首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 998 毫秒
1.
对2013—2015年重庆主城区空气重污染情况进行统计,并结合地面和高空探测手段,分析了一次典型重污染过程的污染特征。结果表明:重庆主城区秋冬季节的空气污染,以受不利气象条件影响的本地细颗粒物(PM_(2.5))累积污染为主,PM_(2.5)占PM_(10)的平均比例为72%左右;大气能见度与颗粒物浓度、相对湿度均呈现明显的负相关性。典型污染期间的近地层颗粒物污染带主要在0~400 m的高度范围,AOD值高达2.0~2.4,α指数在1.0左右。二次粒子、机动车尾气、扬尘是污染期间重庆主城区PM_(2.5)的主要来源。  相似文献   

2.
利用轨迹聚类分析、轨迹扇区分析(TSA)和潜在源贡献函数(PSCF)分析3种方法研究了2013年6月至2016年5月舟山市的PM_(2.5)输送路径和潜在来源。聚类分析显示,舟山市PM_(2.5)夏季主要受来自偏南方向的气团影响,冬季主要受来自偏北和西北方向的气团影响,与季风方向一致,以短距离传输为主。TSA结果与轨迹聚类分析类似,综合考虑后向轨迹停留时间和PM_(2.5)平均浓度,研究期间西北和偏北方向的扇区对舟山市PM_(2.5)的贡献率最大,达47.3%。PSCF分析显示,舟山市PM_(2.5)的潜在来源贡献区域主要集中于江苏省、山东省南部、浙江省北部和安徽省东部。  相似文献   

3.
为探讨焦作市冬季PM_(2.5)中水溶性离子特征及其来源,于2017年12月至2018年2月在焦作市区连续采集大气颗粒物PM_(2.5)样品,测定其中9种水溶性离子浓度。结果表明,焦作市冬季PM_(2.5)质量浓度为(99.11±73.26)μg/m~3,总水溶性离子质量浓度为(66.88±48.68)μg/m~3,其中NO_3~-、SO_4~(2-)、NH4_+是水溶性离子的主要成分,3者合计占总水溶性离子的81.5%(质量分数)。与清洁天相比,污染天NO_3~-、SO_4~(2-)、NH_4~+在PM_(2.5)中的占比显著增加,表明人为活动排放的二次污染物是焦作市冬季污染天PM_(2.5)的主要贡献成分;随着相对湿度的增加,大气中存在明显的气溶胶二次转化过程;焦作市大气PM_(2.5)移动源贡献大于固定源。焦作市PM_(2.5)中水溶性离子在清洁天主要受工业和生物质燃烧影响,而在污染天主要受气态污染物二次转化影响;后向轨迹聚类显示,采样期间焦作市主要受京津冀地区、西北地区气团影响。  相似文献   

4.
利用混合单粒子拉格朗日综合轨迹(HYSPLIT)模式对兰州市近16年逐日72h后向气流按季节聚类,结合PM_(10)浓度数据,分析气流来源与该市PM_(10)的关系,使用潜在源贡献因子(PSCF)法和浓度权重轨迹(CWT)法,探讨该市PM_(10)的潜在源区季节分布及其贡献特征。结果表明:总体而言,兰州市气流来源四季变化明显,不同来源气流对该市PM_(10)的贡献具有一定差异。潜在源区有明显的季节和空间变化。春季潜在源区主要分布在内蒙古西部、甘肃河西走廊、新疆东南部等地区,其中内蒙古西部、甘肃河西走廊地区对兰州市PM_(10)质量浓度贡献在125μg/m~3以上,新疆东南部地区贡献达到150μg/m~3。夏季四川北部、陕西中西部地区对PM_(10)质量浓度贡献在75μg/m~3以上。秋季潜在源区主要分布在青海北部、新疆东南部等地区,其中青海北部对兰州市PM_(10)质量浓度贡献在125μg/m~3以上,新疆东南部地区贡献在150μg/m~3以上。冬季潜在源区主要分布在青海北部、新疆东南部地区;其中青海北部地区贡献在150μg/m~3以上,新疆东南部地区贡献在175μg/m~3以上。  相似文献   

