首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
为实现煤化工废水尾水低成本达标排放,采用零价铁/过硫酸盐(Fe~0/S_2O_8~(2-))异相芬顿与气升环流反应器(ALR)组合工艺对其进行深度处理并分析处理成本。结果表明,在pH为6.8、Fe~0和S_2O_8~(2-)投加量分别为2g·L~(-1)和15 mmol·L~(-1)的条件下,Fe~0/S_2O_8~(2-)体系对COD和色度去除率分别为56%和50%。气相色谱-质谱和气相色谱分析显示,尾水中难降解芳香化合物被转化成小分子有机酸,这些小分子有机酸虽然在异相芬顿反应中难以进一步降解,但容易被好氧微生物吸收和利用;出水经ALR处理后,COD和色度进一步从150 mg·L~(-1)和75倍降到48 mg·L~(-1)和25倍,总去除率达到86%和83%。由于异相芬顿反应不需调节pH且出水铁离子浓度小于9mg·L~(-1),该组合工艺在避免大量铁泥产生的同时可低成本地实现煤化工废水尾水达标排放。  相似文献   

2.
通过添加抗坏血酸(AA)能够缓解铁离子形成沉淀和加速Fe~(3+)转化为Fe~(2+),催化CP产生活性氧物质(ROSs),对CFX降解起到促进作用。研究了Fe~(3+)/AA/CP体系降解CFX的Fe~(3+)浓度、AA浓度、CP浓度、初始pH等主要影响因素。结果表明:在Fe~(3+)浓度0.60 mmol·L~(-1)、AA浓度0.15 mmol·L~(-1)、CP浓度0.144 g·L~(-1)、CFX的初始浓度0.15 mmol·L~(-1)和初始pH=3.00的室温条件下,20 min内CFX的降解率可达到100%。随着初始pH升高,CFX的降解率随之降低。反应过程中降解CFX的活性物质为羟基自由基(HO·)和超氧自由基(O2-·),其中HO·对CFX降解起到主导作用。水中阴离子的影响表明,SO_4~(2-)、Cl~-对CFX的降解影响较小;但HCO3-对CFX的降解有明显的抑制作用。在处理成分较复杂的实际养殖废水实验中,发现只有提高药剂量才能达到有效降解实际废水中头孢氨苄的目的。  相似文献   

3.
泡沫金属因其三维结构及优良导电性,使其作为电芬顿阴极开始引起学者关注。选择泡沫铜为阴极、石墨棒为阳极,搭建微孔曝气均匀的玻璃反应器,提高体系传质效率,并通过响应面探索体系产H_2O_2和·OH的机理。用响应面设计3因素(pH、电流、Fe~(2+)初始浓度)3水平实验,得到体系产H_2O_2和·OH与3种因素之间的非线性回归方程,得到最优条件:当pH=2、电流0.25 A、Fe~(2+)初始浓度为15μmol·L~(-1)时H_2O_2产量最大,为457.27μmol·L~(-1);当pH=2、电流0.25 A、Fe~(2+)初始浓度为20μmol·L~(-1)时·OH产量最多,可达18.56μmol·L~(-1)。根据方差分析,二次模型显著性很高(R_(H_2O_2)~2=0.977 8,R_(·OH)~2=0.964 2),能够很好地模拟实验结果。通过铜溶出实验分析得出铜溶出量在0.4~1.8 mg·L~(-1)之间,符合现行污水排入城镇下水道水质标准(CJ 343-2010)。  相似文献   

4.
合成了磁性还原氧化石墨烯负载零价纳米铁材料(Fe~0-MF-RGO),并在双氧水(H_2O_2)的作用下构成类芬顿试剂用于对罗丹明B(Rh B)的吸附-催化降解。通过正交实验研究了pH值、Fe~0-MF-RGO用量、Rh B初始浓度、温度和H_2O_2浓度5个影响因素。在15℃、pH值为7.0、Fe~0-MF-RGO投加量1.0 g·L~(-1)、Rh B初始浓度为50 mg·L~(-1)以及H_2O_2浓度为0.8 mmol·L~(-1)的条件下,150 min后模拟废水中Rh B的去除率达到98.17%,经5次循环使用后去除率为72.97%。  相似文献   

