首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为比较冬季城市和农村大气颗粒物浓度及化学组分等特征,本文分别采集分析了西安市区、安康农村冬季大气PM2.5颗粒物与PM0.1颗粒物。分析结果表明:两地大气中PM2.5日均浓度均超过国家二级标准(75 μg·m-3),空气质量不容乐观;其中农村样品中PM0.1颗粒物约占PM2.5颗粒物浓度的36.8%左右;所有颗粒物中有机碳远高于无机碳组分,而市区大气颗粒物中多环芳烃浓度显著高于农村浓度,说明城市空气中来源于机动车尾气的污染较为严重;从颗粒物粒径分布特征来看,粒径为0.300~0.374 μm颗粒物具有最高数浓度和比表面积浓度,粒径为0.374~0.465 μm的颗粒物具有最高质量浓度;由于农村污染源较为单一,安康样品颗粒物浓度受燃煤和油烟的影响较大。此外,由于受燃煤机动车排放影响,西安大气中PM0.1颗粒物中水溶性离子主要为NO3-与SO42,而安康大气PM0.1颗粒物中水溶性离子主要以SO42-与Ca2+为主, PM2.5颗粒物中水溶性离子以NO3-、SO42-和NH4+为主,这与农村环境中使用燃煤、农田灌溉、家畜喂养以及有机质降解等有关。  相似文献   

2.
成都市道路细颗粒物污染特征   总被引:1,自引:0,他引:1  
2013年9月20—28日,通过采集成都市城区道路大气环境中的PM2.5样品,分析测定了其中可溶性无机离子、碳组分和金属元素含量。结果表明,PM2.5中Fe、Mn、Ti、Si、Al等主要来源于机动车行驶产生的道路扬尘,Pb、Cu、Ni和Zn等主要来源于机动车尾气及零部件磨损;PM2.5中水溶性无机离子占道路大气环境细颗粒物的33.7%,A/C比值为0.95,表明细颗粒物偏弱碱性;机动车尾气排放的OC1、OC2、OC4和EC1等4种碳组分占道路大气环境细颗粒物碳组分的65.8%,且OC/EC比值为2.9,有二次有机碳(SOC)产生。  相似文献   

3.
为研究西安市南郊地区采暖期大气颗粒物PM2.5的污染浓度及水溶性成分,使用颗粒物采样器于2009年1月6日-2009年2月15日进行PM2.5采样。将24 h分为8个阶段,每天3 h定时采样。结果表明,西安市南郊地区采暖期PM2.5明显污染,24 h中PM2.5污染状况最严重的时段为21:00-23:59;PM2.5中NH4^+、NO3^-和SO42^-是其最主要的水溶性组分,在PM2.5中的平均质量混合比分别为10.225%、13.698%和15.650%,三者在PM2.5中质量混合比最高的时段分别为06:00-08:59、03:00-05:59和18:00-20:59。  相似文献   

4.
为明确浙江省龙游县环境中PM2.5的化学组分特征及来源,于2018年在龙游县3个代表性点位采集4个季节的环境PM2.5样品,分析了PM2.5中的无机元素、水溶性无机离子和碳组分含量,并采用化学质量平衡模型(CMB)计算了7类污染源的贡献率.结果表明:3个点位PM2.5平均质量浓度春季为39.63μg/m3、夏季为29....  相似文献   

5.
西安南郊采暖期大气颗粒物PM2.5的污染特征分析   总被引:1,自引:1,他引:0  
为研究西安市南郊地区采暖期大气颗粒物PM2.5的污染浓度及水溶性成分,使用颗粒物采样器于2009年1月6日~2009年2月15日进行PM2.5采样.将24 h分为8个阶段,每天3 h定时采样.结果表明,西安市南郊地区采暖期PM2.5明显污染,24 h中PM2.5污染状况最严重的时段为21:00~23:59;PM2.5中NH+4、NO-3和SO2-4是其最主要的水溶性组分,在PM2.5中的平均质量混合比分别为10.225%、13.698%和15.650%,三者在PM2.5中质量混合比最高的时段分别为06:00~08:59、03:00~05:59和18:00~20:59.  相似文献   