5.
于2017年1—5月(取暖季)在西宁市区、郊区、农村设置采样点采集PM_(2.5)样品,利用离子色谱法测定PM_(2.5)中水溶性无机离子浓度。结果表明:取暖季西宁大气PM_(2.5)日均质量浓度为(55.98±52.66)μg/m~3,呈现明显的市区郊区农村的浓度变化特征。PM_(2.5)中水溶性离子质量浓度之和占PM_(2.5)质量浓度的36.3%,水溶性离子平均浓度大小为SO_4~(2-)NO_3~-NH_4~+Na~+Cl~-C_2O_4~(2-)Ca~(2+)F~-K~+Mg~(2+);取暖季西宁大气硫氧化率(SOR)和氮氧化率(NOR)平均值分别为0.21、0.13,表明SO_4~(2-)、NO_3~-主要由二次转化形成,PM_(2.5)中NO_3~-/SO_4~(2-)(质量浓度比)为0.75,阳离子与阴离子电荷摩尔数比值为0.89,表明燃煤是PM_(2.5)主要贡献源,颗粒物总体呈酸性。后向轨迹分析表明,重污染期间西宁PM_(2.5)及其中水溶性离子的浓度变化不仅受本地污染源的影响,也受外来气团输送的影响。  相似文献   

6.
福州市东郊大气气溶胶物理特性及其来源分析   总被引:1,自引:0,他引:1  
利用GRIMM180环境颗粒物监测仪观测了2012年12月至2013年11月福州市东郊气溶胶数浓度和质量浓度,分析了该地区气溶胶粒子的主要物理特征。结果表明,福州市东郊气溶胶数浓度和质量浓度都有着明显的季节变化特征,冬季最高,夏季最低;与京津冀、长三角和西部大城市相比,福州市东郊气溶胶质量浓度较低,空气质量较好。从PM_(2.5)在PM10中所占比例来看,PM_(2.5)是影响福州市东郊空气质量最主要的因子。在冬季气溶胶数浓度日变化基本呈双峰分布,早晨和傍晚分别出现峰值;夏季呈单峰分布,峰值出现在午后。利用后向轨迹HYSPLIT-4模式,经过聚类分析得到,在春季、秋季和冬季福州市气团输送来源主要是北方内陆和福州本地及邻近地区;而在夏季海洋是气团的主要输送来源。  相似文献   

7.
浙江大气PM2.5污染问题突出。利用国家环境空气质量监测站的实时在线监测数据分析了2013年12月上旬长三角地区一次大气PM2.5严重污染前后浙江典型城市(杭州、湖州、金华、宁波和舟山)的PM2.5污染成因。结果表明,严重污染天(SPD)风速和大气边界层高度均较非污染天低,不利于污染物扩散,而气温和相对湿度高,易于二次颗粒物生成。PM2.5/CO(质量比)的变化结果显示,SPD二次颗粒物对杭州、宁波、舟山PM2.5浓度的贡献高于60%,对湖州和金华PM2.5浓度的贡献略低(42%~54%)。杭州SPD时二次NO3-、SO24-、NH4+的增长幅度远高于PM2.5,且氮转化率和硫转化率随相对湿度的升高而上升,表明硫酸盐和硝酸盐的生成是PM2.5污染的重要来源。气团后向轨迹显示,SPD时杭州和湖州主要受江苏、安徽及浙江省内其他城市气团传输的影响,宁波和舟山主要受上海、江苏、安徽及东海上空气团传输的影响,而金华主要受本地及邻近的杭州、绍兴的影响。  相似文献   

8.
为应对2017年底绵阳出现的一次重污染天气,绵阳政府于2017年12月25日0时至29日12时首次实行了机动车尾号限行措施。利用2017年12月20日至2018年1月2日绵阳4个国控环境质量监测站点的CO、NO_2、SO_2、O_3、PM_(2.5)、PM_(10)的数据分析限行前后的污染物浓度变化特征,并结合气象数据进行污染成因分析。结果表明,大气颗粒物PM_(2.5)和PM_(10)是此次重污染天气的首要污染物,机动车尾号限行措施对PM_(2.5)和PM_(10)有一定的减排效果。机动车尾号限行措施对NO_2、SO_2、O_3具有明显的减排效果,而对CO几乎没有减排效果。限行前和限行期大气颗粒物主要来源于化学转化形成的二次颗粒物,而限行后则转为沙尘、扬尘等一次颗粒物。江油对绵阳大气颗粒物PM_(2.5)、PM_(10)影响很大,气流轨迹出现频率高,大气颗粒物浓度也高,有必要考虑进行区域联防联控。  相似文献   

