首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了解人工合成药物在生物炭上的吸附动力学特征及其浓度效应的影响,选择卡马西平(CBZ)为目标污染物。探讨不同初始质量浓度(2、4、25、50 mg·L~(-1))在不同裂解温度(200、300、500℃)下制备的生物炭上的吸附动力学特征。结果表明,双室一级动力学模型可以精确地描述CBZ在生物炭上的吸附动力学特征。CBZ的快室吸附对总体吸附的贡献随初始浓度的增大而减小,而慢室吸附贡献则增大。π-π作用可能对CBZ的吸附贡献较大。孔隙填充可以描述慢室吸附过程,可能是吸附速率的控制环节。  相似文献   

2.
进入环境的生物炭对有机污染物的吸附过程受到普遍共存的溶解性有机质的影响.本研究将两种腐殖酸组分负载在以玉米秸秆为原料、不同炭化温度下(200、400、600℃)制得的生物炭上,考察极性和非极性有机污染物萘和1-萘酚在原始和腐殖酸负载生物炭上的吸附动力学,分别应用拟一级、拟二级和双室一级3种动力学模型对实验数据进行拟合.结果表明,拟二级和双室一级动力学模型均能较好地描述动力学吸附过程.腐殖酸负载对生物炭上萘和1-萘酚的吸附动力学有显著影响,使得平衡吸附量(Qe)下降,而表观吸附速率提高.致密的芳香碳组分和纳米级孔隙主要对萘和1-萘酚在生物炭上的慢吸附单元起作用,腐殖酸负载降低了生物炭的芳香化程度和孔隙度,慢吸附对总吸附的贡献(fslow)降低.生物炭内部有机碳的致密性降低,使得萘和1-萘酚分子容易扩散进入生物炭颗粒内部,加之表面积和孔隙度减少,缩短吸附平衡时间,两种化合物的慢吸附速率常数(kslow)均提高.负载腐殖酸后,两种化合物的快吸附速率常数(kfast)的变化却不同.腐殖酸负载向生物炭表面引入...  相似文献   

3.
雷竹落叶生物炭对微囊藻毒素的吸附性能   总被引:1,自引:0,他引:1  
为探索农业废弃物再生吸附材料对微囊藻毒素的吸附机制问题,采用典型农业废弃物雷竹落叶制备生物炭,研究适宜的制备工艺,探讨吸附条件和有机介质对微囊藻毒素-LR(MCLR)的吸附特性影响及其机制.结果表明,雷竹落叶竹叶生物炭的芳香性随着炭化温度和升温速率的升高而增加,极性指数则减小,同时比表面积也迅速增大,从0.25 m2·g-1到87.09 m2·g-1;竹叶生物炭对水体中MCLR具有较强的吸附能力,吸附量随炭化温度和升温速率的升高而增加,从72.27μg·g-1到624.47μg·g-1;吸附行为符合非线性Freundlich模型,且N指数和lnKF与芳香性和极性大小呈良好的线性关系;吸附效果受pH、反应温度和自然界溶解性有机质(DOMs)的影响,在pH值为3时有最大吸附量,当反应温度升高时吸附量减小,DOMs对MCLR的吸附有明显的竞争作用.适宜的制备工艺生成的雷竹落叶生物炭能有效地去除水体中MCLR.  相似文献   

4.
本研究考察了不同制备温度下(200℃、350℃、500℃、650℃),磷酸改性前后生物炭的理化性质,及其对氧氟沙星(OFL)和诺氟沙星(NOR)的等温吸附行为.采用N2物理吸附、扫描电镜、热重及元素分析等表征,对离子型抗生素在磷酸改性的生物炭上的等温吸附行为进行了研究.结果表明,随着制备温度的增加,改性生物炭的总孔体积不断增大,孔隙结构广泛形成,比表面积急剧增加.磷酸改性有助于提高生物炭的产率以及保留生物炭的极性官能团.OFL和NOR在改性生物炭上的吸附显著高于原始生物炭,且350℃下制备的改性生物炭具有最大吸附量,其吸附机制归因于吸附剂的大比表面积和孔隙填充作用.由于孔隙的利用率降低和炭的疏水性增强,OFL和NOR在更高温度改性生物炭上的吸附量逐渐降低.因此,在处理以上两种污染物时,350℃可作为磷酸改性生物炭的最佳裂解温度,且有利于减少能耗,节约资源.  相似文献   

