首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
不同温度桉树叶生物炭对Cd2+的吸附特性及机制   总被引:2,自引:0,他引:2  
通过元素分析、BET-N2、Zeta电位、Boehm滴定,SEM-EDS、FTIR等分析方法对不同热解温度(300、500和700℃)下制备的桉树叶生物炭进行表征,研究了3种生物炭(BC300、BC500和BC700)对Cd2+的吸附特性与机制.结果表明,随温度升高,生物炭产率下降,灰分、pH值和Zeta负电荷量上升,比表面积增大.当Cd2+浓度为20mg/L时,平衡时间依次为80min(BC700)<360min(BC500)<540min(BC300),均符合准二级动力学模型(R2>0.98),以化学吸附为主.BC300和BC500吸附过程均符合Langmuir和Freundlich模型,BC700更符合Freundlich模型,最大吸附量依次为BC700(94.32mg/g) > BC500(67.07mg/g) > BC300(60.38mg/g).在Boehm滴定结果分析的基础上,结合FTIR和SEM-EDS,表明生物炭吸附机制主要为静电吸附和官能团络合作用.BC700吸附性能最佳,原因可能是具有较大的比表面积、较多的负电荷量和较为丰富的官能团.  相似文献   

2.
小麦秸秆生物炭对水中对羟基苯甲酸乙酯的吸附特性   总被引:2,自引:0,他引:2  
对羟基苯甲酸乙酯属于尼泊金酯类物质,是一种典型的新兴环境污染物.本研究通过制得不同热解温度(300、500和700℃)下的小麦秸秆生物炭(分别表示为BC300、BC500、BC700),对水中对羟基苯甲酸乙酯进行间歇吸附.结果表明,热解温度升高会导致生物炭表面疏水性增强,且引起零电荷点从8.37升至9.42.溶液初始p H值由8升至12时,对羟基苯甲酸乙酯去除率显著递减;此外,溶液离子强度的增强会导致对羟基苯甲酸乙酯去除率的下降.生物炭吸附水中对羟基苯甲酸乙酯的等温吸附过程符合Langmuir方程,其中,最大吸附容量排序为:BC700BC500BC300.同时,吸附过程符合准二级动力学方程,且为吸热自发过程.此外,经过4轮再生吸附,生物炭吸附容量仍可达到最初的90%,其中,BC700展示出最高的吸附效率(92.76%).  相似文献   

3.
以传统中药-黄芪废渣为原料,分别在200℃、400℃、500℃、600℃和700℃的厌氧氛围下热解制备生物炭材料(BC200、BC400、BC500、BC600和BC700),并利用BET比表面积分析、FTIR光谱分析、扫描电子显微镜等方法对其进行表征,同时考察不同投加量、吸附时间、初始浓度和pH值下生物炭对磺胺甲基嘧啶的吸附特征.结果表明,随制备温度的升高,生物炭的表面积及吸附性能也显著增加.相比原状黄芪渣(SBET=0.42m2/g),BC700的BET比表面积(SBET=155.69m2/g)增大370倍,对磺胺甲基嘧啶的吸附容量增加185倍.BC700对磺胺甲基嘧啶的等温吸附过程符合Langmuir模型(R2=0.9977),最大吸附容量为11.96mg/g,吸附反应过程满足准二级动力学方程(R2>0.994),且为化学吸附.同时随着溶液初始pH值和投加量的升高,生物炭的吸附容量先增大后减小,最佳吸附pH值为4.  相似文献   

4.
为使浒苔得到资源化利用,本研究采用慢速热解技术于不同温度下制备浒苔生物炭,并对其理化性质进行表征.结果表明,400℃时,浒苔裂解已达较高程度.浒苔生物炭产率及灰分含量与热解温度呈负相关,碳含量与热解温度呈正相关,其表面呈蜂窝状多孔结构,比表面积为44.54~317.82 m~2·g~(-1),表面含有丰富的羟基(—OH)和羧基(—COOH)等含氧官能团.吸附实验显示,浒苔生物炭对Cr(Ⅵ)的吸附符合准二级动力学方程和Langmuir等温吸附模型.表明浒苔生物炭对Cr(Ⅵ)的吸附为单分子层化学吸附,主要受快速反应过程控制.浒苔生物炭吸附Cr(Ⅵ)的最适p H为2,吸附容量表现为BC400BC700BC600BC500BC300,其中BC400的吸附量为4.79 mg·g~(-1).浒苔生物炭对Cr(Ⅵ)的吸附机制主要包括生物炭与HCr O-4和Cr2O_2-7等阴离子之间的静电作用,以及生物炭表面—OH和—COOH等含氧官能团的络合作用.  相似文献   