5.
采用共沉淀法制备了具有较高催化活性的磁性纳米Fe_3O_4,并对其催化活化过硫酸盐(PS)降解磺胺甲恶唑(SMX)的性能进行了探究,考察了PS浓度、Fe_3O_4投加量、初始pH、共存阴离子(Cl~-、CO_3~(2-)、NO_3~-)以及腐殖酸(HA)对SMX降解效果的影响。SEM、EDS、FT-IR、XRD和BET表征结果表明,实验制备了较高纯度的Fe_3O_4纳米颗粒;重复性实验结果表明,Fe_3O_4具有良好的稳定性;催化降解SMX的实验结果表明,提高PS的浓度、增加Fe_3O_4的投加量均可提高SMX的降解率,且SMX的降解反应符合拟一级动力学。当PS浓度为0.5 mmol·L~(-1)、Fe_3O_4投加量为1.2 g·L~(-1)、初始pH=7.0时,Fe_3O_4活化PS降解SMX的效果最佳,在反应180 min后,SMX降解率达到93.3%。XPS光谱分析结果表明,反应过程中Fe~(2+)主要参与了活化PS降解SMX的过程。乙醇(EtOH)和叔丁醇(TBA)自由基淬灭实验结果证明,在Fe_3O_4/PS体系中同时存在SO_4~-·和·OH,SO_4~-·对SMX的降解发挥了主导作用。以上结果为含磺胺甲恶唑废水的处理提供了催化剂选择,也可为过硫酸盐高级氧化体系中阴离子和腐殖酸对反应的影响效果提供参考。  相似文献   

6.
考察了不同乙酸钠浓度下非缓冲微生物燃料电池(BLMFC)的运行性能和无机碳(IC)(HCO_3~-或H_2CO_3)积累情况。结果表明:阳极液中IC的积累浓度与乙酸钠浓度呈线性相关,在乙酸钠浓度为0.5 g·L~(-1)和1.0 g·L~(-1)的BLMFC体系中,IC积累浓度分别为8.02 mmol·L-1和13.60 mmol·L~(-1),阳极液出现酸化现象,pH降低至6.2和6.5;体系输出电压(U)与阳极液pH出现相同的先下降后上升的变化趋势,体系最大功率密度(P_(max))分别为242 mW·m~(-2)和428 mW·m~(-2)。当乙酸钠浓度增大到2.0 g·L~(-1)和3.0 g·L~(-1)时,IC积累浓度增加到30.64 mmol·L~(-1)和42.42 mmol·L~(-1);乙酸盐自身的缓冲作用和体系积累的较高浓度IC可以将阳极液pH维持在7.4~8.5,输出电压稳定在350 mV左右;P_(max)增大到668 mW·m~(-2)和699 mW·m~(-2),可以实现自缓冲稳定运行。  相似文献   

7.
利用Fenton试剂对水中盐酸四环素(TC)氧化降解,考察H_2O_2/Fe~(2+)(摩尔比)、Fenton试剂投加量、溶液p H值对盐酸四环素去除的影响,研究了盐酸四环素降解过程及动力学特征。研究结果表明:对于初始浓度为0.10 mmol·L~(-1)的盐酸四环素,最优反应条件为p H值3.0,H_2O_2/Fe~(2+)=10∶1(物质的量之比),H_2O_2施加量1.58 mmol·L~(-1)。在该条件下反应60 min,盐酸四环素降解率达88.47%,对应TOC去除率为18.48%;紫外可见光谱扫描结果表明氧化过程中盐酸四环素的共轭结构被首先破坏;分别采用一级和二级动力学方程拟合降解过程,结果表明反应过程遵循二级动力学模型。  相似文献   

