首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
水溶性无机离子是PM_(2.5)的主要组分之一,对研究PM_(2.5)的物理化学性质,来源及其形成机理具有重要意义.本研究于2017年9月—2017年11月期间在贵阳城区采集了80个PM_(2.5)样品,并测定了8种水溶性离子浓度,探讨贵阳秋季PM_(2.5)水溶性离子组成特征及来源.结果表明贵阳秋季PM_(2.5)中无机离子的平均质量浓度为15.99μg·m~(-3),阴离子和阳离子的平均质量浓度分别为10. 90μg·m~(-3)、5. 09μg·m~(-3); SO_4~(2-)(8. 53±4.63μg·m~(-3))平均质量浓度最高,其次是NH_4~+(2.56±1.62μg·m~(-3))、NO_3~-(2.21±2.96μg·m~(-3))、Ca~(2+)(1.98±0.88μg·m~(-3)),最后依次是K~+(0.37±0.24μg·m~(-3))、Cl-(0.16±0.11μg·m~(-3))、Mg~(2+)(0.11±0.03μg·m~(-3))、Na~+(0.07±0.06μg·m~(-3)); NH_4~+、SO_4~(2-)、NO_3~-是主要水溶性离子,所占比例为83%; NO_3~-/SO_4~(2-)值平均为0.21±0.12,远小于1,说明贵阳秋季PM_(2.5)以固定源污染为主.相关性分析表明,PM_(2.5)中NH_4~+主要以(NH_4)_2SO_4、NH_4HSO_4、NH_4NO_3的形式存在,Ca~(2+)与Mg~(2+)来源可能相同.结合富集系数分析NO_3~-、SO_4~(2-)、Ca~(2+)、K~+、Mg~(2+)基本都是来源于陆源贡献,NO_3~-、SO_4~(2-)是人为源,Ca~(2+)、K~+、Mg~(2+)是地壳源,此外Mg~(2+)还有一部分海源贡献.  相似文献   

2.
为探究太原市采暖季PM_(2.5)水溶性无机离子组成及其来源,于2017年11月至2018年3月在太原城区连续采集大气颗粒物PM_(2.5)样品共151个,并于离子色谱仪中分析样品的9种水溶性无机离子(F~-、Cl~-、NO_3~-、SO_4~(2-)、K~+、Na~+、Ca~(2+)、Mg~(2+)、NH_4~+).结果表明,太原市采暖季PM_(2.5)质量浓度的平均值为77.89±47.16μg·m~(-3),总水溶性无机离子质量浓度平均值为53.21±29.76μg·m~(-3),占PM_(2.5)的68.3%±23.3%,其中SO_4~(2-)、NO_3~-和NH_4~+是PM_(2.5)中最主要的离子成分,NH_4~+在PM_(2.5)中主要以NH_4NO_3、(NH_4)_2SO_4与NH_4Cl等形式存在,NH_4~+、NO_3~-、K~+、SO_4~(2-)和Cl~-等5种离子的爆发性增长对灰霾天污染贡献最大.随着气温回升,硫氧化率和氮氧化率均有一定程度的升高,大气中存在明显的气溶胶二次转化过程.主成分分析表明,燃煤源和二次污染源是太原市采暖季灰霾期间的主要污染源,土壤扬尘为清洁天的首要污染源,大气污染以固定污染源为主,移动污染源为辅.后向轨迹模型显示,采暖季期间气团基本上来自本地和西北方向的内陆排放源.  相似文献   

3.
为全面了解南方典型工业城市郴州市的大气细颗粒物(PM_(2.5))中水溶性离子污染特征及其来源,本研究利用离子色谱对从2016年4月到2017年1月间郴州市6个采样点的PM_(2.5)样品中的9种水溶性离子(SO_4~(2-)、NH_4~+、NO_3~-、Ca~(2+)、Cl~-、Na~+、K~+、F~-、Mg~(2+))进行分析.研究表明:郴州市的PM_(2.5)浓度范围为23. 3—66.5μg·m~(-3),呈现秋冬高,春夏低的特点.研究区域的水溶性离子质量浓度的变化趋势与PM_(2.5)变化趋势相类似; NO_3~-、SO_4~(2-)、NH_4~+和K~+与PM_(2.5)相关性较好,其中SNA(SO_4~(2-)、NH_4~+、NO_3~-)占PM_(2.5)的比重最高,为18.9%—40.2%.SNA三角图解表明NH_4~+的主要存在形式为(NH_4)_2SO_4,AE/CE均小于1,因此研究区域的PM_(2.5)呈碱性.通过主成分分析可知研究区域的水溶性离子污染来源主要为燃煤、交通、生物质燃烧等燃烧综合源,[NO_3~-]/[SO_4~(2-)]证明该区域的大气污染属于煤烟型污染.  相似文献   

