首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 0 毫秒
1.
以城市污水为水源,进行了污泥转移SBR工艺的除磷机制研究.实验结果表明,通过污泥转移方式实现在生物选择器中强化对聚磷菌的筛选,从而显著提升了传统SBR工艺的除磷性能.污泥转移量对系统释磷性能影响显著,污泥转移量为30%条件下活性污泥PHB(poly-β-hydroxybutyric acid)含量达到细胞干重的24.3%,生物选择器中厌氧释磷与污泥中PHB合成呈现良好的正相关性.污泥转移量分别为15%、30%和40%下生物选择器中的平均释磷速率分别为7.00、11.17、8.83 mg TP·(g MLSS·h)-1.通过物料衡算表明,系统中传统PAO除磷机制起主要作用,并存在较弱的反硝化除磷过程.在污泥转移量30%、泥龄10 d条件下,传统PAO(Phosphorus accumulating organisms)代谢模式除磷量占76.81%,同化除磷量占15.43%,反硝化除磷量占7.76%.  相似文献   

2.
序批式生物膜法同步除磷脱氮特性研究   总被引:6,自引:0,他引:6  
对淹没序批式生物膜法去除有机物和磷及同步部分脱氮的特性进行了研究。其适合的载体装填密度为30%,水力停留时间为9h,其中厌氧3h,好氧6h,进水COD负荷从0.27kg/(m^3.d)到1.32kg/(m^3.d)均可使除磷率达90%以上,脱氮率达50%-60%。淹没式生物膜法除磷脱氮工艺中的优势菌属为假单胞菌属,其次依顺序为气单胞菌属,芽孢杆菌属,微球菌属,硝化矸菌属,生物膜具有生物量大(MLVSS达5531.7mg/L),脱落污泥含磷量高(达5.67%),沉降性好(SVI为101.7)的特点,污泥产率为0.1996kg干泥/kgCOD。  相似文献   

3.
污泥转移序批式间歇活性污泥法(SBR)工艺除磷特性   总被引:2,自引:0,他引:2  
污泥转移序批式间歇活性污泥法(SBR)工艺是由连续运行的生物选择器和数个并联的SBR主反应器构成的,通过污泥回流的方式提高了SBR反应阶段的活性污泥量并削减了沉淀阶段的污泥总量,从而强化其除污能力,并提高其容积利用率.新工艺处理城市生活污水的试验结果表明,污泥转移量对系统除磷影响显著;当污泥转移量为0、15%和30%时系统出水总磷的平均去除率分别为16.5%、74%和93%;生物选择器中厌氧释磷量与污泥中PHB(聚-β-羟基丁酸)含量呈现良好的正相关性.在适宜的运行模式下,SBR充水比45%、污泥龄10 d、污泥转移量30%,系统对总磷的平均去除率能达到93%以上,出水总磷浓度可控制在0.30 mg.L-1以下,且其它出水各项水质指标均能达到国家排放标准的要求.  相似文献   

4.
采用SBR工艺对广州地区城市污水进行了生物脱氮除磷实验研究。结果表明:在碳、氮、磷比例不合理的情况下,达到了既去除有机物又能脱氮除磷的效果。总停留时间控制在4.5~5.5h,污泥负荷为0.14~0.26kg BOD5/(kgMLSS·d)时,出水BOD5浓度在5.12~13.62mg/L,去除率达85%~93%;出水COD浓度在10.7~32.2mg/L,去除率达82%~88%;出水NH4—N浓度在2.83~9.83mg/L,去除率达53%~87%;出水TP浓度在0.1~0.45mg/L,去除率达85%~'99%。  相似文献   

5.
膜生物反应器脱氮除磷工艺的研究进展   总被引:17,自引:0,他引:17  
膜生物反应器是近年新发展起来的高效污水处理工艺,文章重点介绍了膜生物反应器的脱氮除磷工艺;单一反应器间歇曝气膜生物反应器工艺和A/O形式的膜生物反应器工艺。总结了国内外研究的工艺特点、技术参数和处理效果。分析了技术参数,运行方式对处理效果的影响,提出了今后研究方向和应用前景。  相似文献   