6.
2012年8月6日—22日利用大气细颗粒物水溶性组分在线监测分析系统和大气气溶胶OC/EC在线分析仪在线分析了西安PM2.5中的水溶性无机离子和OC、EC,并结合气溶胶前体物SO2、NO2和部分气象参数的监测数据进行了分析。结果表明,PM2.5中OC、EC和主要水溶性组分SO2-4、NH+4和NO-3的比重分别为:14.34%、5.35%、26.32%、12.90%和11.28%;以有机物(OM)为主要成分的总碳气溶胶(TCA)在PM2.5中的质量分数为28.30%,其中光化学反应导致OM中二次组分(SOC)高达45.30%;对主要水溶性组分之间的相关性分析发现,NO-3、SO2-4、NH+43种主要组分之间的结合形态为(NH4)2SO4和NH4NO3,对Mg2+和Ca2+的相关分析反映其有多种共同源;此外,硫氧化率(SOR)和氮氧化率(NOR)均较高,表明大气中存在较强的光化学反应。PM2.5的各组分因子分析得到4个主要来源(机动车尾气和燃煤、土壤建筑尘和生物质燃烧、二次硝酸盐气溶胶、二次硫酸盐气溶胶)。  相似文献   

7.
于2013年9月(非采暖季)、2014年2-3月(采暖季)、2014年5月(风沙季)采集忻州市3个监测点(新城区、开发区和旧城区)的PM2.5样品,分析其中的39种元素、9种水溶性离子及2种碳组分,并对PM2.5的质量浓度进行重构。结果表明,重构后的化学组分分为5类:矿物尘、微量元素、有机物、元素碳和二次粒子,其中矿物尘、二次粒子及有机物是忻州PM2.5的主要组成,分别占到ρ(PM2.5)的24.0%~36.2%、19.2%~32.6%和12.9%~25.7%;化学组成质量分数具有较明显的季节变化特征,风沙季矿物尘质量分数高于采暖季和非采暖季,采暖季有机物质量分数高于其他两季,非采暖季二次粒子质量分数略高于其他两季;化学组分的空间变化显示会展中心站点的二次粒子和矿物尘质量分数明显高于其他2个站点。应用化学质量平衡(CMB)模型进行来源解析,结果显示忻州市PM2.5的主要来源是扬尘(21%~35%)、二次粒子(25%~26%)和机动车尾气(21%~26%)。  相似文献   

8.
以北京西山森林公园为观测点,运用双通道颗粒物在线监测设备监测PM2.5质量浓度,使用离子色谱仪测定样品中水溶性离子浓度,对北京西山油松林PM2.5质量浓度及水溶性离子特征进行分析。结果表明:PM2.5质量浓度为冬季(121.29±16.78)μg·m-3 > 春季(106.06±12.68)μg·m-3 > 秋季(88.01±17.44)μg·m-3 > 夏季(72.67±12.18)μg·m-3;SO42-、Na+、NO3-、HCOO-是PM2.5中最主要的水溶性离子成分,占所测水溶性离子浓度在四季分别为94.99%、72.66%、72.66%、89.52%,PM2.5受SO42-、Na+、NO3-、NH4+影响较大,基本呈正相关关系,SO42-、Na+、NO3-、NH4+、PM2.5浓度季节变化一致,即在冬季最高,夏季最低,春秋次之,且水溶性离子季节差异显著。SO42-和NO3-、Na+、NH4+的相关性极显著(r=0.85、0.80、0.92),NO3-和Na+、NH4+之间关系也较大(r=0.87、0.66),Ca2+和Mg2+相关性极明显(r=0.98),其他水溶性离子间无明显的相关性,固定源和海洋源对水溶性离子贡献程度呈现出季节差异,秋季机动车尾气排放对空气硫和氮污染贡献达最高,春季最低,夏秋季海洋源对Cl-影响明显。通过对森林植被区PM2.5、水溶性离子特征及关系进行分析,更好地发挥植被的生态效益,提高空气质量。  相似文献   