4.
为系统反映太原市春季PM_(2.5)中无机水溶性离子的特征,采用在线气体/气溶胶监测仪(Marga)分析了太原市2016年3月1日至5月31日期间PM_(2.5)中无机水溶性离子的变化情况,研究表明二次离子(SO_4~(2-)、NO_3~-、NH_4~+)是无机水溶性离子的主要组成部分,它们在监测期间的均值分别为13.7μg·m~(-3)、14.7μg·m~(-3)以及10.4μg·m~(-3),整个观测期间三者的浓度之和(SNA)占总无机水溶性离子值的百分数为81.0%,占PM_(2.5)百分数为68.5%.三者浓度的日变化特征均呈单峰的形式存在,NO_3~-变化略有不同.热力学研究表明,由于NH_4NO_3分解平衡常数(Ke)与观测期间NH_3与HNO_3的浓度积(Km)的不同,导致了不同监测期间NO-3浓度变化不一致.观测期间硫氧化率(SOR)和氮氧化率(NOR)的值都大于0.1,说明太原市大气气溶胶中硫酸盐和硝酸盐主要都是经过转化形成的二次污染物.在典型空气污染过程中,SO_4~(2-)、NO_3~-、NH+4与能见度、相对湿度的变化有很好的对应关系,说明太原市低能见度与二次离子的生成有关.  相似文献   

5.
桂林市大气降水的化学组成特征及来源分析   总被引:5,自引:0,他引:5  
为揭示桂林市大气降水的组成成分变化特征和来源,于2015年1—12月期间采集了桂林市大气降水样品,分析其中pH、电导率、主要阴阳离子(K~+、Na~+、Ca~(2+)、Mg~(2+)、NH_4~+、SO_4~(2-)、NO_3~-、F~-、Cl~-)及重金属元素(As、Cr、Hg、Zn、Cu、Pb)浓度的季节变化特征及湿沉降通量.研究结果显示,桂林市大气降水pH值分布范围介于4.13—7.37之间,其中pH值小于酸雨临界值5.6的占48.0%,表明桂林市降雨存在一定的酸化现象.电导率(EC)变化介于4.53—128.10μS·cm~(-1)之间,雨量加权平均值为16.44μS·cm~(-1).阴离子以SO24-和NO3-为主,雨量加权平均含量分别为94.50μeq·L~(-1)、30.48μeq·L~(-1),占阴离子总量的65.28%和21.06%,其次为Cl-,阳离子以Ca2+为主,雨量加权平均含量为97.67μeq·L~(-1),占阳离子总量的58.76%,其次为NH_4~+,占阳离子总量的/NO_3~-平均值为2.45,大气降水属于硫酸-硝酸混合型,具有逐步向硝酸型转变的趋势.阴阳离子三角图和pearson相关性分析表明,Ca~(2+)和Mg~(2+)主要来自地壳源和人为源,Ca~(2+)对致酸阴离子NO_3~-、SO_4~(2-)的中和作用大于NH_4~+,桂林降水中可能存在以CaSO_4和Ca(NO_3)_2为主的化学物质,Na+主要来源于海洋输送,K~+则来源于人类活动.溶解态重金属元素的平均浓度为127.4μg·L~(-1)(0.349—443.8μg·L~(-1)),重金属湿沉降通量平均值为12.193 mg·(m~2·a)~(-1),其中Zn、Cu的年沉降通量较高,分别占总沉降通量的59.72%和28.80%.  相似文献   