6.
考察了不同进水有机物浓度下厌氧/好氧序批式移动床生物膜反应器(SBMBBR)污染物去除特性,实验结果表明,SBMBBR能够实现低碳源污水中氮和磷的同步去除,在进水TN和TP浓度分别为116.7 mg.L-1和11.5 mg.L-1、COD浓度为456 mg.L-1的条件下,TN和TP去除率分别达到94.3%和92.2%以上.反应器除磷是基于常规生物除磷和反硝化除磷过程实现的,脱氮主要是基于好氧段发生的同时硝化反硝化(SND)作用而完成.由于生物膜内部存在的DO扩散梯度,在好氧阶段混合液DO浓度不断提高的条件下反应器内具有良好SND反应的发生.进水COD浓度由149 mg.L-1提高至456 mg.L-1的过程中,反应器硝化效果不变,反硝化和除磷效果改善.反应器在好氧阶段pH值基本维持在7.0—7.1之间,为各类菌群的生长创造了条件.碱度变化较pH值更能反映硝化和反硝化反应发生的程度.反应器中微生物相丰富,生物膜以丝状菌为骨架,其上附着大量的球状菌和杆状菌,而悬浮活性污泥中丝状菌较少,形成了由细菌、真菌到原生动物和后生动物的复杂的生态体系,为系统取得稳定的污水处理效果提供了有效的保证.  相似文献   

7.
本文在软性填料序批式生物膜法同步脱氮除磷工艺探讨研究的基础上,再加一缺氧段,以进行反硝化,进一步提高脱氮效率,并对内源脱氮及不同添加比时的外源脱氮进行了比较,确定了该法脱氮除磷的最佳工艺及相应的工艺参数。  相似文献   

8.
针对粉末状吸附剂易于流失、难以固液分离的现状,模拟研究了铝污泥、固定化菌、固定化藻/铝污泥、固定化菌-藻/铝污泥对污水的脱氮除磷效果。结果表明,藻粉与铝污泥的复合使吸附剂比表面积增加,可为氮磷提供更多的吸附点位;藻/铝污泥(体积比1∶10)、藻/铝污泥(1∶5)和藻/铝污泥(1∶2)吸附剂对磷最大的吸附量分别为8.45、10.06和6.68 mg·g-1,是普通铝污泥的2.41、2.87和1.91倍。固定化菌-藻/铝污泥(1∶5)对污水的处理效果优于铝污泥、固定化菌和固定化藻/铝污泥(1∶5),对CODCr、TP、NH3-N和TN的去除率分别为80.35%、91.88%、90.92%和92.51%。固定化菌-藻/铝污泥(1∶5)吸附剂对磷的去除主要取决于铝污泥与磷酸盐之间的离子交换作用与静电作用,固定化胶球的传质性可为细菌同步硝化反硝化提供优良条件。  相似文献   

9.
吴春英 《环境化学》2013,(9):1674-1679
采用模拟生活污水,在相同的运行条件下,对比研究了膜-生物反应器(MBR)与序批式活性污泥法(SBR)对10种典型药品和个人护理品(PPCPs)的去除效果.研究结果表明,两种反应器对不同目标物PPCPs的去除效果存在一定的差异:MBR和SBR对甲氧苄氨嘧啶(TRM)和红霉素(ERY)的去除无明显差别;苏必利(SLP)和卡马西平(CBZ)在两反应器中均不能得到有效去除;但对于其他目标物,尤其是咖啡因(CAF)、酮洛芬(KTP)、避蚊胺(DEET),MBR的去除率明显高于SBR.总体上,MBR在出水的安全性和稳定性上存在着一定的优势.  相似文献   

