首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
采用超声(US)联合过硫酸钠(SPS)对水中三氯生(TCS)的去除进行了研究,GC/MS鉴定识别了联用工艺降解产物,考察了US功率、SPS的投加量、pH值、碳酸盐和溴离子等对TCS去除的影响。结果表明2,4-二氯苯酚(2,4-DCP)为其主要降解产物,US/SPS工艺强化了单独US去除效果,SPS浓度为4 mmol·L~(-1),US功率为600 W时,初始浓度为410μg·L~(-1)的TCS 120 min后去除率可达100%。TCS的降解符合拟一级反应动力学方程,其动力学常数K=0.028 min~(-1)。TCS的去除率随SPS浓度的增加先增大后减小,实验范围内(0~600 W)TCS去除率随US功率增加而增大,强酸强碱环境不利于TCS的去除,TCS去除率随碳酸氢钠浓度的增加先减小后增大,碳酸钠的加入对TCS去除影响不大,溴离子对TCS的去除具有抑制作用。  相似文献   

2.
溶液中阴离子和腐殖酸对UV/H2O2降解2,4-二氯酚的影响   总被引:2,自引:0,他引:2  
研究了UV/H2O2工艺对2,4-二氯酚(2,4-DCP)的去除效果和水中阴离子、腐殖酸对该工艺降解2,4-DCP的影响.结果表明:UV/H2O2工艺可以有效地去除水中2,4-DCP,光降解过程符合一级反应动力学模型;在H2O2投加量为8 mg/L、1个30 W低压汞灯照射下,2,4-DCP在蒸馏水和自来水中反应速率常数分别为0.023 2、0.016 2 min-1;NO-3、Cl-、HCO-3对2,4-DCP光降解有抑制作用,当3种阴离子摩尔浓度为0.5、10.0、20.0 mmol/L时,对2,4-DCP光降解的抑制程度为HCO-3>NO-3>Cl-;腐殖酸在低浓度时,促进光降解反应进行,在高浓度时,2,4-DCP的光降解受到抑制.自来水中的反应速率常数低于蒸馏水中的反应速率常数是由于水中多种阴离子和腐殖酸影响的结果.  相似文献   

3.
采用Fe~(3+)催化过氧化钙(CP)处理水溶液中三氯乙烯(TCE),考察了CP和Fe~(3+)投加量、地下水中常见阴离子和腐殖酸对TCE降解效果的影响。结果表明,Fe~(3+)催化CP体系可以有效降解TCE,但相同药剂投加量下效率低于Fe~(3+)催化H_2O_2体系。在TCE初始摩尔浓度为0.15mmol/L,CP和Fe~(3+)投加量分别为3.00、6.00mmol/L时,180min时TCE去除率达到了96.1%。常见阴离子Cl~-、HCO_3~-和SO_4~(2-)对TCE的降解有抑制作用,NO_3~-对TCE降解几乎无影响,而腐殖酸对TCE降解有促进作用。自由基清除实验表明TCE降解的主导自由基为HO·,Cl~-的释放效果显示HO·的氧化作用可使降解的TCE完全矿化。因此,Fe~(3+)催化CP技术适用于污染场地地下水中TCE的修复治理。  相似文献   

4.
研究了三氧化二钒(V_2O_3)活化过硫酸钠(SPS)降解2,4,6-三氯酚(TCP)的效果,分别考察了V_2O_3投加量、SPS和TCP浓度对其降解的影响。结果表明,在V_2O_3投加量为0.05 g·L~(-1),SPS浓度为1.0 mmol·L~(-1),TCP初始浓度为5.0mg·L~(-1)时,反应24 h,有72.4%的TCP被降解。提高V_2O_3投加量不利于TCP的降解,而增加SPS浓度能有效增加TCP的降解速率;利用自由基淬灭反应和电子顺磁共振技术(EPR)对反应体系的主导自由基进行了鉴定,发现羟基是体系降解TCP的主要活性物种,推测并初步证实了V_2O_3活化SPS的过程,发现了二氧化钒(VO_2)和五氧化二钒(V_2O_5)也能活化SPS降解TCP。  相似文献   