6.
大气细颗粒物PM_(2.5)是危害人体健康和环境最主要的空气污染物之一,对其水溶性离子的研究是一项非常必要而迫切的工作。文章对乌鲁木齐市中心区域树木年轮实验室和黑山头2013年1月-2014年2月期间采集的大气细颗粒物样品,利用离子色谱仪分析了其中的水溶性离子分布特征,采用硫转化率(SOR)、离子相关性分析等分析其可能来源,结果表明:年轮室和黑山头PM_(2.5)中总离子浓度平均值分别为88.03和65.11μg·m~(-3),分别占PM_(2.5)质量浓度的51.21%和33.8%。年轮室各种离子的季节变化明显:SO_4~(2-)、NO_3~-、Cl~-和NH_4~+表现为冬季秋季春季夏季,Na~+表现为冬季秋季夏季春季,Ca~(2+)表现为秋季夏季春季冬季。SO_4~(2-)、NO_3~-和NH_4~+是PM_(2.5)中主要的离子,(NH_4)_2SO_4、NH_4HSO_4和NH_4NO_3是乌鲁木齐PM_(2.5)中水溶性组分的可能结合方式。Cl~-和K~+主要来源于化石燃料和生物质的燃烧排放,Ca~(2+)和Mg~(2+)主要来自土壤、二次扬尘和燃煤。乌鲁木齐大气PM_(2.5)中ρ(NO_3~-)/ρ(SO_4~(2-))为0.40,说明目前固定排放源仍然是乌鲁木齐大气污染物的主要来源。本研究为更深入了解乌鲁木齐市颗粒物污染现状提供参考,同时为确定乌鲁木齐市大气污染治理重点、制定大气污染防治规划提供依据。  相似文献   

7.
为了评价清洁能源政策对济南市采暖季PM_(2.5)质量浓度及PM_(2.5)中水溶性离子的影响,于2016年11月—2017年3月(2016年采暖季)和2017年11月—2018年3月(2017年采暖季)济南市区清洁能源政策实施前后两个采暖季分别采集PM_(2.5)样品,采用离子色谱法得到了PM_(2.5)中的8种水溶性无机离子(F~-、Cl~-、NO_3~-、SO_4~(2-)、Na~+、K~+、Ca~(2+)、NH_4~+)的质量浓度,并对PM_(2.5)不同污染等级水溶性离子进行了变化分析。结果表明:(1)采用清洁能源后,济南市采暖季的污染等级从轻度污染变为良,PM_(2.5)日均质量浓度从98.34μg·m~(-3)降到83.48μg·m~(-3),达标率上升了15.42%;(2)8种水溶性离子的总质量浓度从90.78μg·m~(-3)降到了67.72μg·m~(-3),对比两年采暖季各离子的质量浓度发现,实施后除污染天K+和Na+的质量浓度有所增长外,其余离子质量浓度均比清洁能源使用前要低;(3)NO_3~-、SO_4~(2-)、NH_4~+(SNA)在水溶性离子中占比最高,能源政策实施后,SNA的质量浓度降低了12.32%-31.71%;实施后SO_4~(2-)的占比降低,NO_3~-占比升高,NO_3~-是最主要的二次污染离子;(4)两年采暖季的硫氧化率SOR、氮氧化率NOR值均大于0.1,说明NO_3~-、SO_4~(2-)主要来自于大气中NO_2和SO_2的二次转化,随着污染等级的升高,SOR和NOR基本呈现上升的趋势,尤其是在重度污染下,由于NO_2对SO_2的氧化反应起到很好的催化作用,SOR是清洁天的2倍;(5)采用清洁能源前后阴阳离子电荷当量(AE/CE)分别为0.76和0.96,PM_(2.5)整体从弱碱性恢复到中性。清洁能源的使用,有效降低了各水溶性离子的质量浓度,减小了PM_(2.5)质量浓度,改善了颗粒物的酸碱性,提高了采暖季环境空气质量。  相似文献   

