首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
本文采用介质阻挡放电(DBD)强化沸石处理废水中的氨氮,比较了人造沸石、4A沸石分子筛、13X沸石分子筛等3种沸石对氨氮的去除效果,去除率分别为84.84%、17.54%、16.65%.DBD强化人造沸石对氨氮废水去除效果最佳,两者表现出了良好的协同去除氨氮作用.采用单因素实验和正交实验考察了放电电压、放电间距、放电频率等电气参数对氨氮处理的影响.研究结果表明,最佳实验参数为:放电间距0 mm,放电电压22 kV,放电频率14.5 k Hz,20—40目人造沸石投加量10 g·L~(-1),处理20 min,初始浓度100 mg·L~(-1)的模拟氨氮废水去除率达84.84%.在协同体系中,DBD产生的高压电场、热效应加速了离子的迁移,冲击波和超声等增加了分子、离子与沸石颗粒的碰撞几率.氨氮克服沸石表面界膜阻力的能力增加,促使沸石表面吸附的氨氮向沸石内部迁移,氨氮更易被去除.  相似文献   

2.
大量未经处理的氨氮废水肆意排放,严重破坏生态环境和危害人类身体健康.本文设计了连续流循环装置,并采用脉冲电流替代直流电流处理低浓度氨氮废水,考察了脉冲电化学氧化法处理低浓度氨氮废水的优化工艺条件,研究了脉冲电流对氯离子添加量、能耗的影响.最佳工艺条件为:初始氨氮浓度为60 mg·L~(-1),氯离子浓度为120 mg·L~(-1),电流密度为70 m A·cm~(-2),初始pH值为9,溶液初始温度为20℃,脉冲频率为5000 Hz,占空比为50%.电解240 min后废水中氨氮的去除率达85.01%.结果表明,每处理1 t氨氮,脉冲电化学氧化法的氯离子添加量为2.35 t,直流电化学氧化法的氯离子添加量为2.73 t,脉冲比直流电化学氧化氨氮的能耗节约26.20%.采用脉冲电化学氧化法处理低浓度氨氮废水,可减少氯离子添加量,降低能耗,为电化学氧化法处理废水提供了新思路.  相似文献   

3.
微藻处理沼液废水是一项污水资源化处理的生物技术,将富含胞外多糖的紫球藻(Porphyridium cruentum)作为研究对象,以实际沼液废水中氨氮、铜离子(Cu~(2+))和抗生素磺胺二甲嘧啶浓度为对照,分别设置不同浓度上述污染物考察其对紫球藻生长的影响,并测定紫球藻对沼液废水中氨氮、Cu~(2+)和抗生素磺胺二甲嘧啶的富集效果。结果表明,培养10 d后,在正常培养基以及ρ(氨氮)分别为50、500和2 000 mg·L~(-1)培养基中紫球藻生物量分别为1.67、1.74、0.85和0.68 g·L~(-1);在正常培养基以及ρ(Cu~(2+))分别为0.5、1.0和2.0 mg·L~(-1)培养基中,紫球藻生物量分别为2.36、1.81、1.83和1.58 g·L~(-1);在正常培养基以及ρ(抗生素)分别为5、10、20、100和200 mg·L~(-1)培养基中,紫球藻生物量分别为1.60、1.18、1.42、1.30、0.98和0.88 g·L~(-1)。此外,在最佳氨氮、Cu~(2+)及磺胺二甲嘧啶浓度条件下紫球藻对各污染物去除率分别为73.2%、54.3%和56.9%。氨氮为紫球藻的生长提供了一定量营养盐,促进紫球藻生长;Cu~(2+)和高浓度磺胺二甲嘧啶则抑制紫球藻生长。紫球藻富含胞外多糖的特性为沼液废水中难处理污染物Cu~(2+)和抗生素等的富集去除提供了新的思路。  相似文献   