8.
使用EDDS(乙二胺二琥珀酸)螯合Fe(Ⅲ),在光照过程中活化过硫酸盐/亚硫酸盐产生硫酸根自由基,并用于处理水体中的染料橙黄Ⅱ,考察过硫酸盐/亚硫酸盐初始浓度,Fe(Ⅲ)-EDDS初始浓度以及溶液初始pH对橙黄Ⅱ降解效果的影响,并获得处理效果较好的优化体系。结果表明,Na_2SO_3-Fe(Ⅲ)-EDDS体系中,[Na_2SO_3]=5 mmol·L~(-1),[Fe(Ⅲ)-EDDS]=0.05 mmol·L~(-1),pH=3.0时,60 min内橙黄Ⅱ降解效率达98%;Na_2S_2O_8-Fe(Ⅲ)-EDDS体系中,[Na_2S_2O_8]=10 mmol·L~(-1),[Fe(Ⅲ)-EDDS]=0.50 mmol·L~(-1),pH=7.0时,120 min内橙黄Ⅱ降解效率达99%。两个体系中,Fe(Ⅲ)-EDDS均存在最佳浓度,增大或减小均导致效率降低。Na_2SO_3-Fe(Ⅲ)-EDDS体系中,溶液初始pH越大,橙黄Ⅱ降解效率越低。Na_2S_2O_8-Fe(Ⅲ)-EDDS体系中,pH高于或低于7.0时橙黄Ⅱ降解效率均降低。Na_2SO_3-Fe(Ⅲ)-EDDS体系中,亚硫酸钠浓度越大橙黄Ⅱ降解效率越高。Na_2S_2O_8-Fe(Ⅲ)-EDDS体系中,过硫酸钠存在最佳浓度,增大或减小均导致降解效率降低。  相似文献   

9.
皂素废水中高浓度的SO_4~(2-)对环境危害大,厌氧环境下同时投加Fe~0和Fe~(2+)生成硫酸盐绿锈增强SO_4~(2-)的去除,实验研究了各因素对去除SO_4~(2-)的影响。结果表明,降低初始p H能快速提升SO_4~(2-)的去除率,25~35℃范围内提高温度有利于SO_4~(2-)的去除,Fe~(2+)浓度对去除效果影响显著,随着Fe~(2+)浓度的增加,SO_4~(2-)去除率快速上升。初始pH为2、温度为25℃的条件下,10 g·L~(-1)的Fe~0和1 000 mg·L~(-1)的Fe~(2+)能去除93.1%初始浓度为1 000 mg·L~(-1)的SO_4~(2-)。XRD和SEM表征结果显示,去除过程中铁粉表面有疏松多孔结构的Fe_3O_4生成,有利于SO_4~(2-)与Fe~0接触反应,促进硫酸盐绿锈的生成,进一步增强SO_4~(2-)的去除。动力学分析显示,去除过程拟合伪二级动力学模型,吸附SO_4~(2-)的过程以单分子层吸附为主。  相似文献   

10.
采用批实验研究初始pH值、溶解氧(DO)和地下水中常见的阴、阳离子等因素对Fe~0-C微电解对地下水中2,4-二硝基甲苯(2,4-DNT)去除率的影响,并分析Fe~0-C降解2,4-DNT的产物。结果表明,在pH=7,DO=0.23 mg·L~(-1)的条件下,Fe~0-C去除溶液中2,4-DNT有明显的效果,反应200 min时,去除率达到83.09%,比Fe~0和C的去除率提高了74.56%和9.89%;酸性条件下有利于2,4-DNT去除,初始pH=5的条件下,溶液中2,4-DNT的去除率为82%,而初始pH=10时,2,4-DNT的去除率分别为64%;反应体系中含有较高浓度的溶解氧有利于2,4-DNT的去除,在DO=9.26 mg·L~(-1)条件下,2,4-DNT的去除率比DO=0.23 mg·L~(-1)时提高了9.5%;地下水中一定浓度的阴(Cl-、SO_4~(2-))、阳离子(Ca~(2+)、Mg~(2+)、Na~+、K~+)可以提高2,4-DNT的去除率,提高率小于10%。反应过程中2,4-DNT降解的产物包括2-氨基-4-硝基甲苯(2A4 NT)、4-氨基-2-硝基甲苯(4A2 NT)和2,4-二氨基甲苯(2,4-DAT)。  相似文献   