10.
厌氧除磷同步脱氮及影响因素研究   总被引:1,自引:0,他引:1  
采用鸡粪污泥为种泥,在厌氧混合连续流反应装置内进行厌氧还原磷产生磷化氧功能菌的富集,进行硝酸盐、硫酸盐、不同碳源和氮源条件下厌氧除磷效率的研究,并考察磷化氧的生成与硝酸、总磷、氨氮去除的关系.结果表明,(1)SO_4~(2-)-S适宜的投加量为26 mg·L~(-1),不投加NO_3~--N.水中含有氧化态的无机物在厌氧条件下与磷争夺[H]导致厌氧除磷的效率下降.(2)合适的碳源为葡萄糖1 000 mg·L~(-1),纤维素不适合作为碳源,合适的氮源为蛋白胨500 mg·L~(-1),水中含有的还原糖和有机氮源促进磷化氧的生成.(3)pH值控制在6.5~7.0的范围,最适宜的生长温度在35℃左右.(4)氨氮的去除率随着总磷的去除率而增加,在厌氧条件下可达到同时脱氮除磷的效果.磷的去除由厌氧除磷菌还原磷生成磷化氧完成,氨氮由生成氮气或生成蛋白质来去除.  相似文献   

11.
本文主要研究了不同pH值对SBR工艺污泥膨胀和微生物结构的影响,试验进水pH值为5.0—10.0.实验结果表明,在试验初期,污泥容积指数(SVI)值无明显变化.但随着时间的增长,在pH值为5.0和6.0时,开始出现污泥膨胀.在不同pH下提取总细菌的DNA组进行PCR扩增,分析总细菌的Shannon多样性指数,对微生物群落的部分优势总细菌进行克隆测序和系统发育树分析.结果表明,在不同pH条件下微生物结构以及数量有所区别,在酸性条件下以丝状菌为主,易发生污泥膨胀;而在中性和偏碱性条件下以菌胶团为主,污泥活性较为稳定.  相似文献   

12.
曾苏  赵珏  傅大放 《环境化学》2002,21(6):576-580
通过接种硝基苯降解菌于厌氧序批式反应器(ASBR),研究静态试验条件下和厌氧序批式工艺对硝基苯的降解规律,研究表明,应用生物强化技术处理硝基苯废水,具有很高的处理效率。  相似文献   

13.
考察了序批式好氧生物反应器(SBR)中,重金属铬离子对溶解性微生物产物(SMP)总量、分子量分布及其组成中多聚糖、蛋白质和DNA含量的影响.铬离子的生物容许浓度在2mg·l-1之下,SMP总量与铬离子浓度存在指数关系:SMP=24.94e0.593C.SMP的分子量呈双峰分布,且分子量小于1kDa的部分基本上占50%以上.SMP中的DNA含量随铬离子浓度的增加而降低,在显著水平α=0.05时,DNA含量与铬离子浓度呈线性相关.  相似文献   

14.
同步硝化反硝化(simultaneous nitrification and denitrification,SND)是一种节能型废水处理工艺,但C/N对SBR系统SND及活性污泥微生物种群的影响机理尚不清楚.本试验以人工模拟废水为研究对象,采用4组不同碳氮比(C/N)系统(R0、R5、R10和R15)对比分析了C/N...  相似文献   

15.
研究磷酸铵镁(MAP)沉淀法与超声波技术相联合处理高浓度畜禽废水的最佳反应条件.结果表明,MAP沉淀法在pH值9.5、n(Mg2+):n(NH+4)∶n(PO43-)=1.2∶1∶1、反应时间10 min时脱氮除磷效果最佳,氨氮去除率为95.10%,磷酸盐去除率为97.40%.MAP沉淀与超声波辐照联合处理最佳条件下,同时增加曝气(流量为200L·h-1),6h时氨氮去除率可提高到98%.  相似文献   