4.
本文以混凝预处理后的上海老港垃圾填埋场渗滤液纳滤浓缩液为研究对象,采用混凝预处理、Fenton氧化法和生化法相结合的工艺对其进行处理,将其出水COD从2930 mg·L~(-1)降至100 mg·L~(-1)以下.采用响应曲面法研究了Fenton氧化法处理经过混凝预处理纳滤浓缩液过程中,各个影响因素之间的相互作用关系,并确定了最佳实验条件,即FeSO_4·7H_2O投加量为62.5 mmol·L~(-1)、H_2O_2投加量为121.8 mmol·L~(-1)、初始pH 3.0.在此条件下,Fenton氧化法可使混凝预处理出水的COD降低39.0%.进一步研究表明,Fenton氧化后纳滤浓缩液中芳香环类污染物减少、腐殖化程度降低.经过3 h的Fenton氧化法处理后,BOD5/COD从纳滤浓缩液原液的0.02上升到0.29.将垃圾渗滤液纳滤浓缩液Fenton氧化法处理后出水与垃圾填埋场渗滤液的纳滤出水1∶1混合,进行序批式活性反应器(SBR)处理,在水力停留时间为2 d时,出水COD可降低至96.0 mg·L~(-1).  相似文献   

5.
龚娴  杨陈凯  马若男  章萍 《环境化学》2019,38(6):1396-1402
以阴离子表面活性剂十二烷基硫酸钠(SDS)为模板剂,制备三维花状LDH(3D-LDH).借助X射线衍射仪(XRD)、傅立叶变换红外光谱仪(FT-IR)等表征手段确定最佳合成SDS浓度,并将最佳条件下产物进行热重-差热分析(TG-DTA)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)分析.此外,将3D-LDH作为吸附剂,研究其对50 mg·L~(-1)甲基橙(MO)的去除性能及机制.结果表明,当SDS浓度高于0.05 mol·L~(-1)时,可形成直径约为1.5—2μm的花状微球.3D-LDH对MO的吸附容量为44.4 mg·g~(-1),吸附动力学符合准二级动力学方程.结合XPS分析,3D-LDH对MO的去除机制主要为离子交换作用.  相似文献   

6.
采用共沉淀法制备聚多巴胺包覆的磁性纳米材料(Fe_3O_4@PDA NPs),并利用透射电子显微镜(TEM)、X光电子能谱(XPS)、振动磁强计(VSM)等手段表征了磁性纳米材料的化学组成和物理形貌.考察了溶液p H值、吸附平衡时间、纳米材料投加量、共存离子及离子强度等对铅吸附的影响,确定最佳实验条件为吸附平衡时间1 h、pH 5.5、吸附剂投加量1.5 g·L~(-1).常见共存离子均不干扰铅的吸附去除.通过直线方程拟合,证实Fe_3O_4@PDA NPs对铅离子的吸附等温线符合Langmuir方程,为单分子层吸附,饱和吸附量约为20.68 mg·g~(-1).1.5 h内,Fe_3O_4@PDA NPs对自来水、模拟废水中铅的吸附去除效率可以达到97.2%以上,此结果表明Fe_3O_4@PDA NPs可以用于铅污染环境水样的净化处理中.  相似文献   

7.
利用溶液法,合成了5-硝基水杨醛缩N-苯基邻苯二胺席夫碱及其铜配合物,通过元素分析、紫外可见吸收光谱、红外吸收光谱和X射线电子能谱等技术进行了结构表征和确认.考察了不同条件下该配合物催化过氧化氢氧化降解三氯生的反应,结果表明该配合物能迅速催化过氧化氢氧化降解三氯生.催化反应速度与配合物的用量、过氧化氢的用量和反应温度等因素有关,在起始三氯生浓度0.02 mmol·L~(-1),铜配合物0.05 mmol·L~(-1),过氧化氢1.0 mmol·L~(-1),pH=7.6,反应温度50℃,反应时间为30 min条件下,三氯生的去除率高达80.5%.通过反应过程中反应活性物质的测定,发现降解过程主要涉及羟基自由基的氧化机理.综上结果表明,席夫碱金属配合物可以作为催化剂催化过氧化氢在近中性条件下氧化降解水中三氯生.  相似文献   