11.
通过批次实验,考查了木糖高温(55℃)厌氧发酵中初始pH(5.0~10.0)和初始底物浓度(2.5~15 g·L~(-1))对产氢效率、液相产物以及木糖降解率的影响;并进行了两相产氢-产甲烷实验,对比单相产甲烷与两相产氢-产甲烷能量转化效率。结果表明:在初始pH=5.0或初始底物浓度为2.5 g·L~(-1)时无氢气产生,最大产氢率1.31 mol H2·(mol木糖)-1在pH=7.0,底物浓度7.5 g·L~(-1)时获得,同时木糖降解率和累积产氢量分别为97.48%和328.4 mL;其主要代谢副产物为丁酸和乙酸,属于丁酸型发酵。厌氧产氢后末端产物甲烷产率为274.9 mL CH_4·(g COD)-1,两相系统能量转化效率达到63.98%,高于单相产甲烷系统的49.39%。  相似文献   

12.
为了降低石油采出水毒性,提高其可生化性,对阴极电芬顿反应器通过电极即时产生芬顿试剂处理石油采出水进行了研究。通过实验研究分析各因素对电芬顿体系原位生产芬顿试剂效果的影响。结果表明,阴极电芬顿法处理石油采出水的体系中,在反应条件为Fe~(2+)投加量1 mmol·L~(-1),pH值3,电解质浓度5 g·L~(-1),曝气强度1 L·min-1时,阴阳两极原位生产芬顿试剂的效果最好,此时阳极自产Fe~(2+)的浓度为46.2 mg·L~(-1),阴极自产H_2O_2的浓度为6.02 mg·L~(-1),此时对石油采出水COD的去除率达到78.4%,油脂的去除率达到89.6%。  相似文献   

13.
为了提高工业聚集型村镇复合废水处理效率,对微波-均相Fenton技术进行了研究。基于Box-Behnken响应曲面法,重点考察了初始pH值、H_2O_2/Fe~(2+)摩尔比、H_2O_2投加量、微波功率及微波辐射时间的单独及交互作用;建立以COD去除率为响应值的二次响应曲面模型并采用方差分析进行验证。结果表明,影响因子显著性排序为:初始pH值H_2O_2投加量微波辐射功率H_2O_2/Fe~(2+)摩尔比微波辐射时间;其中初始pH和H_2O_2投加量之间交互作用显著;所建数学模型回归性较好,最优组合条件为:初始pH值3.43,H_2O_2投加量19.2 mmol·L~(-1),H_2O_2/Fe~(2+)摩尔比39.42,微波辐射功率597.55 W,微波辐射时间5.12 min,该条件下COD实际去除率为95.3%,与模型预测结果相比偏差为4.7%。采用微波-均相Fenton法深度处理工业聚集型村镇复合废水,出水COD值完全满足《污水综合排放标准》(GB 8978-1996)一级排放标准COD≤100 mg·L~(-1)。  相似文献   