5.
以山羊粪便为原料,在300℃和700℃缺氧热解条件下制备生物炭,分别记为D300和D700。使用扫描电镜表征生物炭结构特征,运用比表面积仪测定其比表面积和孔径大小,以此探究不同热解温度条件下羊粪生物炭的内部结构及比表面积特征。以水体氨氮(20 mol/L)为目标污染物,以D300和D700为吸附剂,研究不同氨氮浓度、温度、pH以及吸附剂投加量等因素对水体氨氮吸附的影响以及吸附特性。结果表明:热解温度从300℃上升到700℃,生物炭的比表面积、总孔容随之增大,平均孔径反之减小,吸附效率从15.72%提升到24.73%。羊粪生物炭吸附水体氨氮的最佳pH在6~8;通过对动力学数据进行分析,发现准二级动力学方程(R~2=0.999 1)比准一级动力学方程(R~2=0.663 3)能更好地拟合动力学数据。吸附等温曲线拟合发现Langmuir方程(R~2=0.842 74)能更好地描述氨氮在羊粪生物炭上的吸附行为。吉布斯自由能变化、焓变和熵变的计算结果表明:羊粪生物炭对氨氮的吸附过程是自发的吸热过程。700℃条件下制备的羊粪生物炭比D300拥有更好的吸附性能。  相似文献   

6.
分别在300、500和700℃将核桃青皮粉末限氧热解制备生物炭,以生物炭为载体固定化解有机磷菌(organic phosphorus-degrading bacteria, OPDB).通过对比不同热解温度生物炭固定化OPDB吸附Pb2+的效果,优选出吸附效果最佳的固定化OPDB菌剂.利用傅里叶变换红外光谱分析、扫描电子显微镜、比表面积测试法对其进行表征分析,并探讨了生物炭添加量、溶液pH和吸附温度对吸附行为的影响,结合吸附动力学与等温吸附模型探究生物炭固定化OPDB对Pb2+的吸附过程及机理.结果表明,500℃限氧热解核桃青皮生物炭固定化OPDB菌剂对Pb2+的吸附效果最佳,最适吸附条件为:温度30℃,pH为6~7,生物炭添加量为0.1 g·100 mL-1.吸附过程较符合拟一级动力学模型,且吸附30min基本达到平衡,符合Langmuir模型,属于单分子层吸附.  相似文献   

7.
为了提高废水中Cd~(2+)的去除效率并获得高效、低成本吸附剂,以市政污泥为原料,在300℃和500℃条件下限氧热解制备生物炭(BC300和BC500)并用NaOH进行改性(NC300和NC500)。通过元素分析、扫描电镜和傅里叶红外光谱等方法对污泥基生物炭进行表征,运用吸附动力学和吸附等温线系统研究了改性前后污泥基生物炭对Cd~(2+)的吸附特性。结果表明:与未改性的污泥基生物炭相比,改性污泥基生物炭的极性降低,疏水性增强;碱改性炭表面具有更多的-CH_2-,C=O和C-O等官能团,有利于水体中Cd~(2+)的吸附; 4种污泥基生物炭对Cd~(2+)的吸附过程符合准二级动力学方程和Freundlich等温吸附模型,NC300和NC500对于Cd~(2+)的最大平衡吸附量较改性前分别提高了2倍和1.1倍。  相似文献   