9.
采集了武汉市工业区和植物园2011年10月—2012年7月不同季节的PM_(2.5)样品,测定其化学组成并解析来源。结果表明,工业区和植物园PM_(2.5)年均质量浓度分别为179.7、92.8μg/m3,其中SO2-4、NO-3和NH+4是最主要的水溶性离子。通过气团的后向轨迹模型分析,本地源与远距离区域传输共同影响武汉市空气质量。采用正定矩阵因子分析(PMF)模型对PM_(2.5)来源进行了解析,工业区PM_(2.5)来源为二次气溶胶、生物质燃烧、扬尘、冶金、燃煤和残油燃烧,春、夏、秋、冬4季贡献率最高的因子分别为生物质燃烧(45.1%)、残油燃烧(23.1%)、扬尘(56.1%)和二次气溶胶(53.4%);植物园PM_(2.5)来源为二次气溶胶、机动车排放、扬尘、冶金、燃煤和残油燃烧,春、秋两季机动车排放贡献率最高,分别为42.7%、41.3%;夏季和冬季分别为扬尘和二次气溶胶贡献最高,贡献率分别为27.3%、57.4%。  相似文献   

10.
分别在采暖期和非采暖期采集了长春市净月区与朝阳区的大气颗粒物,研究其污染特征的差异,并进行了形貌分析。结果表明:(1)净月区采暖期与非采暖期PM_(2.5)平均质量浓度分别为144.86、87.10μg/m~3,PM_(10)平均质量浓度分别为149.07、138.72μg/m~3;朝阳区采暖期与非采暖期PM_(2.5)平均质量浓度分别为234.48、110.01μg/m~3,PM_(10)平均质量浓度分别为275.07、147.50μg/m~3。整体上,非采暖期大气颗粒物浓度低于采暖期。(2)无论是采暖期还是非采暖期,净月区PM_(2.5)与PM_(10)浓度均明显低于朝阳区。(3)净月区采暖期大气颗粒物来源主要是柴油尾气、燃煤源与生物质燃烧;非采暖期,机动车尾气、建筑扬尘、土壤扬尘与某些工业排放对大气颗粒物贡献较大。朝阳区大气颗粒物来源较净月区复杂,这与两个区不同的地理位置和不同功能有直接的联系,建筑扬尘对于朝阳区大气颗粒物的含量有较大的影响。  相似文献   

11.
基于后向轨迹的平潭大气污染输送来源研究   总被引:1,自引:0,他引:1  
利用全球资料同化系统(GDAS)数据和拉格朗日混合单粒子轨道(HYSPLIT)模式,分析了2016年12月至2017年11月平潭不同季节和O_3超标日的气流后向轨迹。结合聚类分析和平潭空气监测数据,分析各季节不同气流类型对污染物浓度的影响,利用潜在源贡献因子(PSCF)法和浓度权重轨迹(CWT)法分析O_3污染潜在源区。并以2017年4月28—30日平潭O3_污染为例研究O_3污染过程。结果表明:影响平潭的气团来源季节差异性较大,受内陆地区气流影响时O_3浓度明显高于受海洋型气流影响。平潭O_3潜在源区主要集中在江苏、上海,其次为江西及福建内陆。江西中部、福建中北部及沿海地区的污染物外来输送对2017年4月28—30日期间平潭O_3污染具有一定的贡献。可见,加强大气污染区域联防联控对O_3污染防治具有重要的意义。  相似文献   