9.
2014年7月-2015年5月典型季节期间在重庆城区选择典型站点开展PM2.5样品采集,并测量质量浓度,分析样品中水溶性离子、无机元素、OC和EC等组分,在此基础上对组分化学组成进行了质量重构。结果表明:观测期间PM2.5年均值为76.4 μg·m-3,浓度季节变化为冬季 > 秋季 > 春季 > 夏季;组分方面,以二次转化为主的SO42-、NH4+、NO3-和OC是PM2.5组分中最主要成分,OC/EC比值4个季度均大于2,表明城区二次有机碳生成显著;硫氧化率(SOR)分析,气态污染物SO2的二次转化效率较高,大气存在明显的二次转化过程。PM2.5质量重构后主要组成为有机气溶胶(OM)、二次无机离子(SNA)和矿物尘,重庆城区应协同控制一次排放的颗粒物和气态污染物SO2和NOx,从而控制二次组分浓度。  相似文献   

10.
基于MOVES的轻型车颗粒物排放来源和特征分析   总被引:1,自引:0,他引:1  
利用实测数据对MOVES模型进行本地化修正,测算了轻型车颗粒物的排放来源以及粒径、组分构成特征。分析结果表明,全部颗粒物中,轻型汽油车的非尾气排放PM10所占比例为72.70%,PM2.5为42.64%;轻型柴油车非尾气排放PM10所占比例为40.78%,PM2.5为15.41%。2种燃油车辆的尾气排放颗粒物主要来源于尾气管排放,粒径集中在0~2.5 μm;而非尾气排放颗粒物主要来源于刹车磨损,粒径集中在2.5~10 μm。轻型汽油车的尾气排放颗粒物主要组分为有机碳,轻型柴油车则为元素碳和有机碳。进一步分析不同速度下颗粒物排放变化发现:轻型车非尾气排放颗粒物随行驶速度的增大而降低,而尾气排放颗粒物则随速度的增大先降低后升高;非尾气排放颗粒物占全部颗粒物比例随速度的增大先升高再降低;全部颗粒物中PM2.5的比例则随速度的增大先降低后升高。  相似文献   

11.
宁波市大气可吸入颗粒物PM1o和PM2.5的源解析研究   总被引:2,自引:0,他引:2  
在宁波市布设4个代表性点位,于2010年春季、夏季和冬季进行大气PM10和PM2.s的采样,同时采集了多种颗粒物源样品,建立了PM10、PM2.5和源样品的化学成分谱.采用化学质量平衡模型(CMB)对宁波市PM10、PM2.5进行源解析.结果表明,城市扬尘、煤烟尘、机动车尾气尘是宁波市PM10、PM2.5的3大污染源,...  相似文献   

12.
以大流量采样器采样为例,通过多个采样器应用不同滤膜多周期现场采样、滤膜的孔隙结构与组成分析以及不同采样介质背景下PM2.5组成分析,研究了不同滤膜对PM2.5浓度测定和组分分析的影响。结果表明:聚四氟乙烯(PTFE)滤膜和玻璃纤维滤膜、石英滤膜对于PM2.5浓度值的测定一致性很好,但PTFE滤膜的测定含量较玻璃纤维滤膜和石英滤膜略低;其原因与滤膜的微观结构和颗粒物在滤膜上的聚集状态有关;空白滤膜的背景值差异影响PM2.5中化学组分浓度的测定。  相似文献   