8.
基于太原市2013年5、6、12月和2014年1月大气中SO_2、NO_2及PM_(2.5)中水溶性离子SO_4~(2-)、NO_3~-浓度,分析了大气中硫和氮的转化率(Fs、Fn),并探讨了其影响因素.结果表明,大气中SO_2、NO_2的浓度夏季(5、6月)分别为89.98、64.73μg·m-3,由于燃煤供热冬季(12、1月)SO_2显著升高,SO_2和NO_2分别为119.09、63.92μg·m-3.PM_(2.5)中水溶性离子SO_4~(2-)、NO_3~-夏季分别为16.54、6.87μg·m-3,冬季显著降低,分别为12.79、5.53μg·m-3.参照硫和氮气固两相转化模型,Fs夏季(0.13)高于冬季(0.07),Fn变化较小,夏、冬季分别为0.08、0.06,与南方城市相比,Fs较高,Fn较低.硫、氮转化受多种因素共同影响,且不同季节主导因素不同.温度和O_3浓度对整个采样期间的硫转化起主要作用,冬季SO_4~(2-)与PM_(2.5)和湿度呈现一定的相关关系,显示SO_4~(2-)主要来源于均相气相反应,冬季部分源于非均相反应.夏季相对湿度和O_3浓度可明显促进氮转化,而冬季NO_3~-生成还与PM_(2.5)和温度有关,说明夏季氮转化以均相液相反应为主,而冬季NO_3~-主要源于非均相反应.此外,NH+4与SO_4~(2-)、NO_3~-的线性分析表明,大气氨有助于气相中的硫、氮向颗粒相转移并转化.  相似文献   

9.
2015年9月至2016年7月在新疆独山子区采集大气PM_(2.5)样品,对所含的水溶性无机离子和大气气态污染物的季节性变化进行了分析.其结果表明,PM_(2.5)、SO_2、NO_2和O_3的年均浓度分别为70.04、19.36、4.50、83.06μg·m~(-3); PM_(2.5)、SO_2、NO_2的浓度均出现冬季最高,夏季最低的趋势,而O_3浓度在春、夏季节偏高,冬季偏低;总水溶性无机离子的季节变化特征为冬季(68.99μg·m~(-3))秋季(14.23μg·m~(-3))春季(10.31μg·m~(-3))夏季(5.06μg·m~(-3)),其中SO_2~(-4)、NO_3~-、NH_4~+为水溶性无机离子的主要组成部分,占到水溶性总离子质量浓度的70%以上.对硫氧化率(SOR)和氮氧化率(NOR)的估算表明,全年SOR的值均大于0.1,表明SO_2~(-4)主要来自大气二次转化.夏季NOR值远低于其它季节. SO_2~(-4)浓度和SOR在冬季出现较高值,可能是由于冬季取暖导致SO_2排放量增加,同时较高的相对湿度又促进了SO_2的非均相转化.受相对湿度的影响,NO_3~-在冬季主要以非均相反应的方式生成,在春、夏、秋的3个季节主要以均相反应的方式生成;当PM_(2.5)的质量浓度大于75μg·m~(-3)时,NO_3~-/SO_2~(-4)、NOR/SOR和NOR值均显著增加,表明独山子区的硝酸盐污染较为严重.  相似文献   

10.
宁夏燃煤电厂周围降水降尘中硫氮沉降特征研究   总被引:1,自引:0,他引:1  
燃煤电厂是SO_2和NOx的主要排放源之一。本世纪初以来,随着煤炭等行业的快速发展,中国西北地区大气酸沉降速率加快。以宁东能源化工基地3个燃煤电厂为监测点,初步探讨了2019年1—6月电厂周围降水降尘S、N组成特征。结果表明:研究区SO_4~(2-)月沉降量、NO_3~-月沉降量、NH_4~+月沉降量、无机N月沉降量、SO_4~(2-)/NO_3~-和NO_3~-/NH_4~+均存在较大变异,其平均值分别为(2.51±0.07)、(1.17±0.05)、(0.23±0.01)、(1.40±0.05) kg·hm~(-2)·month-1、(3.82±0.26)和(5.34±0.21);马莲台电厂和灵武电厂具有较高的SO_4~(2-)月平均沉降量、NH_4~+月平均沉降量和SO_4~(2-)/NO_3~-,鸳鸯湖电厂具有较高的NO_3~-月平均沉降量、无机N月平均沉降量和NO_3~-/NH_4~+;除SO_4~(2-)/NO_3~-外,5月各指标的测定值较高,2月各指标的测定值较低;除SO_4~(2-)月平均沉降量外,各指标在取样距离间差异较小。以上结果意味着,SO_4~(2-)是研究区降水降尘中主要的酸沉降形式、NO_3~-是其主要的N沉降形式,体现了以燃煤电厂为主导的工业源排放特点;研究区SO_4~(2-)沉降量与全国水平相当,但低于区域S沉降临界负荷。N沉降量高于中国西北地区平均值,且超过了区域可接受的沉降量;鉴于本研究收集的大气沉降为湿沉降加部分干沉降,故可能低估了研究区S、N总沉降量。考虑到酸沉降的时间累积性,宁夏燃煤电厂S、N限排工作依然十分必要。  相似文献   