12.
地铁是人们出行的重要交通方式,车厢内颗粒物污染可影响人体健康。2016年春、秋、冬季对北京地铁1号、2号、4号、10号线进行现场监测,探讨北京地铁车厢内颗粒物污染特征。研究结果表明,北京地铁车厢内PM_(2.5)平均浓度超标率为83.8%~98.7%,地铁1号线PM_(10)平均浓度超标率为59.6%。地铁车厢内PM_(2.5)和PM_(10)浓度存在工作日和周末组间显著性差异,表明客运量对车厢内颗粒物浓度有较大影响。地铁车厢内PM_(2.5)和PM_(10)浓度存在季节性差异,冬季车厢内颗粒物平均浓度最高。不同线路车厢内PM_(2.5)和PM_(10)浓度存在组间差异,地铁通风空调系统、门系统和客运量是造成其差异的主要原因。  相似文献   

13.
利用高时空分辨率的监测数据,结合混合受体模式,运用统计学分析方法,研究温州市2013—2014年大气污染物时间变化特征,并对2013年12月初严重灰霾污染事件进行案例分析。结果表明:春、冬季PM2.5平均值明显高于夏、秋季。本地PM2.5浓度受二次细颗粒物的形成、区域传输以及气象条件的影响,交通运输源是重要来源。春季PM2.5/CO(质量比)最高(尤其在凌晨和下午两个时段),此时二次细颗粒物的贡献较大。案例分析发现,安徽省及长三角地区的工业化发达区域(特别是上海市、宁波市等沿海城市)是温州市严重灰霾污染的主要潜在源区;沈阳市也是重要潜在源区,传输路径为海上通道。  相似文献   

14.
为研究成都市降水对大气颗粒物(以下简称颗粒物)的湿清除作用,对2014—2016年成都市的颗粒物(PM_(2.5)、PM_(10))和气象观测数据进行分析。结果表明:月、季尺度下,降水对PM_(2.5)、PM_(10)均有削减作用。降水时段的PM_(2.5)、PM_(10)浓度较非降水时段分别降低17.1%和15.8%,且冬季降幅最为明显。考察472次降水过程对颗粒物的湿清除作用,发现单次降水过程后PM_(2.5)、PM_(10)浓度增长频次(243、234次)和削减频次(229、238次)接近,但颗粒物浓度总体呈削减趋势。对于单次降水过程,颗粒物的初始浓度与降水对颗粒物的湿清除作用关系密切,特别是降水持续时间超过8h后,颗粒物初始浓度越高,削减效果越好。  相似文献   

15.
为掌握室内外细颗粒物(PM_(2.5))污染特性,监测采集西安市某办公场所室内外PM_(2.5)样品,统计分析PM_(2.5)质量浓度特征,探究室内外PM_(2.5)相关性、微观形貌以及矿物组成的差异。结果表明:室内外PM_(2.5)年均质量浓度分别为85.32和109.83μg·m~(-3),冬季污染尤为严重。室内PM_(2.5)受室外PM_(2.5)影响显著,室内外PM_(2.5)质量浓度的相关系数为0.890 0。室内PM_(2.5)多为粒径小于1μm的球状颗粒物,而室外颗粒物形状、大小不规则,室内外PM_(2.5)均含有大量的碳、氧元素,其他元素的种类和含量存在一定差异。室内PM_(2.5)中矿物多为非晶态物质,室外PM_(2.5)主要由石英、赤铁矿和碳酸钙等矿物质组成。  相似文献   

16.
以燃烟为室内污染源,对不同污染程度下室内PM_(2.5)浓度进行动态监测,得到PM_(2.5)的沉降规律。研究发现,污染源对室内PM_(2.5)浓度及沉降时间有显著影响,随着燃烟量的增加,室内PM_(2.5)浓度相应升高,恢复到PM_(2.5)初始值所需的沉降时间越长。在质量平衡模型的基础上,建立了封闭条件下室内颗粒物的沉降模型。经验证,PM_(2.5)沉降曲线的变化规律与颗粒物沉降模型一致,说明构建的沉降模型合理可靠。最后,给出了自然通风对控制室内PM_(2.5)污染的效果,为室内PM_(2.5)污染控制提供参考。  相似文献   