13.
浙东沿海城市大气颗粒物污染特征及来源解析研究   总被引:5,自引:0,他引:5  
对2009年夏季浙东沿海地区环境空气质量进行监测,监测大气颗粒物(TSP、PM10、PM2.5、PM1.0)浓度,分析颗粒物污染特征、水溶性离子及无机元素组成,运用化学质量平衡受体模型(CMB模型)对浙东沿海地区大气TSP来源进行解析.结果表明,浙东沿海地区的大气颗粒物主要以细颗粒物为主,颗粒物中主要的水溶性离子为SO2-4、NH+4、Ca2+,土壤尘是该地区大气TSP的主要来源,北仑、乐清和奉化TSP中土壤尘的分担率分别达到55.49%、42.52%、40.70%,各监测点TSP来源具有一定的地域特征.  相似文献   

14.
西安采暖期PM2.5及其水溶性无机离子的时段分布特征   总被引:2,自引:0,他引:2  
为了探讨西安市采暖期大气颗粒物PM2.5及其水溶性无机成分的污染水平,于2010年1月4日—2月1日按一天8个时段(每个时段3 h)连续采集PM2.5样品四周,每周更换一次滤膜。结果显示,西安市采暖期PM2.5的质量浓度时段差异较大,呈现明显的双峰分布特征:21:00—24:00时段(147.516μg/m3)和09:00—12:00时段(141.678μg/m3)。4种被测水溶性无机组分总浓度为39.801μg/m3,占PM2.5总浓度的30.5%。SO24-和NO3-是最主要组分,占到4种无机组分的86.2%。各离子间相关分析显示,Cl-只与NO3-有较强的相关性,表明机动车尾气对Cl-有较大的贡献。SO24-和NO3-时段分布规律较为相似,与PM2.5浓度的时段分布特征相反:在PM2.5污染最轻的15:00—18:00时段,SO24-和NO3-的相对含量达到一天中的最高浓度时段,而在PM2.5双峰时段,它们的含量有所降低。  相似文献   

15.
西安市冬、夏两季PM2.5中碳气溶胶的污染特征分析   总被引:5,自引:0,他引:5  
为研究西安市冬、夏两季大气颗粒物PM2.5中碳组分的污染变化规律,利用TEOM系列RP1400a采样仪于2010年冬季和夏季进行采样,测定了样品中的有机碳(OC)、无机碳(EC)和水溶性有机碳(WSOA)的含量。结果显示,PM2.5中OC和EC的季节平均浓度值冬季较高,分别是夏季的2.62,1.75倍,这表明西安市冬季碳气溶胶污染严重。OC和EC日变化在不同季节均呈现双峰分布特征,这主要是由交通源的排放和不利的气象条件造成的。OC和EC在冬、夏两季都有较强的相关性(R2分别为0.823和0.543),且OC/EC平均值分别为5.36和3.58,均大于2,表明采样各时段有二次有机碳(SOC)生成。  相似文献   

16.
张永勇  贾瑛  李明  侯立安 《环境工程学报》2017,11(12):6366-6371
为掌握室内外细颗粒物(PM2.5)污染特性,监测采集西安市某办公场所室内外PM2.5样品,统计分析PM2.5质量浓度特征,探究室内外PM2.5相关性、微观形貌以及矿物组成的差异。结果表明:室内外PM2.5年均质量浓度分别为85.32和109.83 μg·m-3,冬季污染尤为严重。室内PM2.5受室外PM2.5影响显著,室内外PM2.5质量浓度的相关系数为0.890 0。室内PM2.5多为粒径小于1 μm的球状颗粒物,而室外颗粒物形状、大小不规则,室内外PM2.5均含有大量的碳、氧元素,其他元素的种类和含量存在一定差异。室内PM2.5中矿物多为非晶态物质,室外PM2.5主要由石英、赤铁矿和碳酸钙等矿物质组成。  相似文献   