11.
2015年12月21日—2016年2月29日在南京北郊进行了大气细颗粒物PM_(2.5)的观测,并分析其中主要水溶性离子(Na~+、NH_4~+、K~+、Mg~(2+)、Ca~(2+)、Cl~-、NO_3~-、SO_4~(2-))浓度以及碳质组分(OC、EC)含量.结果表明,观测期间南京北郊冬季大气细颗粒物(PM_(2.5))污染较为严重,二次离子(NO_3~-+SO_4~(2-)+NH_4~+)为主要污染成分,占PM_(2.5)浓度的47%.对36个观测日进行SO_4~(2-)-NO_3~--NH_4~+三相聚类,发现3种离子在整个体系中的配比存在差异.排放源类型所造成的前体物的不同以及NH_4~+与SO_4~(2-)、NO_3~-的结合方式是造成这种差异的主要原因.OC与EC的变化趋势相似,OC含量较高,而且浓度波动幅度较大.OC/EC的值为2.63±0.90,说明普遍存在二次反应产生的SOC.K+/PM_(2.5)比值法表明,除燃煤与机动车尾气排放以外,生物质燃烧亦是PM_(2.5)污染的排放源.  相似文献   

12.
2014年6—8月分别对丽江-玉龙雪山索道区,甘海子,丽江市区,龙蟠镇等4个地区进行降水采集,共采集87个样品,对主要化学离子(Na~+、K~+、NH_4~+、Ca~(2+)、Mg~(2+)、SO_4~(2-)、Cl~-、NO_3~-)电荷浓度进行分析.结果表明,离子总浓度丽江市区龙蟠镇甘海子索道区.阳离子含量最高的为Ca~(2+)和NH_4~+,阴离子含量最高的为SO2-4.分析1997—2014年丽江降水离子含量,SO_4~(2-)与NO_3~-的比值逐年下降,表明旅游业和交通运输业对丽江大气环境质量影响显著.采用主因子分析法进行分析,NH_4~+、SO_4~(2-)、NO_3~-在第一因子中为高载荷,受人类污染的影响,Na~+与K~+、Cl~-在第二因子中高载荷,受海洋源影响.Ca~(2+)、Mg~(2+)在第三因子中高载荷,受陆地源影响.  相似文献   

13.
为探索北京城区大气细颗粒物浓度水平及其碳组分和二次水溶性无机离子的浓度特征,于2014年6月1日至7月15日在车公庄地区使用微量振荡天平(TEOM+FDMS)、EC/OC在线分析仪以及水溶性离子在线分析仪对PM_(2.5)质量浓度及其主要化学组分(OC、EC、SO_4~(2-)、NO_3~-和NH_4~+)进行了实时监测.研究结果表明,北京市城区夏季PM_(2.5)质量浓度平均值为69.0±47.9μg·m-3,PM_(2.5)中OC、EC、SO_4~(2-)、NO_3~-和NH_4~+所占的比例分别为15.8%、2.4%、23.0%、15.7%和19.2%,SNA(SO_4~(2-)、NO_3~-和NH_4~+)合计达到了PM_(2.5)质量浓度的57.9%.研究各组分的日变化特征发现,OC和SO_4~(2-)白天浓度变化较小,夜晚浓度稍高;NO_3~-和NH_4~+则随着光照和温度的增加而逐渐降低;EC呈现出夜晚浓度高白天浓度低的特点.研究各组分的相关性及比值发现,OC和EC的相关系数为0.62,OC/EC大于2.0,说明北京城区夏季存在着较为严重的二次污染;此外,NO_3~-/SO_4~(2-)平均比值为0.68,SOR和NOR的变化趋势基本一致,两者的平均值分别为0.55和0.14.通过分析北京市城区夏季不同浓度级别各组分的变化发现,随着PM_(2.5)质量浓度的增加,OC和EC所占的比例不断降低,而SNA比例则不断升高,其中NO_3~-浓度水平的增加最为显著.  相似文献   