16.
A2/O工艺强化反硝化除磷体系中微生物特性分析   总被引:1,自引:0,他引:1  
为了更直观地认识反硝化除磷体系中生物脱氮除磷机理及运行状态,本文尝试了对A2/O工艺强化反硝化除磷体系在稳定运行期的活性污泥采取直接染色的手段,观察聚-β羟基丁酸(PHB)和聚磷酸盐(Poly-P)的沿程变化状况,同时结合活性污泥的电镜扫描图像,考察该系统的微生物菌群特征.试验结果表明,在厌氧阶段,微生物细胞内PHB的量大幅提高,上清液中磷酸盐的含量上升,聚磷酸盐含量明显下降,粒径为1~1.5μm、呈球状和棒状的菌群构成的葡萄状细胞簇占居优势;在缺氧阶段,微生物细胞内PHB的量下降,上清液中磷酸盐含量下降,聚磷酸盐含量上升,粒径为0.5~1μm的椭球菌与1.0~1.5μm的球杆菌占优势;在好氧阶段,微生物细胞内PHB的量较低或接近零,上清液中磷酸盐的含量接近零,聚磷酸盐含量明显上升,此时粒径1.0~1.5μm的球菌以单个或成对出现,球菌不再饱满,呈现接近消失的状态.相比之下,单纯的脱氮系统则不存在上述微生物特性的变化.图8参12  相似文献   

17.
针对膜生物反应器(MBR)较长的污泥龄导致磷的处理效果差的问题,采用铁盐强化除磷,向反应器中投加n(Fe)/n(P)=2.0的Fe Cl3·6H2O,系统考察膜生物反应器对氮、有机物及磷的去除效果,重点考察膜生物反应器投加铁盐前后运行性能、活性污泥菌群及膜污染速率变化情况.结果显示,在氮、有机物去除方面,投加前后没有发生明显的变化,去除率始终保持在90%左右.在磷去除方面,投加前磷的平均去除率为52%,投加后去除率提高了近40%,去除效果显著提升.实验进一步研究了加入三价铁盐前后对活性污泥优势菌群和生物除磷的影响.铁盐的投加降低了活性污泥菌群多样性及部分已知聚磷菌的相对丰度,对生物除磷造成一定的负面影响.在膜污染方面,通过跨膜压差(TMP)记录分析此浓度的铁盐并没有导致膜生物反应器膜组件膜污染的加剧.本研究表明,该浓度(n(Fe)/n(P)=2.0)的铁盐进入膜生物反应器会对体系内活性污泥聚磷菌的相对丰度及生物除磷效率造成一定程度上的降低,但对膜污染没有明显影响,可以使出水各项指标尤其是磷的尾水排放浓度达标.  相似文献   

18.
采用厌氧折流板反应器(ABR)处理柠檬黄模拟废水,研究在不同水力停留时间(HRT)下,ABR对柠檬黄及COD的去除效果,实验结果表明,HRT为30 h时,柠檬黄经ABR厌氧处理后的去除率达96.4%,COD去除率达97.9%.同时利用红外光谱、UV-Vis、离子色谱分析柠檬黄的降解产物.从红外光谱和UV-Vis分析得出,柠檬黄经ABR厌氧处理后偶氮键断裂,生成的芳香胺类化合物被进一步降解为含苯环、含萘环的化合物;离子色谱定性分析得出柠檬黄分子中的磺酸基转化成了硫酸根.  相似文献   

19.
该文研究了厌氧条件下奥奈达希瓦氏菌(Shewanella oneidensis)MR-1对氟西汀的降解性能,并从转录组学分析遗传分子代谢机制。结果表明,Shewanella oneidensis MR-1在厌氧条件下可有效降解体系中93.12%的氟西汀,降解速率达0.94 mg·L-1·h-1。采用Illumina高通量测序平台对降解氟西汀后的细菌与对照组细菌进行测序,通过基因本体数据库(GO)和京都基因与基因组百科全书数据库(KEGG)富集分析,结合筛选的高表达高上调的差异表达基因,得到了耐受和降解氟西汀的功能基因,其中包膜应激反应膜蛋白基因、ABC转运蛋白基因、噬菌体休克蛋白PspA基因、氧化应激防御蛋白基因等在Shewanella oneidensis MR-1对环境的耐受中起重要作用;细胞色素C基因、硝基还原酶NfsB基因、乳酸利用蛋白基因等在氟西汀的降解转化中起关键作用。该研究从转录组水平分析了氟西汀的降解机制,可为Shewanella oneidensis MR-1在环境修复中的应用提供参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号