8.
茶渣生物炭制备及其对溶液中四环素的去除特性   总被引:9,自引:6,他引:3  
以茶渣(tea waste)为对象,在300、 500和700℃限氧条件下热解制备成生物炭(TWBC300、 TWBC500和TWBC700),研究其对溶液中四环素(tetracycline,TC)的去除特性.采用元素分析、比表面积分析仪、傅里叶红外光谱(FTIR)和X射线光电子能谱(XPS)对TWBC300、 TWBC500及TWBC700进行表征;考察生物炭添加量、溶液初始pH、离子类型及强度等因素对四环素去除效果的影响;结合吸附动力学、吸附等温线和仪器表征结果探究生物炭对溶液中四环素的作用机制.结果表明,适合的生物炭投加量为4.0g·L~(-1).溶液初始pH对生物炭去除四环素的影响较小.溶液中阳离子类型对生物炭吸附四环素的抑制作用依次是Mg~(2+)Ca~(2+)K~+Na~+.NH~+_4能略微促进生物炭对四环素的吸附,而铜离子却显著抑制生物炭对四环素的去除.环境温度增加能提升生物炭对四环素的去除效果.拟二级动力学方程和Langmuir模型可以较好地拟合茶渣生物炭吸附四环素的过程.茶渣生物炭对四环素的吸附量依次是TWBC700TWBC500TWBC300.孔隙扩散、氢键和π-π作用是茶渣生物炭去除四环素的主要机制.因此,高温制备的茶渣生物炭可作为废水中四环素去除的良好吸附剂.  相似文献   

9.
以牛粪为原料在400,500,600 ℃条件下限氧热解制备牛粪生物炭(BC),然后以不同质量比将升华硫和BC混合共热解制备硫改性牛粪生物炭(BCS)。使用元素分析仪、SEM、FTIR、XPS和BET对制得的BC和BCS进行了表征,并研究了各BC和BCS对Hg2+的吸附特性。结果表明:热解过程使BC和BCS变得粗糙多孔,Hg2+被吸附到生物炭表面和孔道内;BC和BCS的吸附过程符合准二级动力学模型,BCS对Hg2+的吸附平衡时间仅为30 min,且吸附过程不受pH影响;Langmuir模型可较好地描述BC吸附过程,吸附量随热解温度的升高而降低,BCS吸附过程符合Freundlich模型,吸附能力较BC显著提升,最大拟合吸附量达到407.81 mg/g;BCS的吸附稳定性较高,在各解吸剂中的解吸率均低于5%;BC主要吸附机理为官能团络合,BCS主要吸附机理为HgS沉淀。因此BCS是一种高效稳定的Hg2+吸附材料。  相似文献   

10.
为探究不同裂解温度下稻壳生物炭的结构和性质差异及其对阿特拉津(AT)的吸附作用机制和构-效关系,以稻壳为原料在300、500和700℃下制备稻壳生物炭(分别记为RH300、RH500、RH700),通过电镜扫描、元素分析仪、比表面积分析仪和傅里叶变换红外光谱分析仪等对3种稻壳生物炭进行结构表征分析,并采用批量等温吸附法研究稻壳生物炭对AT的吸附特性.结果表明:裂解温度由300℃升至700℃时,稻壳生物炭中w(C)由48.81%升至64.67%,w(H)、w(N)和w(O)则由3.22%、1.45%和34.66%分别降至0.89%、0.92%和16.29%,原子比H/C、O/C和(O+N)/C值均降低.可见,随着裂解温度升高,稻壳生物炭的芳香性增强,亲水性和极性降低,且比表面积和孔体积增大,平均孔径减小.3种稻壳生物炭对AT的吸附均可用Freundlich和Langmuir两种等温吸附模型进行较好地拟合(R≥0.948,P < 0.01),吸附作用及非线性程度与生物炭的比表面积(SSA)、芳香性(H/C)、亲水性(O/C)和极性〔(O+N)/C〕呈良好的指数关系,大小表现为RH700 > RH500 > RH300.稻壳生物炭对AT的吸附机制主要包括分配作用和表面吸附,分配作用强度与生物炭的极性和炭化程度有关;而表面吸附作用与AT的分子大小有关,3种稻壳生物炭对AT的表面吸附除表面覆盖外,还存在多层平铺、毛细管现象和孔隙填充等.研究显示,裂解温度是影响生物炭吸附有机污染物的重要因素,在综合考虑成本和制备工艺的同时,适当提高裂解温度可增强生物炭对有机污染物的吸附作用.   相似文献   