5.
采用批实验研究初始pH值、溶解氧(DO)和地下水中常见的阴、阳离子等因素对Fe~0-C微电解对地下水中2,4-二硝基甲苯(2,4-DNT)去除率的影响,并分析Fe~0-C降解2,4-DNT的产物。结果表明,在pH=7,DO=0.23 mg·L~(-1)的条件下,Fe~0-C去除溶液中2,4-DNT有明显的效果,反应200 min时,去除率达到83.09%,比Fe~0和C的去除率提高了74.56%和9.89%;酸性条件下有利于2,4-DNT去除,初始pH=5的条件下,溶液中2,4-DNT的去除率为82%,而初始pH=10时,2,4-DNT的去除率分别为64%;反应体系中含有较高浓度的溶解氧有利于2,4-DNT的去除,在DO=9.26 mg·L~(-1)条件下,2,4-DNT的去除率比DO=0.23 mg·L~(-1)时提高了9.5%;地下水中一定浓度的阴(Cl-、SO_4~(2-))、阳离子(Ca~(2+)、Mg~(2+)、Na~+、K~+)可以提高2,4-DNT的去除率,提高率小于10%。反应过程中2,4-DNT降解的产物包括2-氨基-4-硝基甲苯(2A4 NT)、4-氨基-2-硝基甲苯(4A2 NT)和2,4-二氨基甲苯(2,4-DAT)。  相似文献   

6.
通过不同条件下Fe0还原NO-3的研究发现,在中性条件下溶液中Fe~(2+)明显强化了Fe0对NO-3的还原,最终还原产物以NH+4-N为主,而反应过程中Fe~(2+)消耗与NO-3还原量存在明显的正相关性。在Fe~(2+)初始浓度为1~8 mmol·L-1条件下,6 g·L-1的Fe0对初始浓度为100 mg·L-1NO-3的还原符合零级反应动力学过程,结合电化学和X射线衍射分析,证明Fe~(2+)通过沉积到Fe0表面,加速了电子传递过程,促进Fe0表面活性,从而强化了Fe0对NO-3的还原。  相似文献   

7.
为了探索络合态重金属废水的处理方法,采用UV/Fenton氧化技术处理EDTA-Cu-Ni模拟废水,主要研究了Fe~(2+)投加量、H_2O_2投加量、初始pH和UV光照时间等因素对COD、Cu~(2+)和Ni~(2+)去除效果的影响及机理。结果表明,随着Fe~(2+)和H_2O_2投加量以及初始pH的升高,COD、Ni~(2+)的去除率先升后降,Cu~(2+)的去除率则在升高后趋于稳定;随着UV光照时间的增加,COD、Cu~(2+)、Ni~(2+)去除效率均呈上升趋势并逐渐达到平衡。结合成本和效率考虑,得出最佳处理条件为:Fe~(2+)投加量为10 mmol·L-1,H_2O_2投药量为600 mmol·L~(-1),反应初始pH为3.0,UV光照时间为120 min。在UV/Fenton体系中,UV光照能增强Fenton反应的去除效率,异丙醇对反应的抑制说明羟基自由基在处理过程中是重要的活性物种。  相似文献   

8.
研究了Fe~(2+)活化过硫酸钠产生的硫酸根自由基降解土壤中十溴联苯醚(PBDE~(-2)09)的效果,分别考察了Na2S2O8的用量、初始pH值、Na2S2O8与Fe~(2+)摩尔比例、反应时间4个因素对降解效果的影响。通过正交实验确定了降解污染物的最优条件。结果表明,在Na2S2O8用量为0.8 mmol·kg~(-1),初始pH为5,Na2S2O8与Fe~(2+)摩尔比为2∶1,反应时间为30 min的最优条件下,降解率达96.36%。分子探针竞争实验表明体系中产生了硫酸根自由基。Fe~(2+)活化过硫酸钠降解PBDE~(-2)09反应过程符合一级反应动力学。  相似文献   

9.
皂素废水中高浓度的SO_4~(2-)对环境危害大,厌氧环境下同时投加Fe~0和Fe~(2+)生成硫酸盐绿锈增强SO_4~(2-)的去除,实验研究了各因素对去除SO_4~(2-)的影响。结果表明,降低初始p H能快速提升SO_4~(2-)的去除率,25~35℃范围内提高温度有利于SO_4~(2-)的去除,Fe~(2+)浓度对去除效果影响显著,随着Fe~(2+)浓度的增加,SO_4~(2-)去除率快速上升。初始pH为2、温度为25℃的条件下,10 g·L~(-1)的Fe~0和1 000 mg·L~(-1)的Fe~(2+)能去除93.1%初始浓度为1 000 mg·L~(-1)的SO_4~(2-)。XRD和SEM表征结果显示,去除过程中铁粉表面有疏松多孔结构的Fe_3O_4生成,有利于SO_4~(2-)与Fe~0接触反应,促进硫酸盐绿锈的生成,进一步增强SO_4~(2-)的去除。动力学分析显示,去除过程拟合伪二级动力学模型,吸附SO_4~(2-)的过程以单分子层吸附为主。  相似文献   