14.
在塔克拉玛干沙漠腹地塔中气象站,利用80 m梯度观测塔及BSNE梯度集沙仪采集了2015年7—11月沙尘天气过程7个不同高度沙尘样品,分析了粗、细组分离子质量分数的垂直分布特征。结果表明,(1)粗颗粒(≥63μm)组分中主要水溶性离子SO_4~(2-)、Cl~-、Ca~(2+)、Na~+质量分数明显高于细颗粒(63μm)组分质量分数,其中,粗颗粒组分中,水溶性离子SO_4~(2-)、Cl~-、Ca~(2+)、Na~+质量分数分别为3 530.59、2 871.08、3 107.92、2 136.00 mg·kg~(-1),而细粒组分中SO_4~(2-)、Cl~-、Ca~(2+)、Na~+质量分数分别为1 058.33、1 726.41、1 826.87、1 377.60 mg·kg~(-1);粗颗粒组分中4种主要离子的质量分数为细颗粒组分中相应离子质量分数的1.5~3.3倍。K~+、Mg~(2+)、NO_3~-质量分数差别不明显。各离子在粗、细组分中的变化趋势也具有差异性,粗颗粒组分中离子变化更明显。(2)扬沙、沙尘暴天气粗颗粒组分中4种主要离子质量分数在32 m高处出现最大值,32~80m随高度升高呈下降趋势,K~+、Mg~(2+)、NO_3~-离子质量分数最高值出现在24 m或32 m处;细颗粒组分中,所有离子浓度最大值均出现在24 m高处,24~80 m随高度升高呈下降趋势;粗、细颗粒组分中离子浓度均在63 m处出现小幅增加。(3)浮尘天气细颗粒组分的变化趋势明显好于粗颗粒组分。受沙垄颗粒物影响,细颗粒组分水溶性离子的垂直分布整体规律性较好,粗颗粒组分波动性较大。(4)筛分法与马尔文激光粒度法得到的粗、细颗粒组分含量相差较大,筛分法得到的粗颗粒组分百分含量偏小、细颗粒组分含量偏大,粗、细组分中的水溶性离子的垂直分布与实测结果存在偏移,有待进一步研究。研究结果有助于了解沙漠腹地沙尘天气过程垂直剖面沙尘颗粒的分布及水溶性离子组分特征,进一步为沙尘数值预报模式的改进提供科学依据。  相似文献   

15.
马珊  李忠勤  陈红  刘慧  杨帆  周茜  夏敦胜 《环境化学》2019,38(2):344-353
基于2016年兰州市采暖期采集的气溶胶样品的水溶性离子系列分析,对兰州市大气污染特征及其主控因素和来源进行了深入探讨.结果表明,近年来兰州市大气中,NO_3~-、SO_4~(2-)、Ca~(2+)和NH_4~+是兰州市冬季气溶胶样品中主要的离子成分,占到总离子浓度的88.12%,以人为污染源排放污染物的二次转化为主,其中NO_3~-、Ca~(2+)近年来有增加趋势.对兰州市污染物及离子来源分析发现兰州市冬季二次污染比较严重,机动车排放污染物所占比重增大.冬季到达兰州市的气团以武威-兰州为首;腾格里沙漠和黄土高原西南部是冬季PM_(10)污染的主要贡献源区,兰州市自身和白银市是NO_2污染的主要贡献源区.整体来看,兰州市空气质量有了很大的改善,NO_2、PM_(10)是目前最需要解决的两大污染问题.  相似文献   

