μm及54.14μm,浓度均值分别为146 mg·L-1及128 mg·L-1,无机颗粒去除率12.33%;降雨旋流沉砂池进出、水中的无机颗粒物峰值平均粒径分别为140.48μm及94.54μm,峰值平均浓度分别为2 167 mg·L-1及1 591 mg·L-1,无机颗粒去除率26.58%;旋流沉砂池对粒径≥200μm颗粒的去除较稳定,对细微无机颗粒物的去除效率约10%。研究进一步发现,降雨中颗粒物浓度分别与雨前晴天数及平均雨强呈线性正相关关系。通过核算生化池无机颗粒物的物料平衡关系,得知研究期间生化池累积无机颗粒物总量410.25 t,其中399.45 t沉积在底部,其余悬浮于活性污泥混合液中。活性污泥MLVSS/MLSS由0.52降至0.40,MLVSS由1 410 mg·L-1降至930 mg·L-1,污泥活性下降,系统运行效能受到影响。  相似文献   

8.
采用培养成熟并稳定运行一段时间的生物除铁除锰除氨氮滤柱,考察进水氨氮浓度变化对铁锰氨氮去除效果的影响。结果表明:进水氨氮从约1.2 mg·L~(-1)逐步提高到约2.0 mg·L~(-1)的过程中,铁、锰和氨氮的去除效果没有受到影响。当进水氨氮超过2 mg·L~(-1)时,进水溶解氧不足,铁的去除效果不受影响;生物除锰受到氨氮升高过程中产生的亚硝氮的抑制,并且与氨氮竞争溶解氧,导致出水锰升高,然而锰氧化菌能够在低溶解氧条件下将锰氧化,出水锰数天后又降到0.05 mg·L~(-1)以下;出水氨氮随进水氨氮的升高而升高。沿程分析发现,进水溶解氧充足时,氨氮和锰的氧化速率没有受到影响;但进水溶解氧不足时,氨氮和锰的氧化速率明显降低;铁的去除速率不受溶解氧的限制。生物净化滤柱可以在较低的溶解氧条件下运行,从而降低能耗。  相似文献   

9.
为了实现中低浓度氨氮废水情况下CANON工艺的快速启动和稳定运行,在升流式生物膜反应器中,通过调控水力停留时间、溶解氧和回流比,研究进水氨氮浓度为200 mg·L~(-1)时CANON工艺的快速启动过程。结果表明:1~17 d,污泥处于驯化阶段,HRT为12 h,DO控制在0.1~0.2 mg·L~(-1),50%的回流比满足污泥上升流态;18~60 d,HRT逐步缩短至8 h,DO控制在0.3~0.5 mg·L~(-1),回流比增大至150%,AOB和ANAMMOX在该阶段成功富集,填料上初步形成生物膜;61 d时,HRT缩短至6 h,加大回流比至200%,溶解氧控制在0.3~1.0 mg·L~(-1),系统启动加速,此时,进水氨氮负荷增加至0.795 kg·(m~3·d)~(-1);运行至第93天,氨氮和总氮平均去除率分别达到95%和82%,ANAMMOX完成挂膜,CANON工艺成功启动。高通量测序结果显示,在整个启动过程中,优势菌群AOB和ANAMMOX的丰度呈增长趋势,启动完成时,生物膜中AOB占比19.46%,ANAMMOX占比22.49%,分别属于Brocadiaceae和Nitrosmonadaceae。CANON系统集成絮体、颗粒和填料挂膜3种污泥形态为一体,实现了在中低浓度氨氮废水中的高效稳定运行。  相似文献   

10.
为实现污水厂低碳氮比尾水深度脱氮除磷,考察以玉米芯为外碳源满足反硝化除磷最佳碳氮比要求时有机物及氮、磷的去除效果。在DO0.3 mg·L-1条件下,SBR系统最佳进水C/N为6,此时出水TN和TP分别为3.57 mg·L-1和1.24 mg·L-1;投加玉米芯作为外碳源和生物载体构建SBBR系统,可将进水C/N从3.5提升至6,同时出水COD保持在40 mg·L-1左右,出水TN和TP分别降至3.04 mg·L-1和0.54 mg·L-1。研究表明,以玉米芯为固体碳源和生物载体的SBBR系统的脱氮除磷效果优于相同C/N条件下的SBR系统,玉米芯的粗糙表面和纤维结构为反硝化除磷菌提供了良好的缺氧环境和载体基础,使得SBBR系统的生物量及活性整体增强。  相似文献   