10.
通过添加抗坏血酸(AA)能够缓解铁离子形成沉淀和加速Fe~(3+)转化为Fe~(2+),催化CP产生活性氧物质(ROSs),对CFX降解起到促进作用。研究了Fe~(3+)/AA/CP体系降解CFX的Fe~(3+)浓度、AA浓度、CP浓度、初始pH等主要影响因素。结果表明:在Fe~(3+)浓度0.60 mmol·L~(-1)、AA浓度0.15 mmol·L~(-1)、CP浓度0.144 g·L~(-1)、CFX的初始浓度0.15 mmol·L~(-1)和初始pH=3.00的室温条件下,20 min内CFX的降解率可达到100%。随着初始pH升高,CFX的降解率随之降低。反应过程中降解CFX的活性物质为羟基自由基(HO·)和超氧自由基(O2-·),其中HO·对CFX降解起到主导作用。水中阴离子的影响表明,SO_4~(2-)、Cl~-对CFX的降解影响较小;但HCO3-对CFX的降解有明显的抑制作用。在处理成分较复杂的实际养殖废水实验中,发现只有提高药剂量才能达到有效降解实际废水中头孢氨苄的目的。  相似文献   

11.
采用共沉淀法制备了具有较高催化活性的磁性纳米Fe_3O_4,并对其催化活化过硫酸盐(PS)降解磺胺甲恶唑(SMX)的性能进行了探究,考察了PS浓度、Fe_3O_4投加量、初始pH、共存阴离子(Cl~-、CO_3~(2-)、NO_3~-)以及腐殖酸(HA)对SMX降解效果的影响。SEM、EDS、FT-IR、XRD和BET表征结果表明,实验制备了较高纯度的Fe_3O_4纳米颗粒;重复性实验结果表明,Fe_3O_4具有良好的稳定性;催化降解SMX的实验结果表明,提高PS的浓度、增加Fe_3O_4的投加量均可提高SMX的降解率,且SMX的降解反应符合拟一级动力学。当PS浓度为0.5 mmol·L~(-1)、Fe_3O_4投加量为1.2 g·L~(-1)、初始pH=7.0时,Fe_3O_4活化PS降解SMX的效果最佳,在反应180 min后,SMX降解率达到93.3%。XPS光谱分析结果表明,反应过程中Fe~(2+)主要参与了活化PS降解SMX的过程。乙醇(EtOH)和叔丁醇(TBA)自由基淬灭实验结果证明,在Fe_3O_4/PS体系中同时存在SO_4~-·和·OH,SO_4~-·对SMX的降解发挥了主导作用。以上结果为含磺胺甲恶唑废水的处理提供了催化剂选择,也可为过硫酸盐高级氧化体系中阴离子和腐殖酸对反应的影响效果提供参考。  相似文献   

12.
利用Fe0活化Na_2S_2O_8产生具有强氧化性的SO-4·催化降解目标物结晶紫。研究不同因素(阴极液初始pH值、S_2O_8~(2-)浓度、共存离子Cl-浓度)对Fe~0/~(-1)-微生物燃料电池(MFC)体系中结晶紫降解率及产电性能的影响。结果表明,阴极液初始pH值降低和~(-1)浓度增加有利于体系中结晶紫的降解和最大功率密度的提高,阴极液共存离子Cl~-浓度的增加会阻碍结晶紫的降解,最大功率密度随Cl-浓度增加呈现先增加后降低的趋势。综合体系中结晶紫的降解率和最大功率密度,在温度为30℃,Fe~0投加量为1 mmol·L~(-1),阴极液初始pH值为3、~(-1)浓度为2 mmol·L~(-1)时,180 min后浓度为0.16 mmol·L~(-1)的结晶紫降解率达到95.62%,最大功率密度为637.245 m W·m~(-3),内阻约为400Ω。降解过程符合一级动力学方程。  相似文献   