11.
利用杨树木屑在限氧条件下,制备出3种不同热解温度下的生物炭,以探究其对水溶液混合磺胺类药物(SAs)的吸附机制.结果表明:350℃烧制的生物炭(BC350)孔径以大孔为主,而500℃(BC500)与650℃(BC650)以介孔为主;生物炭表面芳香性随着热解温度提高而增强.伪二级模型较适合描述生物炭吸附SAs的动力学过程...  相似文献   

12.
硝基苯是水中广泛存在的污染物,生物炭是一种很有前途的去除有机污染物的材料,但其吸附能力较低。改性可以用于改善其吸附性能,但关于改性生物炭吸附硝基苯的研究较少。为了研究改性生物炭对硝基苯吸附的影响,文章制备了不同温度下的小麦秸秆生物炭,通过KOH改性处理,分析了改性对生物炭结构和形貌的影响,研究了KOH改性对生物炭吸附硝基苯的影响,采用等温吸附模型、吸附-分配双模型等方法,探讨了改性对生物炭吸附硝基苯作用机制的影响。结果表明,改性提高了500℃和700℃生物炭的比表面积和微孔面积,降低了介孔面积。改性降低了300℃生物炭的芳香性,提高了500℃和700℃生物炭的芳香性。生物炭对硝基苯的等温吸附拟合Freundlich好于Langmuir模型,改性降低了300℃生物炭的吸附性能,提高了500℃和700℃生物炭的吸附性能,其中BC-700-KOH吸附性能最好。吸附-分配模型拟合结果表明,300℃生物炭以分配为主,改性抑制了生物炭的表面吸附能力。500℃和700℃生物炭以表面吸附为主,改性提高了生物炭的表面吸附能力。改性通过提高500℃和700℃生物炭的芳香化程度,增加比表面积和微孔面积,增强...  相似文献   

13.
鉴于污泥基生物炭作为重金属吸附剂的研究还缺乏足够的数据,为探讨不同热解温度对生物炭结构性质及其对水体重金属吸附能力的影响,在缺氧条件下于300~900℃范围内以城市污泥为原料制备生物炭,利用元素分析、比表面积测定、电位测定和红外光谱分析等方法对生物炭的理化性质和结构特征进行表征,并选用900℃生物炭进行了吸附重金属Pb、Cr和Cd的试验研究.结果表明:① 300~900℃缺氧条件下制备的生物炭产率为44.39%~69.41%,污泥呈弱酸性(pH为6.35),热解后的生物炭呈碱性(pH为7.7~10.58).② 900℃生物炭中w(H)、w(N)大幅降低,分别比干污泥中减少89.50%和77.16%,而w(C)降低29.22%,固碳作用显著.热解后生物炭比表面积明显增大,700和900℃生物炭比表面积分别达到58.48和87.55 m2/g,最佳制备温度为700~900℃.③ 热解后的生物炭具有大量极性基团,热解温度越高,酸性基团越少,碱性基团含量增多.④ 热解作用使生物炭zeta电位升高,吸附能力增强.⑤ 900℃生物炭吸附Pb、Cr和Cd的最佳pH为7~8,对Pb、Cr和Cd的最大吸附量分别为2.38、2.48和1.16 mg/g.⑥ 各因素对生物炭吸附重金属的影响顺序,对于Pb和Cr表现为生物炭投加量>热解温度;对于Cd,表现为生物炭投加量>pH.研究显示,污泥基生物炭对Pb、Cr的吸附能力高于Cd,影响生物炭吸附行为的主导因子为生物炭投加量,影响Pb和Cr吸附的次要因子为生物炭热解温度,而影响Cd的次要因子为pH.生物炭吸附重金属的主要机理是离子交换吸附、络合反应、表面沉淀和竞争性抑制作用.   相似文献   