11.
ABR-生物滴滤池组合工艺处理农村生活污水   总被引:3,自引:0,他引:3  
采用ABR-生物滴滤池组合工艺,研究在水力停留时间为3 d、滴滤池水力负荷为5 m3/(m2·d)的条件下,组合工艺对生活污水中主要污染物的去除效果、滴滤池内部污染物浓度变化和微生物的沿程分布规律。实验结果表明,组合工艺对COD、TN、NH+4-N和TP的平均去除率分别可达73%、32%、58%和30%;滴滤池内各层污染物浓度除TP在中层略有升高外,其余均沿程逐渐降低。滴滤池底层对各种污染物的去除能力均较强,原因是果壳活性炭填料较强的截留吸附能力以及底层微生物优势菌属较好的降解作用。总氮的去除依靠滴滤池内填料的物理化学作用和微生物同步硝化反硝化作用,其中微生物作用约占60%,成为脱氮的主要途径。  相似文献   

12.
针对常规水处理工艺难以去除原水中低浓度有机氯农药的问题,采用新型高级氧化技术——紫外(UV)活化过硫酸钠(PS)去除水中有机氯农药三唑酮(triadimefon,TDF),分别研究了TDF初始浓度、PS浓度、初始pH、氯离子浓度以及腐殖酸(HA)浓度对TDF降解效果的影响。结果表明:随着TDF浓度的增加,其去除率逐渐降低;PS浓度从100μmol·L~(-1)增到250μmol·L~(-1),TDF去除率可以提高6.83%;初始pH为5时,TDF的去除率最大;氯离子的存在会抑制TDF降解;存在HA时会降低TDF去除效果。当TDF浓度为200μg·L-1、PS投加量为250μmol·L~(-1)、pH为5、温度为(25±2)℃和反应时间为600 s的反应条件下,TDF的去除率达到99.83%。相比于单独采用UV辐照和PS氧化技术,UV/PS技术对TDF的去除率分别提高了64.2%和86.22%。TDF的降解机制是紫外直接光解和以硫酸根自由基(SO4·-)为主的自由基氧化的共同作用。  相似文献   

13.
以上海工业河勤丰泵站周围50 m河段为研究对象,现场探讨了原位曝气对底泥内源营养盐去除的示范工程效能,目的为曝气治理城市黑臭河道工程的优化实施提供参考。结果表明,原位曝气有利于对底泥内源氮、磷营养盐的控释,对工业河示范河段溶解性总氮(DTN)削减率为(48.4±6.0)%,上覆水DTN的平均浓度由13.4 mg·L-1降至8.7 mg·L-1;NH+4-N的削减率为(46.3±16.7)%,其上覆水浓度均低于7.6 mg·L-1;泥水界面硝化率与反硝化率分别达到46.3%和43.6%;上覆水溶解性总磷(DTP)的削减率为(35.4±2.9)%,由于示范区段没有与其他区段隔离,其实际工程效果要优于观测值。静态经济评价表明原位曝气修复黑臭河道底泥技术的环境与经济效益明显优于常规底泥疏浚技术。  相似文献   

14.
分段进水多级生物膜反应器脱氮效能影响因素研究   总被引:2,自引:1,他引:1  
采用分段进水多级生物膜反应器处理高氮低碳小城镇污水,考察负荷、溶解氧和温度对反应器脱氮效能的影响。实验结果表明:负荷、溶解氧和温度对反应器脱氮效能有显著影响。在水温为20~25℃,DO为5 mg/L,负荷为1 kgCOD/(m3.d),挂膜密度为30%,第1、3、6级分段进水,流量分配比为2∶2∶1的条件下,在反应器中可成功构建出高效同时硝化反硝化系统,出水COD、NH4+-N和TN浓度分别为33 mg/L、2.6 mg/L和29.4 mg/L,去除率分别为90.1%、96.0%和63.9%。当水温≤15℃时,硝化速率受温度的影响显著。  相似文献   

15.
以浸没式膜生物反应器(SMBR)启动OLAND工艺,并对OLAND脱氮工艺性能进行了系统的研究。在OLAND-SMBR工艺运行过程中,采用厌氧氨氧化(ANAMMOX)反应产生的氮气与空气混合曝气的方式,对膜组件进行曝气冲刷以减缓膜污染。实验结果表明,在反应器成功运行70 d过程中,进水总氮负荷最高可达0.4 kg·(m3·d)-1,TN去除率稳定高于81%;当曝气速率从0.025 m3·h-1上升至0.1 m3·h-1(空气泵和循环泵曝气速率均为0.05 m3·h-1)时,膜的使用周期从4 d延长至14 d,生物气+空气混合曝气方式不仅有效地减缓了膜污染,而且为亚硝化细菌的生长提供了所需的溶解氧。  相似文献   