13.
采用Fe~(2+)/过硫酸钠体系降解水溶液中的盐酸四环素,探讨了盐酸四环素初始浓度、Fe~(2+)浓度、过硫酸钠浓度、温度、pH等因素对降解效果的影响。单因素实验结果表明,盐酸四环素去除率随着盐酸四环素的初始浓度、过硫酸钠浓度、温度的增大而增大;随着Fe~(2+)浓度的增加,盐酸四环素去除率先增大后减小;酸性条件有利于Fe~(2+)/过硫酸钠体系对盐酸四环素的降解。当盐酸四环素初始质量浓度为50mg/L、Fe~(2+)摩尔浓度为0.10mmol/L、过硫酸钠摩尔浓度为2.0mmol/L、反应温度为30℃、pH=3.0时,反应90min后盐酸四环素去除率可达87.6%。Fe~(2+)/过硫酸钠体系对盐酸四环素的降解用一级反应动力学方程进行拟合,得到该反应体系下盐酸四环素降解的活化能为5.173kJ/mol。  相似文献   

14.
探讨了利用过硫酸钠氧化修复实际污染场地长期高浓度石油类(TPH)污染土壤的可行性。研究了过硫酸钠的活化方式、添加量、添加方式、土壤初始p H等因素对TPH降解效率的影响,并采用探针化合物研究了活化过硫酸钠对TPH的氧化去除机制。结果表明:Fe~(2+)活化方法对TPH去除效果最好,反应24 h最高去除率达40.8%;碱活化效果次之,去除率可达35.2%;过氧化氢活化效果一般,去除率为21%左右;热活化效果较差,去除率仅为15.6%。Fe~(2+)活化过硫酸钠去除土壤中TPH的反应在5 min内基本完成,最佳过硫酸钠用量为2.5 mmol·g-1土,过硫酸钠/硫酸亚铁/柠檬酸投加量之比为4∶1∶1,一次添加氧化剂的方式较多次添加效果好。实验场地土壤初始p H对TPH降解效果影响不大,自由基探针实验证实反应中硫酸根自由基、羟基自由基、还原性物质的存在。对于本场地污染土壤的修复,利用Fe~(2+)活化过硫酸钠修复是较为有效、快速的方法。  相似文献   

15.
利用Fenton试剂对水中盐酸四环素(TC)氧化降解,考察H_2O_2/Fe~(2+)(摩尔比)、Fenton试剂投加量、溶液p H值对盐酸四环素去除的影响,研究了盐酸四环素降解过程及动力学特征。研究结果表明:对于初始浓度为0.10 mmol·L~(-1)的盐酸四环素,最优反应条件为p H值3.0,H_2O_2/Fe~(2+)=10∶1(物质的量之比),H_2O_2施加量1.58 mmol·L~(-1)。在该条件下反应60 min,盐酸四环素降解率达88.47%,对应TOC去除率为18.48%;紫外可见光谱扫描结果表明氧化过程中盐酸四环素的共轭结构被首先破坏;分别采用一级和二级动力学方程拟合降解过程,结果表明反应过程遵循二级动力学模型。  相似文献   

16.
以亚铁离子活化过硫酸氢钾(PMS)所产生的硫酸根自由基为氧化剂,氧化水中的酮洛芬,考察了pH值、温度、Fe~(2+)浓度、Fe~(2+)/PMS摩尔比以及Fe~(2+)投加方式等因素对酮洛芬氧化降解的影响,探究氧化降解酮洛芬(KTP)的最佳运行条件。结果表明,在实验范围内,pH值为3、温度为45℃和Fe~(2+)/PMS/KTP浓度比为20/15/1时酮洛芬的降解效果最好,酮洛芬的去除率达到66.8%。分批式投加Fe~(2+),使硫酸根自由基(SO4·-)持续生成,这样更有利于酮洛芬的降解。  相似文献   

17.
比较研究了Fe~(2+)、Co~(2+)和Ag~+活化Na_2S_2O_8及KHSO_5对土壤中芘的氧化降解效果,并对上述反应过程进行动力学研究及芘降解产物成分分析。在土水质量比为1∶5,氧化剂和过渡金属离子添加摩尔比为10∶1,30℃恒温水浴磁力搅拌及反应时间5~120 min条件下开展了系列实验。结果表明,3种离子中Fe~(2+)活化Na_2S_2O_8氧化降解芘的去除效果最优,反应120 min后芘去除率为93.4%;Co~(2+)是活化KHSO_5的最佳过渡金属离子,反应5 min后芘去除率达94.5%,在反应120 min后芘去除率增高至97.0%。此外,降解动力学拟合结果表明Fe~(2+)、Co~(2+)和Ag~+活化Na_2S_2O_8和KHSO_5降解芘的过程符合准一级反应动力学,且土壤中绝大部分芘可被活化过硫酸盐体系氧化降解。  相似文献   