14.
采用Fe~(2+)活化过硫酸钠(SPS)对水中三氯生(TCS)的去除进行了研究,考察了Fe~(2+)、SPS的投加量、TCS初始浓度、p H值和腐殖酸(HA)等对TCS去除的影响,GC-MS鉴定识别了降解产物。结果表明Fe~(2+)活化SPS工艺能有效去除TCS,2,4-二氯苯酚(2,4-DCP)为其主要降解产物,SPS浓度为1.0 mmol·L-1,Fe~(2+)的投加量为0.4 mmol·L-1时,初始浓度为460μg·L-1的TCS 2 min后去除率可达93.87%,TCS慢速反应阶段的降解符合一级反应动力学方程,其动力学常数K=0.140 min-1。TCS的去除随Fe~(2+)浓度的增加先增大后减小,高浓度的Fe~(2+)不利于2,4-DCP的降解,适量提高SPS浓度有利于TCS的去除和2,4-DCP的降解,TCS去除随初始浓度增大而降低,酸性环境有利于TCS的去除,腐殖酸对TCS的去除具有抑制作用,低浓度腐殖酸不利于2,4-DCP的降解。  相似文献   

15.
黎想  任彦瑛  丁琳洁 《环境工程学报》2019,13(12):2808-2815
双氯芬酸钠(diclofenac sodium,DCF)是一种常用的消炎止痛药,已在地下水、地表水和饮用水中被广泛检出,成为一种新型微量污染物,具有潜在危害,基于此,采用预磁化零价铁/过硫酸盐(Pre-Fe~0/PS)和零价铁/过硫酸盐(Fe~0/PS)2种体系对DCF进行降解。考察了过硫酸盐(PS)投加量、零价铁投加量、初始pH对2种体系降解DCF的影响,探究了2种体系中铁离子的产生情况和pH的变化,并利用ESR技术检测了体系中生成的自由基。结果表明,与Fe~0/PS体系相比,在不同PS量(0.125~1.0 mmol·L~(-1))、 Fe~0量(0.125~1.0 mmol·L~(-1))和初始pH3.0~10.0下,Pre-Fe~0/PS体系对DCF的降解速率常数提高了2.1~6.2倍;Pre-Fe~0/PS体系中会产生更多的铁离子,且在反应过程中pH下降更快;Pre-Fe~0/PS体系比Fe~0/PS体系产生更多的SO·4-和·OH,且能在较长的时间保持较高的浓度。Pre-Fe~0/PS体系降解DCF可以适用更宽的pH范围,是DCF废水处理的有效途径。  相似文献   

16.
为了考察紫外光照射下四环素(tetracycline,TC)在硝酸盐(NO_3~-)体系中的降解过程,研究了初始pH、TC初始浓度、NO_3~-浓度、腐殖酸以及磷酸盐等环境因子对TC光降解的影响,利用ESR检测和自由基猝灭实验,量化分析体系中不同氧化途径对TC去除的贡献率。结果表明:TC在NO_3~-体系中的光降解受pH影响显著;腐殖酸和磷酸盐对TC的降解表现出不同程度的抑制作用;TC通过直接光解、HO·、~1O_2和O_2~(·-)氧化4种途径降解,当TC浓度为10.0 mg·L~(-1),NO_3~-浓度为1.0 mmol·L~(-1),pH为7.0时光照150 min后,不同途径的贡献率分别为60.4%、25.6%、8.9%和5.1%。结果有助于了解TC的环境化学行为,为TC治理提供参考。  相似文献   

17.
采用零价铁耦合芬顿氧化法处理TNT红水,研究了初始pH、零价铁投加量、过氧化氢(H_2O_2)投加量及温度对红水中总有机碳(TOC)去除效果的影响,同时进行了TOC去除过程中反应动力学的探讨。结果表明,零价铁耦合芬顿氧化体系可有效降解TNT红水中的2,4-二硝基甲苯-3-磺酸钠和2,4-二硝基甲苯-5-磺酸钠。在初始pH为2,温度为20?C的条件下,加入1.5 g·L~(-1)零价铁反应1 h后,再加入100 mL·L~(-1)H_2O_2反应4 h,红水中二硝基甲苯磺酸盐浓度从500 mg·L~(-1)降至0 mg·L~(-1),去除率为100%,TOC浓度从150 mg·L~(-1)降至30 mg·L~(-1),去除率达到80%。反应中TOC的降解过程遵循拟二级反应动力学方程。零价铁耦合芬顿氧化法可以作为TNT红水的有效处理途径。  相似文献   