16.
为了探讨兰州市大气细颗粒物中水溶性无机组分的污染特征及来源,采集了2012年冬季和2013年夏季PM_(2.5)样品共40个,并利用离子色谱法对其中的无机离子进行了分析.分析结果显示,兰州市PM_(2.5)中无机离子冬季平均值为39.59μg·m~(-3),夏季平均值为10.71μg·m-3,冬季污染程度远高于夏季,SO_4~(2-)、NH_4~+和NO_3~-是3种最主要的水溶性离子;阴阳离子当量回归分析表明,冬季兰州PM2.5组分偏酸性,夏季偏碱性,离子间的结合方式主要以NH_4NO_3、(NH_4)_2SO_4、NH_4HSO_4和NH_4Cl的形式为主,冬季还有少量KNO_3、NaNO_3、K_2SO_4、Na_2SO_4、KCl和Na Cl存在;[NO_3~-]-/[SO_4~(2-)]比值的均值冬季为0.58±0.22,夏季为0.49±0.20,说明兰州市的冬季大气污染虽然呈现燃煤源等固定源和机动车尾气等流动源并存的复合污染类型,但仍然以煤烟型污染为主,而夏季NO_3~-受高温条件影响比较大,机动车尾气污染仍需引起重视.  相似文献   

17.
细颗粒物是大气污染防治的重点内容。分析大气细颗粒物中的水溶性离子组分及其变化,对评价城市空气污染状况和污染物的来源具有重要意义。选取中国东部典型城市长春、北京、上海、杭州和南京作为研究对象,基于2016年11月11日-12月6日大气颗粒物样品采集及其水溶性离子分析,探讨PM_(2.5)中水溶性无机离子浓度变化特征,并利用主成分分析结果分析各类污染源排放对细颗粒物中水溶性离子质量浓度的贡献,以期为区域大气环境质量的改善提供参考依据。结果表明,长春、北京、上海、杭州和南京总水溶性无机离子质量浓度平均值分别为(18.8±9.0)、(34.9±23.3)、(21.8±13.3)、(42.2±21.4)和(62.1±25.9)μg·m~(-3),占PM_(2.5)质量浓度的33.6%-62.1%。二次离子(SIA,包括NO_3~-、SO_4~(2-)和NH_4~+)在总水溶性离子中占比均超过75.0%,说明SIA是水溶性离子的主要组分。SIA占总水溶性离子浓度的百分比随污染程度增强而增加。硝酸盐为5个城市在污染大气下主要的贡献物种。5个城市站点ρ(NO_3~-)/ρ(SO_4~(2-))随着大气污染程度的增加均有不同程度的增加且大于1,说明含氮污染物逐渐成为大气颗粒物中最重要的污染物。除长春硫氧化率(SOR)均值小于0.1外,其他4个城市SOR和氮氧化率(NOR)均大于0.1,说明北京、上海、杭州和南京站点大气中存在较高程度的SO_2和NO_2的二次氧化。北京站点NO_3~-、SO_4~(2-)和NH_4~+以NH_4NO_3和(NH_4)_2SO_4的形式存在,在其他4个城市站点以NH_4NO_3和NH_4HSO_4的形式存在。5个城市水溶性离子主要来源为二次转化、扬尘、生物质和煤燃烧。  相似文献   

18.
为探究重污染天气期间济南市城区和清洁对照点PM_(2.5)及其组分污染特征,于2016年12月31日-2017年1月7日在市监测站和跑马岭进行连续PM_(2.5)样品采集,并对两个点位的PM_(2.5)及其组分(水溶性离子和碳质组分)污染特征进行分析。结果表明,重污染天气期间市监测站PM_(2.5)质量浓度(260±77)μg·m~(-3)是跑马岭(85±17)μg·m~(-3)的3倍,表明该重污染天气过程对济南市城区影响程度明显大于清洁对照点跑马岭。市监测站水溶性离子浓度高低顺序为SO_4~(2-)NO_3~-NH_4~+Cl~-K~+Na~+Ca~(2+)F~-,跑马岭水溶性离子浓度高低顺序为NO_3~-SO_4~(2-)NH_4~+Cl~-K~+Na~+Ca~(2+)F~-。市监测站和跑马岭二次无机离子(SNA)质量浓度分别为(134.7±49.5)μg·m~(-3)和(46.2±19.0)μg·m~(-3),在PM_(2.5)中占比分别是51.8%和54.4%,两个点位PM_(2.5)浓度差别很大,但SNA在PM_(2.5)中占比相差不大。通过NH_4~+计算值与实测值相关性分析可知,市监测站和跑马岭PM_(2.5)中NH_4~+均主要以(NH_4)_2SO_4和NH_4NO_3形式存在。市监测站SOR和NOR分别为0.44和0.32,跑马岭SOR和NOR分别为0.32和0.44,SOR和NOR的值均大于0.1,表明大气中SO_2和NO_2的二次氧化程度较高。采用OC/EC最小比值法估算得到市监测站和跑马岭SOC分别为8.3μg·m~(-3)和1.8μg·m~(-3),分别占OC的38.2%和20.9%,这表明市监测站OC二次反应程度明显高于跑马岭。市监测站有机碳(OC)和元素碳(EC)相关性(R~2=0.57)明显弱于跑马岭(R~2=0.92),表明市监测站OC和EC来源比较复杂,更有利于SOC的生成。  相似文献   