18.
Fe~(2+)/Na_2S_2O_8(persulfate,PS)体系中存在Fe~(2+)易发生沉淀且Fe~(3+)无法还原的问题,以典型的持久性有机污染物双酚A(bisphenol A,BPA)为研究对象,分别考察络合剂酒石酸(tartaric acid,TA)和还原剂盐酸羟胺(hydroxylamine,HA)强化Fe~(2+)/PS体系对双酚A降解过程的影响。在Fe~(2+)/TA/PS体系、Fe~(2+)/HA/PS体系及Fe~(2+)/TA/HA/PS体系中分别考察了盐酸羟胺投加量、酒石酸投加量、体系pH作用范围等因素的影响,同时对氧化作用机理加以分析。研究表明:酒石酸和盐酸羟胺均能提高双酚A在Fe~(2+)/PS体系中的去除率,且均具有最优值;络合剂酒石酸起到长期促进作用,而还原剂盐酸羟胺起到短期促进作用。探针实验表明络合剂和还原剂共同强化的体系中·OH和SO_(4·)~-仍然是主要的氧化物种。当PS投加量均为2.64 mmol·L-1时,30 min内Fe~(2+)/TA/HA/PS体系中SO_(4·)~-的生成量为11.3μmol·L-1,而Fe~(2+)/PS体系中SO_(4·)~-的生成量为1.4μmol·L-1,表明体系通过加速了自由基生成速率从而加快了双酚A的降解。研究结果表明Fe~(2+)/TA/HA/PS体系在中性条件下实现了对双酚A的强化降解,显著优于Fe~(2+)/PS体系。  相似文献   

19.
采用紫外活化过硫酸盐/甲酸体系所产生的还原性二氧化碳阴离子自由基(CO_2~(·-)),研究了水溶液中高浓度Cr(Ⅵ)的去除效果;使用电子自旋共振(ESR)技术,鉴定识别了体系中产生的活性自由基;分析了体系的活化机理及其对Cr(Ⅵ)的还原机制;考察了过硫酸盐投加量、初始pH、腐殖酸、无机阴离子(Cl~-、HCO_3~-和NO_3~-)及初始Cr(Ⅵ)浓度等对Cr(Ⅵ)去除的影响。结果表明:紫外活化过硫酸盐/甲酸体系可以有效还原Cr(Ⅵ),当过硫酸钠与甲酸浓度分别为20 mmol·L~(-1)和40 mmol·L~(-1),未调初始pH为2.4时,初始浓度为200 mg·L~(-1)Cr(VI)在50 min内基本完全可被还原;此外,Cr(Ⅵ)还原去除率随过硫酸盐浓度升高而增强,在酸性条件下(pH=2.4),体系对Cr(Ⅵ)的还原效率最高,随着pH的增大,还原效率明显降低。进一步研究表明, Cl~-、HCO_3~-和NO_3~-对Cr(Ⅵ)的还原都存在抑制作用,在相同浓度下,其抑制程度分别为HCO_3~-NO_3~-Cl~-,腐殖酸也对Cr(Ⅵ)的去除存在抑制作用。紫外活化过硫酸盐/甲酸体系还原Cr(Ⅵ)过程符合零级反应动力学方程,其动力学常数为78.467μmol·(L·min)~(-1)。本研究结果为Cr(Ⅵ)废水的处理提供了一种高效的还原新技术。  相似文献   

20.
研究低电压条件下诺氟沙星(NOR)的电化学降解去除效果。结果表明:在1.3 V外加电压条件下,NOR具有较好的去除效果,在初始浓度c_0=0.09 mmol·L~(-1)时,反应70 h后,NOR去除率为90%以上;NOR的去除过程符合伪一级动力学模型。溶液pH值、腐殖酸浓度、水质条件等因素均影响NOR的电化学降解效果。中性及弱碱性条件有利于NOR的电化学去除,腐殖酸及天然水体中的有机物会抑制NOR的去除效果。在低电压条件下,NOR的矿化作用不明显,NOR的电化学降解过程中伴随着大量有机中间产物生成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号