14.
生物炭对土壤中重金属铅和锌的吸附特性   总被引:20,自引:8,他引:12  
王红  夏雯  卢平  布雨薇  杨浩 《环境科学》2017,38(9):3944-3952
利用固定床热解实验装置在不同热解温度(300~700℃)下制备了3种生物炭[杨树枝炭(PBC)、水葫芦炭(WHC)和玉米秸秆炭(CSC)],以南京市铅锌银矿区周边的菜园土为对象,研究了生物炭种类、热解温度和生物炭添加量对土壤重金属(Pb和Zn)吸附特性的影响,并结合生物炭的孔隙度、XRD和FTIR等分析,初步探讨了生物炭对土壤重金属的吸附机制.结果表明,生物炭的添加均不同程度地降低了土壤中Zn和Pb的浸出含量,水葫芦炭对土壤重金属的吸附效果最佳,在热解温度为500℃和生物炭添加量为5%的条件下,水葫芦炭对土壤中Zn和Pb的吸附率分别为21.83%和44.57%,相应的单位吸附量分别为227.65μg·g~(-1)和363.76μg·g~(-1).随着热解温度的升高,生物炭对土壤中Zn和Pb的吸附率逐渐增大,且在热解温度为500℃和700℃下制备的水葫芦炭对土壤中Zn和Pb的吸附能力相差不大,这表明中等温度热解有利于水葫芦炭形成较好的理化特性.随着生物炭添加量的增加,水葫芦炭对土壤中Zn和Pb的吸附率逐渐增大,但单位吸附量却逐渐减小,当水葫芦炭添加量为10%时,其对土壤中Pb的吸附率可达93.93%.结合生物炭的理化结构和土壤重金属吸附实验的结果,可以推测离子交换和络合作用是水葫芦炭修复重金属污染土壤的主要作用机制.  相似文献   

15.
水稻秸秆生物炭对磺胺类抗生素的吸附研究   总被引:2,自引:0,他引:2  
研究了3种热解温度分别为300℃(S300)、450℃(S450)、600℃(S600)的水稻秸秆生物炭对两种磺胺类抗生素的吸附性能及机制,同时考察了溶液p H值及离子强度对吸附的影响。结果表明,生物炭对磺胺二甲基嘧啶(SM_2)和磺胺甲恶唑(SMX)的吸附均符合准二级动力学方程;等温吸附曲线用Langmuir方程拟合优于Freundlich方程,3种生物炭的最大吸附量随热解温度的升高而升高,且对SM_2的吸附能力优于SMX,600℃热解的秸秆炭对SM_2和SMX的最大吸附量分别可达到2 857.1 mg/kg和1 724.1 mg/kg。溶液p H显著影响吸附,SM2和SMX的吸附以中性形态为主,p H在3~11的范围内,SM_2和SMX的最佳p H分别为5和3。生物炭对2种抗生素的吸附能力随离子强度的升高而轻微下降。红外光谱分析表明,氢键结合、π-π共轭是秸秆生物炭吸附2种磺胺抗生素的主要机理。  相似文献   

16.
造纸污泥生物炭对四环素的吸附特性及机理   总被引:2,自引:0,他引:2  
以造纸污泥为原料,在限氧条件下,通过控制热解温度(300,500和700℃),制备生物炭(SBC300、SBC500和SBC700),比较了3种生物炭的基本理化性质;以四环素(TC)为目标污染物,研究了造纸污泥生物炭(SBC)对TC的吸附特性及机理.结果表明,SBC对TC的吸附以化学吸附为主,吸附平衡时,SBC300对TC的去除率最低,为38.8%,SBC700的去除率最高,为54.1%;同时Langmuir模型能更好地描述此吸附过程,且最大吸附量依次为SBC700(63.8mg/g) > SBC500(50.6mg/g) > SBC300(40.0mg/g).热力学分析表明,SBC对TC的吸附为自发且吸热的过程.pH值影响TC的存在形态及SBC的表面带电情况,对吸附过程有较大影响.通过吸附等温线分解法定量描述了表面吸附作用及分配作用的贡献率,结合FTIR分析,表明SBC对TC的吸附可能是分配作用、静电作用、氢键作用、π-π EDA作用及离子交换作用等共同作用的结果.  相似文献   