16.
采用序批式生物膜反应器处理污水,为了证实同步硝化反硝化生物膜中微区环境的分区现象,研究了pH处于6.5~8.5时pH对该SBBR系统TN去除的影响和各pH条件下的生物膜内溶解氧分布情况,结果表明,随着pH的升高其总氮去除呈上升趋势,并在pH=8.0时达到最高70%;膜内溶解氧浓度均随深度的增加而下降,并在2 000μm左右处降至0,呈明显分区现象;A~F的DO分布在pH=8.5时所受影响最明显,而同一深度不同pH下的平均DO随pH的增加呈略微下降趋势。  相似文献   

17.
采用固定化微生物深度处理垃圾渗滤液,研究水力停留时间(HRT)、溶解氧(DO)和进水pH对系统脱氮效果的影响。通过对厌氧出水和好氧出水的脱氮效果比较,探讨固定化微生物构筑物的合理位置。结果表明:固定化微生物处理厌氧出水时最佳HRT为72 h最佳DO为5 mg·L~(-1),最佳进水pH为7.5±8.5;处理好氧出水时最佳HRT为84 h最佳DO为5 mg·L~(-1),最佳进水pH为7.5±8.5;处理厌氧出水和好氧出水时氨氮平均去除率分别达到63.8%和92.6%將固定化微生物构筑物单元设置在好氧处理之后更合理,可以充分发挥固定化微生物处理渗滤液脱氮方面的独特优势,切实解决渗滤液高效脱氮的问题。  相似文献   

18.
向成功启动并稳定运行630 d后的UASB生物膜反应器系统连续添加有机物,分析其对厌氧氨氧化反应脱氮效果的影响,并进行氮素浓度负荷试验.在厌氧氨氧化反应器系统中连续投加有机COD(葡萄糖),系统运行稳定,有机COD(葡萄糖)存在对系统去除氮素能力影响不大,有机COD去除率达到92.0%,仅用23 d,在同一反应器系统中成功实现了厌氧氨氧化与反硝化协同作用脱氮.氮素浓度负荷试验阶段,进水氨氮(NH 4-N)、亚硝氮(NO-2-N)以及总氮(TN)浓度负荷分别从0.063 kg/(m3·d)和0.063 kg/(m3·d)和0.126 kg/(m3·d)提升到了0.239 kg/(m3·d)、0.315 kg/(m3·d)和0.554 kg/(m3·d),相应去除率分别为84.0%、93.0%和85.0%,厌氧氨氧化工艺的UASB生物膜反应器对氮素浓度负荷仍有很大提升空间.  相似文献   

19.
运行OHR(Original Hydrodynamic Reaction)混合器微气泡曝气生物膜反应器,比较不同曝气方式下,生物膜反应器对污染物的去除性能及能耗情况。结果表明,微气泡曝气生物膜反应器可以实现废水中碳氮同步去除,连续曝气时COD、NH_3-N和TN平均去除率分别为88.5%、53.4%和43.4%,平均去除负荷分别为1.60、0.089和0.092 kg·(m~3·d)~(-1)。生物膜反应器采用微气泡间歇曝气,随着曝气时间的减少,溶解氧(DO)浓度下降,反应器COD和NH_3-N去除性能随之降低;COD和NH_3-N去除效果下降与生物膜好氧生物活性降低相一致。受硝化作用抑制影响,同步硝化反硝化过程对TN的去除性能也有所降低。采用微气泡间歇曝气能够降低曝气能耗。同时,随着曝气时间的减少,单位COD去除所需能耗降低,单位NH_3-N去除所需能耗有所升高,单位TN去除所需能耗基本不变。  相似文献   

20.
文章欲通过对小球藻Chlorella sp.的优化培养提高微藻的固碳率以及对养殖废水中氮、磷的去除率。探讨了光强、初始氮浓度(ITNC)、CO2通气比、通气间隔时间和连续培养时间等因素对Chlorella sp.固定CO2和净化污水的能力的影响。结果表明,在光强240μmol/(m·s)、初始氮浓度128 mg/L、通气比0.3 m3/(m3·min)、通气通断间隔15 s/60 s条件下培养10 d,微藻达到最高固碳率564.67 mg/(L·d),与此同时,氮、磷去除率和生物质浓度分别达到66.72%、55.95%和3.50 g/L。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号