8.
以废纸纤维(WF)为原料,2,2,6,6-四甲基哌啶-1-氧基(TEMPO)为氧化剂,制备不同氧化度的废纸纤维(OWF-1,OWF-2,OWF-3),用于吸附甲基紫染料.采用红外光谱、X射线衍射、扫描电镜对吸附剂的结构和形貌进行表征.结果表明,氧化反应在WF上引入了羧基,降低了结晶度,但并没有改变纤维状形貌.吸附实验结果表明,OWF氧化度越高吸附容量越大,pH对吸附容量影响显著,温度对吸附容量影响较小,表明OWF与甲基紫之间的存在电荷吸附.在30℃,pH=9,甲基紫初始质量浓度为50 mg·L~(-1),OWF-3质量浓度为1000 mg·L~(-1)的条件下,吸附容量达到48.1 mg·g~(-1).对吸附过程的等温线及动力学进行研究,发现Freundlich吸附等温线和拟二级动力学模型能够更好描述吸附过程.此外,OWF-3具有良好的分离和再生性能.  相似文献   

9.
厌氧除磷同步脱氮及影响因素研究   总被引:1,自引:0,他引:1  
采用鸡粪污泥为种泥,在厌氧混合连续流反应装置内进行厌氧还原磷产生磷化氧功能菌的富集,进行硝酸盐、硫酸盐、不同碳源和氮源条件下厌氧除磷效率的研究,并考察磷化氧的生成与硝酸、总磷、氨氮去除的关系.结果表明,(1)SO_4~(2-)-S适宜的投加量为26 mg·L~(-1),不投加NO_3~--N.水中含有氧化态的无机物在厌氧条件下与磷争夺[H]导致厌氧除磷的效率下降.(2)合适的碳源为葡萄糖1 000 mg·L~(-1),纤维素不适合作为碳源,合适的氮源为蛋白胨500 mg·L~(-1),水中含有的还原糖和有机氮源促进磷化氧的生成.(3)pH值控制在6.5~7.0的范围,最适宜的生长温度在35℃左右.(4)氨氮的去除率随着总磷的去除率而增加,在厌氧条件下可达到同时脱氮除磷的效果.磷的去除由厌氧除磷菌还原磷生成磷化氧完成,氨氮由生成氮气或生成蛋白质来去除.  相似文献   

10.
建立了离子色谱-串联质谱法(IC-MS/MS)测定碳酸饮料中高氯酸盐的分析方法.碳酸饮料样品经超声脱气后,以On GuardⅡRP柱去除疏水性有机物,采用Ion Pac AS20(2 mm)阴离子分析柱,以氢氧化钾(KOH)为淋洗液,IC-MS/MS联用分析,内标法定量.高氯酸盐在0.02—5.0μg·L~(-1)范围内线性良好,相关系数r~2=0.9991.加标浓度为0.02—1.0μg·L~(-1)时,回收率为92.2%—103.2%.方法检出限(S/N=3)为0.001μg·L~(-1).该方法前处理简单、准确、灵敏度高,适用于碳酸饮料中高氯酸盐的测定.  相似文献   

11.
改性斜发沸石处理高浓度氨氮废水   总被引:2,自引:0,他引:2  
采用NaOH碱熔法对缙云斜发沸石进行处理,采用正交实验对碱熔法改性沸石的最佳条件进行了选择;并对改性前后的沸石进行粉末X射线衍射(XRD)、电感耦合等离子体发射光谱法(ICP-AES)和扫描电镜(SEM)表征;详细研究了所得改性沸石在氨氮废水处理中的净化性能.结果表明,处理沸石的水热温度对氨氮去除效果的影响最显著;碱熔法处理可使缙云斜发沸石转变为低硅铝比的Na-P型分子筛,它对氨氮废水的NH4+-N具有优异的吸附性能.当改性沸石投加量为5 g,对100 mL浓度为1000 mg.L-1氨氮溶液,氨氮去除率可达77.8%,改性沸石吸附NH4+-N是一快速吸附过程,且能较好地符合Langmuir吸附等温模式,偏向于单分子层的吸附.  相似文献   