17.
重庆市春季大气颗粒物浓度的对比监测分析   总被引:2,自引:1,他引:1  
通过2012年春季在重庆大气超级站进行的PM10和PM2.5手工采样与自动仪器的对比监测,分析了自动监测与手工监测的一致性及造成偏差的原因,并对PM2.5与PM10浓度的比值关系进行了分析。结果表明:MP101M型颗粒物自动监测仪用于监测PM10时系统性误差偏高,仪器初始精密度存在负偏差;用于监测PM2.5时系统性误差在允许范围之内,仪器初始精密度存在较大负偏差;PM10和PM2.5的手工采样和自动仪器监测值之变化趋势具有非常高的一致性;PM2.5与PM10浓度比值范围在56.5%~90.4%,平均比值为(73.8±7.4)%。  相似文献   

18.
为探讨济南市大气PM_(2.5)主要化学组分和污染特征,2017年在济南市开展了PM_(2.5)样品采集工作,分析了PM_(2.5)中有机碳(OC)、元素碳(EC)和水溶性离子浓度水平。结果表明:采样期间济南市PM_(2.5)中OC、EC年均质量浓度分别为9.10、2.68μg/m~3,全年OC与EC质量浓度的比值为3.4,二次有机碳污染严重;OC、EC季节分布特征明显,均为冬季浓度最高,且秋、冬季两者相关系数较高,表明秋季和冬季OC、EC来源较为一致。NO_3~-、SO_4~(2-)、NH_4~+年均质量浓度之和为34.29μg/m~3,占水溶性离子总量的88.9%,是济南市PM_(2.5)中最重要的组分;各水溶性离子浓度具有明显的季节变化特征,NO_3~-、SO_4~(2-)、NH_4~+、Cl~-和K~+均冬季浓度最高,而Ca~(2+)春季浓度最高;PM_(2.5)中NO_3~-与SO_4~(2-)质量浓度的比值为1.10,说明相比于固定污染源,移动污染源对济南市PM_(2.5)影响更大。  相似文献   

19.
在乌鲁木齐市南、北设置2个采样点,从2011年3-12月采集可吸入颗粒物(PM2.5、PM2.5-10)样品,分析了美国环境保护署优控的13种多环芳烃(PAHs)的浓度,采用比值法、主成分分析法和多元线性回归法对乌鲁木齐市大气PM2.5、PM2.5-10中PAHs的来源进行了分析。结果表明,科学院站PM2.5中13种PAHs的总质量浓度平均值为247.2ng/m3,变动范围为1.14~2 113.33ng/m3;新大站PAHs的总质量浓度平均值为240.84ng/m3,变动范围为4.96~1 359.41ng/m3。而科学院站PM2.5-10中13种PAHs的总质量浓度平均值为57.78ng/m3,变动范围为1.18~519.87ng/m3;新大站的总质量浓度平均值为49.18ng/m3,变动范围为1.38~412.52ng/m3。比值法分析结果表明,所采集样品的2/3来自煤和生物质的燃烧排放;主成分分析法和多元线性回归分析法结果表明,采暖期汽油和煤源对PM2.5中总PAHs的贡献率为46%,而非采暖期混合源的贡献率高达85%。采暖期汽油和柴油源对PM2.5-10中总PAHs的贡献率为66%,而非采暖期混合源的贡献率为78%。  相似文献   

20.
为掌握潍坊市PM2.5的主要来源、各排放源对PM2.5的贡献与内陆、沿海城市的差别,采集了潍坊市2017年不同季节环境受体中PM2.5样品和源样品,分析了样品中的化学组分,建立了源成分谱和受体组分数据库,基于复合受体模型和源排放量等对潍坊市PM2.5进行了来源解析。结果表明:(1)PM2.5和化学组分浓度总体表现为秋冬季较高、春夏季较低。(2)潍坊市源解析结果总体介于沿海城市和内陆城市之间。(3)精细化源解析表明:煤烟尘是首要的贡献源类,其分担率达到36.0%,其中电厂、工业、民用燃煤的分担率分别为14.4%、18.0%和3.6%;机动车尘的分担率达到25.4%,其中载客、载货、其他汽车的分担率分别为6.3%、14.0%和5.1%;扬尘中土壤风沙尘、建筑水泥尘的分担率分别为10.1%和11.7%;工艺过程的贡献相对较低(3.9%)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号