17.
为探究长沙市冬季灰霾污染情况,基于2014年1月21日至2月9日地面和卫星监测数据,应用混合单粒子拉格朗日综合轨迹(HYSPLIT)模式和统计方法研究了长沙市冬季灰霾污染特征、来源和成因。结果表明,长沙市整体污染相对较重,特别是北部部分地区污染非常严重,而南部则相对较轻。污染前期空气质量开始下降,出现轻度污染;中期空气质量已达到重度污染和严重污染程度,PM_(2.5)和PM_(10)最高值均接近800μg/m~3;后期空气质量好转。经气流轨迹聚类后共划分为3类气流:东北、北以及西南,分别占总气流轨迹数的48.8%、34.3%和16.9%。长沙市灰霾污染的潜在源区主要位于山东中南部、河北南部、湖北以及广东、广西和湖南交汇处。结合气象要素发现,污染期风速较小,相对湿度增加,温度和气压降低,进一步加剧污染物堆积。因此,为了改善长沙市空气质量,不仅需对当地污染物排放进行控制,还需对污染物区域传输进行整合治理,实施长沙地区乃至跨区域大气联防联控策略。  相似文献   

18.
通过建立颗粒物穿透率与渗透通风房间换气次数的数学模型以及室内颗粒物浓度集总参数模型,对常州市某住宅建筑室内颗粒物污染特征进行分析,通过实验验证了颗粒物穿透率、室内颗粒物浓度模型的准确性。计算结果表明,对于室内无污染源的渗透通风房间,粒径为0.5、1.0、2.5μm的颗粒物以及PM_(2.5)穿透率随换气次数的增大而增加;当换气次数从0.2次·h~(-1)增加至0.5次·h~(-1)时,PM_(2.5)穿透率由70%增大至88%,增加25.7%。对于用香烟烟雾作为颗粒污染物尘源的房间,空气净化器的实际洁净空气量CADR值为152 m~3·h~(-1),相比实验舱标定工况320 m~3·h~(-1)衰减52.5%。  相似文献   

19.
于2016年9月28日至10月15日在万州城区对气态污染物、颗粒物及其含碳气溶胶进行了在线连续观测,结合气象参数,分析了含碳气溶胶的污染特征。结果表明,此次持续污染过程主要由颗粒物污染造成,污染天PM_(10)和PM_(2.5)平均质量浓度分别为170.8、123.7μg/m~3,显著高于非污染天。污染天和非污染天PM_(2.5)、NO_x、有机碳(OC)及元素碳(EC)浓度的日变化都呈双峰,但污染天PM_(2.5)、NO_x和OC出现早峰值时间比非污染天推迟1~3h。污染天OC、EC的平均质量浓度分别为28.0、5.4μg/m~3,分别为非污染天的2.2、1.6倍。以非污染天的起始点作为参照点,得到污染天OC、EC的平均增长率分别为159.3%和73.0%,OC污染累积和二次转化贡献率分别为45.8%和54.2%,说明污染过程OC以二次转化为主。并用最小比值法估算了二次有机碳(SOC)含量,得到污染天和非污染天PM_(2.5)中SOC平均质量浓度分别为16.3、5.3μg/m~3,SOC在OC中的占比(以质量分数计)分别为56.1%和39.9%,污染天SOC占比增加,也证明污染过程OC以二次转化为主。污染天静风出现频率比非污染天高,在东南风的影响下,OC、EC易出现高浓度。  相似文献   

20.
秋冬季是嘉兴中度及中度以上霾天气多发季节,使用HYSPLIT4模型和潜在源贡献因子法及浓度权重轨迹分析法对嘉兴的潜在污染来源及传输特征进行分析。结果表明,嘉兴中度及中度以上霾天气的后向轨迹可以聚成3类。第1类为来自偏西方向的近距离传输轨迹,轨迹数量占比最大,约46%。第2类为西偏北约45°方向的中距离传输轨迹,轨迹数量约占总数的42%。第3类为西偏北约60°方向的远距离传输轨迹,轨迹数量仅占总数的12%。远距离传输的污染物主要是PM2.5、PM10、SO_2和CO,而近距离传输的主要是NO_2和O_3。对嘉兴秋冬季中度及中度以上霾天气影响较大的主要还是近距离的浙北和苏南地区,尤其是静稳天气时苏南长江沿岸的PM2.5浓度快速增长可能是最主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号