12.
NaCl改性人造沸石去除废水中氨氮的性能及其影响因素   总被引:1,自引:0,他引:1  
采用NaCl溶液对人造沸石进行改性处理,考察NaCl溶液浓度对改性效果的影响.通过表面特征分析、静态吸附试验及吸附等温分析,进一步比较了人造沸石和改性人造沸石对氨氮的吸附去除性能.由X射线衍射(XRD)分析可知,沸石经改性后表面变粗糙,同时出现NaCl晶体特征衍射峰.试验结果表明,1.0 mol·L-1NaCl溶液对人造沸石的改性效果最佳;在沸石用量为1.0 g(50 mL废水)、氨氮浓度为10 mol·L-1、反应时间为40 min、反应温度为25℃和pH值为6.52条件下,改性人造沸石对氨氮的吸附效果最佳,去除率为96.02%.Langmuir和Freundlich吸附等温方程均可较好地拟合2种沸石对氨氮的吸附过程.改性人造沸石对氨氮的吸附饱和容量(21.46 mg·g-1)远大于人造沸石(9.03 mg·g-1).  相似文献   

13.
金属线材厂拉制线材用的铜拉丝油由基础油(矿物油、植物油和合成油)、乳化剂、抗氧化剂、抗泡剂等物质组成,能与水形成稳定的乳化液,主要起冷却、润滑、清洗、防锈等作用,经冷热交替和微生物降解会导致其变质,需要周期性的更换,产生需要处理的废乳化液。废乳化液量随着线缆行业的快速发展越来越多,该废液呈蓝色且有机物浓度高,若排放将对周围环境产生严重污染,经过处理达标排放成为该类企业的当务之急。Fenton氧化法是一种高级氧化技术,在酸性条件下,H_2O_2被Fe~(2+)催化分解并产生大量具有强氧化性的·OH,通过·OH氧化降解废水中的有机物,达到废水净化的目的。在处理有毒有害难生物降解有机废水方面具有较强的应用优势;本研究采用两级Fenton氧化法对高浓度高色度铜拉丝乳化液进行预处理,通过实验研究了H_2O_2和FeSO_4投加量、初始反应pH值、反应时间等因素对该废水处理效果的影响。结果表明,首级Fenton法处理废水的最佳反应条件为:pH值为2、H_2O_2(质量分数30%)投加量为140 mL·L~(-1)、FeSO_4(质量分数10%)投加量为96mL·L~(-1)和反应时间为40 min;二级Fenton氧化法考察了H_2O_2及FeSO_4投加量、反应时间等因素处理首级Fenton上清液的情况,结果表明:H_2O_2(30%)投加量为144 mL·L~(-1),FeSO_4(10%)投加量为192mL·L~(-1),初始反应pH值为2,反应时间为80min。原水COD约40000mg·L~(-1)降低到2000mg·L~(-1)以下,COD去除率高达95%,颜色从蓝色变成了无色,满足了后续生化处理对进水浓度的要求。为解决同类高浓度铜拉丝乳化液废水预处理提供了技术参考。  相似文献   

14.
在流动式电解槽中氨氮废水的间接电氧化   总被引:10,自引:0,他引:10  
研究了氨氮废水在流动式电解槽中的间接电化学氧化,讨论了氯离子浓度、电解液流速、氨氮初始浓度对氨氮去除的影响结果表明,氯离子浓度和电解液流速对氨氮的去除速率有很大的影响当电流密度为50mA·cm-2、流速为50ml·min-1时,氨氮去除速率常数为389×10-5g·l-1·m-1·s-1,去除1kg氨的氮能耗为557kWh  相似文献   