18.
为研究不同阴离子条件下纳米TiO_2催化臭氧化(nano-TiO_2/O_3)过程对溴酸盐(BrO_3~-)生成的影响,本研究通过小试实验分别考察了不同浓度溴离子(Br~-)、氯离子(Cl~-)、碳酸氢根离子(HCO_3~-)、硫酸根离子(SO_4~(2-))和亚硝酸根离子(NO_2~-)对纳米TiO_2催化臭氧化过程BrO_3~-生成的影响,并对不同阴离子条件下单独臭氧化(O_3)过程和nano-TiO_2/O_3过程BrO_3~-生成情况进行对比。结果表明,不同Br-初始浓度下,相对于O_3过程,纳米TiO_2对BrO_3~-生成的抑制效果规律不明显;Cl-浓度从0增至150 mg·L~(-1)时,纳米TiO_2抑制率呈现先增加后下降的趋势;HCO_3~-存在的水体,投加纳米TiO_2对BrO_3~-生成的抑制效能大大减弱;当SO_4~(2-)初始浓度为0~90 mg·L~(-1)时,相对于O_3过程,nano-TiO_2/O_3过程BrO_3~-生成量减少了22.50%~68.77%;当NO_2~-初始浓度为0~1 mg·L~(-1)时,相对于O_3过程,nano-TiO_2/O_3过程BrO_3~-生成量减少了2.22%~68.77%。  相似文献   

19.
采用电催化氧化方式降解水体中抗生素磺胺(sulfonamide,SA),考察SA初始浓度、溶液pH、电流强度、电解质种类和浓度对SA降解的影响,运用循环伏安法和水杨酸自由基捕获法研究电催化降解SA的作用机制,并通过LC-MS分析电催化SA的降解产物。结果表明:SA初始浓度0.12 mmol·L~(-1)、溶液pH为3.0、电流强度20 mA·cm~(-2)、电解质Na_2SO_4浓度为50 mmol·L~(-1)时,电催化氧化降解3 h后SA降解率为89.2%;电催化氧化降解SA的一级反应是直接氧化和间接氧化共同作用的过程,一部分SA分子在阳极表面通过电子转移直接氧化生成一级产物,另一部分SA分子与电解体系产生的·OH发生间接氧化,2种一级产物继续被·OH氧化,生成马来酸和富马酸。  相似文献   

20.
针对黄姜皂素水解废液有机物浓度高、酸度高、可生化性差等特点,采用常压蒸发浓缩法预处理黄姜皂素水解废液,研究了初始pH值和浓缩倍数对废液主要污染物蒸发浓缩效果的影响。结果表明:初始pH值对蒸出液COD、氨氮、VFA浓度变化影响较大。pH7时,COD和乙酸浓度分别由4 045 mg·L~(-1)、1 742 mg·L~(-1)快速降低到980 mg·L~(-1)、82.9 mg·L~(-1);氨氮浓度在25 mg·L~(-1)处波动;pH7时,COD浓度在1 000 mg·L~(-1)处波动,乙酸由82.9 mg·L~(-1)缓慢降低到6.4 mg·L~(-1),氨氮浓度由26.2 mg·L~(-1)快速升高到207 mg·L~(-1)。浓缩倍数对蒸出液污染物浓度影响也很大。浓缩2~10倍,COD、氨氮、乙酸浓度分别由980、26.2、82.9 mg·L~(-1)升高到3 372、141、2 250 mg·L~(-1),对应占其污染物总量的百分比由0.66%、1.91%、1.46%升高到4.08%、18.5%、71.5%。考虑工艺设备耐腐蚀性、蒸发能耗、耗时和处理效果等因素,选择初始pH=7、浓缩5~7倍比较适宜。蒸出液经过适当处理可做工艺回用水,达到废水处理资源化、减量化的目的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号