17.
农业废弃物基生物炭对水溶液中镉的吸附效果与机制   总被引:3,自引:2,他引:1  
龚沛云  孙丽娟  宋科  孙雅菲  秦秦  周斌  薛永 《环境科学》2022,43(6):3211-3220
以畜禽粪便(牛粪、鸡粪、猪粪)为原料分别在300℃和700℃下制备生物炭,以作物秸秆(小麦秸秆、水稻秸秆、玉米秸秆)为原料分别在300℃和500℃下制备生物炭,利用比表面积和孔径分析仪、扫描电镜、傅里叶红外光谱仪、X射线衍射仪和CHN分析仪等对农业废弃物基生物炭的理化性质、表面结构和元素组成进行表征,研究生物炭理化性质差异和其对镉吸附效果和机制.结果表明,不同农业废弃物基生物炭对Cd2+的等温吸附符合Langmiur方程,拟合结果发现随着热解温度的升高,牛粪、鸡粪和猪粪基生物炭对Cd2+的最大吸附量分别从83.40、19.65和96.74 mg·g-1增加至106.54、 268.89和164.53 mg·g-1;而不同热解温度下制备的秸秆基生物炭对Cd2+的最大吸附量差异不显著.农业废弃物基生物炭呈碱性,除牛粪生物炭外,灰分含量随热解温度上升而增加.随着热解温度的上升,生物炭孔隙结构变丰富,含氧官能团增加,出现芳香结构.通过定量分析,发现生物炭Cd2+总...  相似文献   

18.
不同热解温度的生物炭在土壤中的矿化作用研究   总被引:2,自引:0,他引:2  
为探究不同热解温度的生物炭不同组分(易降解和相对难降解碳)对其在土壤中矿化作用的影响及机理,将生物质甘蔗渣和在300、500、800℃下热解生成的生物炭(分别表示为BC300、BC500、BC800)通过水洗法剥离出碳骨架部分,然后加入含有定量土壤菌悬液的石英砂中,设置了50 d的控温培养实验并测定培养过程中不同处理样品的矿化速率.结果表明,随着热解温度从300℃升高至800℃,生物炭的易降解碳含量降低,平均停留时间从2 d增加到38 d,相对难降解碳平均停留时间从14年增加到700多年.环境温度为25℃时,碳骨架中由于缺少微生物可利用的溶解性有机碳,所以在土壤中稳定性强.环境温度升高至35℃时,温度升高提高了微生物活性,增加了碳骨架的微生物可利用部分.800℃热解生成的生物炭(BC800)及其碳骨架(W800)的累积矿化量比空白低,且即使温度升高,W800的相对难降解碳含量仍然保持最高,表明高温生物炭具有更好的固碳效果.  相似文献   

19.
罗飞  宋静  陈梦舫 《环境科学研究》2016,29(11):1651-1658
以玉米秸秆和城市污泥为生物质原材料,并于300、500、700 ℃下厌氧热解,分析生物炭和生物油中PAHs的生成、分配及毒性特征.结果表明:玉米秸秆和城市污泥在300~700 ℃下热解后分配于生物炭中的w(PAHs)分别为116.8~1 807和136.3~52 015 μg/kg,分配于生物油中的w(PAHs)分别为10 612~33 402和11 077~116 673 μg/kg.生物炭和生物油中以低环PAHs(2环~4环)为主,其所占比例分别为90.8%~99.6%和97.9%~99.5%.大部分PAHs分配于生物油相,生物炭中PAHs的残留量较小,其中,5环PAHs是生物炭和生物油中苯并芘毒性当量浓度(TEQBaP)的主要贡献者.   相似文献   

20.
分别在300、500、700℃下限氧热解稻草、小麦和玉米秸秆制备生物炭,并以制备的生物炭为载体固定化硫酸盐还原菌(SRB),对比不同类型生物炭固定化SRB对Cd2+的吸附效果,筛选出吸附效果最佳的固定化SRB菌剂,并采用SEM、FTIR和BET对其进行表征分析;同时,研究溶液pH、吸附时间、生物炭添加量、Cd2+浓度对吸附效应的影响,并结合吸附动力学和等温吸附模型探究其对Cd2+的吸附过程及作用机理.结果表明,700℃限氧热解小麦秸秆生物炭固定化SRB菌剂(IBXM700)对Cd2+的吸附效果最佳;在pH=8、生物炭添加量为0.6 g(每50 mL溶液)、吸附时间为8 h、Cd2+初始浓度为40 mg·L-1条件下,IBXM700对Cd2+的吸附效果最佳,其吸附符合拟一级动力学模型,以离子交换和表面物理吸附为主,以化学吸附作用为辅,且符合Langmuir模型,表明是单分子层吸附;离子交换、沉淀可能是IBXM700吸附Cd2+的主要机制,阳离子-π作用为次要机制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号