15.
分别以氧化铝、氧化硅和多壁碳纳米管为载体,采用沉淀-沉积法制备负载型Pd催化剂.采用透射电镜(TEM)、X射线衍射(XRD)、电感耦合等离子体发射光谱(ICP-AES)、X射线光电子能谱(XPS)等手段对材料进行表征,并对溴氯代乙酸(BCAA)的液相催化加氢脱卤反应进行了研究.结果表明,由于Pd/Al_2O_3催化剂具有较高的等电点,因此相对于Pd/CNT、Pd/SiO_2在BCAA的加氢脱卤反应中具有更高的活性.以Pd/Al_2O_3为目标催化剂,对BCAA的加氢脱卤展开研究,发现催化活性随Pd的负载量的增加而提高.当反应物的初始浓度为0. 1 mmol·L~(-1),pH值为5.6,Pd(1.39)/Al_2O_3用量为25 mg·L~(-1)时,BCAA在20 min时可以实现完全脱溴并在反应2 h后脱氯达60.5%.另外,pH的升高不利于脱卤反应的进行.当反应物的浓度从0. 05 mmol·L~(-1)提高到0.4 mmol·L~(-1)时,反应初活性从1.55 mmol·L~(-1) min~(-1) gCat~(-1)提高到8.37 mmol·L~(-1) min~(-1) gCat~(-1).进一步通过拟合Langumir-Hinshelwood模型,相关系数达到0.97,说明BCAA的加氢脱卤是吸附控制机制.催化过程中溴氯代乙酸的脱溴和脱氯具有协同作用,反应最终生成乙酸.  相似文献   

16.
低温下曝气生物滤池预处理污染河水的试验研究   总被引:1,自引:0,他引:1  
采用两段曝气生物滤床串联工艺预处理入滇新运粮河河水,研究了其在冬天低温条件下对有机物和氨氮的去除效果,并考察了pH值的变化。结果表明,在进水流量为2.4 m3.d-1、水温为13-16℃、原水ρ(CODCr)为66.46-107.82 mg·L-1、ρ(氨氮)为22.15-30.68 mg·L-1的水质特征条件下,系统对CODCr和氨氮的去除率分别为36.08%-50.37%和76.98%-93.56%。其中,碳氧化段以去除有机物为主,硝化段以去除氨氮为主;系统中硝酸氮质量浓度明显升高,无亚硝氮的积累;装置对总氮的平均去除率为19.56%,可以认为总氮的去除是同步硝化反硝化的结果。系统中pH值有所变化但维持在7-8之间,其中碳氧化段pH值升高,硝化段pH值下降。系统对有机物和氨氮良好的去除效果为后续进一步的生物处理提供了条件。  相似文献   

17.
采用十六烷基三甲基氯化铵(CTAC)改性粉末活性炭(PAC),来提高活性炭电极的电化学性能和电极对砷离子的吸附能力.以质量浓度为1 mmol·L~(-1)的CTAC改性粉末活性炭(PAC)12 h,并以此活性炭制备电极,电极的比电容为67 F·g~(-1),相比未改性PAC电极提升45%,电极扩散电阻稍有增加.通过优化电极制备成分配比,以CB∶PVDF∶CTAC-PAC=15∶5∶80比例制备的CTAC-PAC电极的比电容为112 F·g~(-1),相比未改性PAC电极提升143%,扩散电阻稍有增加.在100μg·L~(-1)砷溶液吸附实验中,优化制备条件后的CTAC-PAC电极,对砷离子吸附量相比未改性PAC电极提升32%,出水砷浓度为8μg·L~(-1).  相似文献   