19.
为探究舟山市PM_(2.5)及水溶性离子组分的污染特征,于2016年4月、7月、10月和2017年1月在舟山市区3个国控点采集了168个PM_(2.5)样品,利用离子色谱仪测定颗粒物中的9种水溶性离子(Cl~-、NO_3~-、SO_4~(2-)、NH_4~+、K~+、F~-、Na~+、Mg~(2+)和Ca~(2+)),结合气象数据和数值分析手段对舟山市区PM_(2.5)和水溶性离子质量浓度特征、颗粒物酸碱度及二次离子的影响因素(气象参数、前体物)进行研究.结果表明,采样期内,舟山市PM_(2.5)质量浓度时间变化规律为春季冬季夏季秋季,空间分布较为均匀;二次离子是舟山PM_(2.5)主要水溶性组成,且在PM_(2.5)中具有一致的季节变化特征;阴阳离子平衡分析显示舟山市PM_(2.5)整体呈现酸性,并以夏季酸度最低、秋季酸度最高;温度是影响舟山市二次离子浓度的主要气象因素;以燃煤源为主的固定源是舟山市水溶性污染物的主要污染来源,檀枫和临城采样点的SO_4~(2-)和NO_3~-受电厂和燃煤锅炉的污染排放影响严重,普陀区船舶客货运输量大,是普陀点二次离子前体物的主要污染来源.  相似文献   

20.
过量硫酸盐和硝酸盐沉降到达地面,造成土壤酸化、水质变差、森林衰亡等一系列生态问题。为了进一步了解中国不同地区的酸沉降变化特征,利用2001—2017年东亚酸沉降监测网(EANET)中的中国重庆、西安、厦门3个典型城市及其郊区的7个观测站SO4~(2-)、NO3~-湿沉降量、p H值观测资料,分析这3个城市的硫酸盐和硝酸盐湿沉降年际变化特征、季节差异和城郊差异。结果表明,2001—2017年间,重庆的SO_4~(2-)沉降量每年下降6.09 mmol·m~(-2),NO_3~-沉降量则每年上升1.39mmol·m~(-2),其降水中SO_4~(2-)/NO_3~-比值从2001年的3.8下降到2017年的1.2,酸雨类型由硫酸型转为混合型。厦门的SO_4~(2-)沉降量每年下降2.28 mmol·m~(-2),NO_3~-沉降量每年下降0.97 mmol·m~(-2),其降水中SO_4~(2-)/NO_3~-比值在2007年达到峰值1.68,之后逐渐降低至2017年的0.63,酸雨类型从混合型逐渐向硝酸型转变。重庆和厦门降水的p H值分别从2001年的4.5和4.7上升到2017年的5.5和5.6,西安降水的p H值始终保持在5.6以上。重庆、西安和厦门市区沉降量大于或等于郊区,但市区降水的p H值却高于或等于市区。重庆、西安和厦门SO4~(2-)沉降量和NO3~-沉降量均为春夏较高,秋季次之,冬季最低。重庆和厦门各个季节降水的p H的谷值出现在2010年左右,之后逐年上升。总体上,研究期间,重庆和厦门的酸雨状况在2010年左右最严重,之后逐年得到改善,西安虽然不受酸雨的侵害,但其主要酸性离子SO4~(2-)和NO3~-的沉降量均逐年减少,主要原因在于中国不同地区的大气污染防治工作均取得显著成效。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号