18.
采用静态批试验方法研究了凹凸棒石和海泡石对溶液中Cd~(2+)的吸附特性,并通过考察一定离子强度下,不同初始浓度、固液比、吸附时间和pH值对吸附镉的影响。结果显示:在0.01 mol·L~(-1)NaNO_3离子强度下,高品位海泡石、凹凸棒石和低品位凹凸棒石对溶液中Cd~(2+)的吸附量与初始浓度呈正比,与固液比呈反比;根据Langmuir等温吸附方程拟合结果,在给定离子强度25℃条件下黏土矿物Cd~(2+)的理论饱和吸附量从大到小依次为高品位凹凸棒石(33.67 mg·g~(-1))、高品位海泡石(25.55 mg·g~(-1))、低品位凹凸棒石(11.52 mg·g~(-1))和低品位海泡石(5.24mg·g~(-1));Cd~(2+)在海泡石、凹凸棒石上的吸附受pH值的影响较大,在pH值为2~4时吸附效果最好;凹凸棒石对Cd~(2+)的吸附较为稳定,在3 h时基本达到吸附平衡;在离子强度为0.01 mol·L~(-1)NaNO_3、Cd~(2+)初始浓度为625 mg·L~(-1)、黏土矿物添加量为15 g·L~(-1)和pH值为2~4时,去除效果从大到小依次为高品位海泡石、高品位凹凸棒石、低品位凹凸棒石和低品位海泡石。  相似文献   

19.
本文针对KMnO_4、ClO_2、NaClO、O_3、H_2O_2去除饮用水中戊基硫醚(diamyl sulfide,DAS)和丙基硫醚(dipropyl sulfide,DPS)进行了研究.在中性室温条件下选取KMnO_4、ClO_2、NaClO、O_3、H_2O_(2 )5种氧化方式氧化2000 ng·L~(-1) DPS、DAS,并探究其去除效果、氧化动力学及氧化机理.实验结果表明,5种氧化方式氧化2000 ng·L~(-1)的DPS、DAS 2 h后,DPS、DAS去除率大多数都达到了90%以上,DPS、DAS氧化后剩余浓度大多低于其嗅阈值;根据动力学常数计算,高锰酸钾与DPS、DAS的二级反应动力学常数分别为2.30×10~4、1.74×10~4 L·mol~(-1)·min~(-1);O_3、H_2O_2氧化结果表明,O_3氧化效果明显高于其他氧化方式,但单独使用H_2O_2效果不及其他氧化剂;ClO_2、NaClO在硫醚的氧化中效果显著,去除率接近100%;高锰酸钾在氧化中存在色度问题,当水体中DPS、DAS浓度水平较高时高锰酸钾适用性不强;高锰酸钾、次氯酸钠、二氧化氯等氧化剂会使DPS、DAS氧化成砜类物质,本研究中识别出二戊基砜(diamyl sulfone)、二丙基砜(dipropyl sulfone).  相似文献   

20.
以大环多胺镍配合物[NiL](ClO_4)_2为催化剂(L=1,8-二甲基-1,3,6,8,10,13六氮杂十四烷),H2O2为氧化剂,碱性品红为底物,研究了催化剂用量、氧化剂投入量、底物浓度、反应溶液pH值、反应温度、常见阴离子和天然有机物对催化反应效率的影响.结果表明,反应体系p H=6,催化剂浓度200μmol·L~(-1),碱性品红浓度15 mg·L~(-1),氧化剂投入量0.12 mol·L~(-1),在50℃下反应催化速率达最大值,10 min内碱性品红脱色率96.7%.通过自由基淬灭实验和电子顺磁共振测试发现[NiL](ClO_4)_2-H_2O_2反应体系中主要起氧化降解作用的自由基是O_2~-·,并推测反应机理为:过氧化氢与大环多胺镍配位化合物的中心离子镍配位,形成一个五配位的配位化合物,配位化合物在溶液中分解能给出超氧离子,超氧离子降解碱性品红.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号