5.
裂解温度对稻秆与稻壳制备生物炭表面官能团的影响   总被引:5,自引:0,他引:5  
以稻秆和稻壳为原料,在不同温度下(300、400、500、600、700℃)采用热裂解法制备生物炭,利用比表面积及孔径分析仪测定各生物炭比表面积,以傅里叶红外光谱图(FTIR)和Boehm滴定法分别定性和定量分析不同生物炭表面官能团的种类和数量,分析不同温度对不同原材料制备生物炭的表面官能团种类和数量的影响.结果表明,中、低温裂解条件(300、400、500℃)下,同温度稻壳生物炭(RC-H)比表面积显著高于稻秆生物炭(RC-S);高温裂解(600、700℃)条件下,同温度RC-S比表面积则更大.随裂解温度升高,两种原材料制备的生物炭比表面积均呈显著增大的趋势,其中稻秆在600℃下制备的RC-S比表面积最大,稻壳在700℃下制备的RC-H比表面积最大.FTIR分析结果显示,同一温度下两种材料制备的生物炭特征吸收峰基本相同,且表面基团种类大致相同,但RC-S较RC-H表面官能团更丰富,在热解过程中均形成了芳香环结构,且芳香化程度随裂解温度升高而增加.不同裂解温度下两种材料的生物炭表面官能团变化规律相似,主要表现为烷烃基随裂解温度升高而缺失,甲基(—CH3)和亚甲基(—CH2)逐渐消失,而芳香族化合物增加,芳香化程度增强.Bohem滴定结果表明,各裂解温度下RC-S的表面官能团总量和碱性官能团数量均高于RC-H,而各裂解温度下RC-S的酸性官能团含量均小于RC-H.随裂解温度升高,两种材料制备生物炭的表面官能团变化规律相似,表现为表面官能团总量均减少,酸性官能团含量降低,碱性官能团含量增加.  相似文献   

6.
物理和化学改性方法会引起生物炭理化性质和微观结构的改变,从而影响其对污染物的吸附.通过对玉米粒进行微波膨化制备出膨化生物炭,再用氢氧化钠和磷酸分别对膨化生物炭进行改性制备膨化活性生物炭.利用SEM、BET、FT-IR和XRD等手段对生物炭材料进行表征.通过吸附试验探究了膨化和活化过程对生物炭吸附双酚A(BPA)的影响.结果发现,膨化后炭材料比表面积增大,吸附量增加.膨化结合酸活化的生物炭比表面积最大(856.34 m2·g-1),对双酚A的吸附量也最大(220.73 mg·g-1),吸附量较未经膨化和活化的生物炭提升了7倍.膨化结合碱活化的生物炭孔结构更加发达,平均孔径为6种材料中最大(2.25 nm). Langmuir模型能够较好地拟合6种生物炭对BPA的吸附等温线,说明吸附过程以单层吸附为主.吸附位点能量分析表明,BPA在低浓度时优先占据碳材料表面的高能位点,高浓度时转为占据较低能量的位点.内扩散模型分析说明膨化和活化均能提高扩散过程速率.  相似文献   

7.
600℃缺氧热解制得牛粪源生物炭(CBC),采用SEM、FTIR和XRD等分析手段对生物炭理化性质进行表征,并通过静态平衡吸附法研究了CBC对甲基紫的吸附动力学及热力学过程.结果表明,甲基紫的吸附量随着其初始浓度的增加而增大,初始浓度由10 mg·L~(-1)增加到40 mg·L~(-1),平衡吸附量由5 mg·g~(-1)提高到30 mg·g~(-1),吸附过程先快后慢,60 min后吸附达到平衡;甲基紫的吸附量还随溶液pH的增加而增大,随温度的升高而增大;用准一级动力学方程、准二级动力学方程、Langmuir吸附等温方程、Freundlich吸附等温方程对试验数据进行拟合,结果表明,准二级动力学模型更准确地反映其吸附动力学过程,Freundlich等温方程与实验数据拟合度更好,即甲基紫在CBC上的吸附以化学吸附为主;吸附热力学参数ΔG~o0、ΔS~o0、ΔH~o0,表明甲基紫在CBC上的吸附是自发进行的吸热过程.  相似文献   

8.
金霉素是一种广谱性抗生素,在水中溶解度高且不易为微生物降解,是威胁环境安全和人畜健康的潜在隐患。以榆中县某污水厂浓缩污泥为基体制备生物炭,通过化学沉淀在其表面负载FeCu颗粒用于处理金霉素废水。结果表明,负载FeCu颗粒后的生物炭对金霉素的吸附率显著提高至98.56%,相比初始生物炭提高了81.08%。当材料的投加量控制在5 g·L~(-1),CTC质量浓度控制在500 mg·L~(-1),溶液pH=4,Fe?Cu物质的量比为3?1时,生物炭脱除金霉素能力达到峰值386.93 mg·g~(-1)。SEM及BET验证了材料的高表面积及多孔结构。吸附等温线、动力学和热力学的分析结果表明,复合材料对金霉素的去除符合准二级动力学模型,吸附方式被认为是物理化学吸附和吸热过程。各类表征的结果也表明吸附机制可以归结于氢键结合、π-π堆积作用、金属配位、静电吸引以及电子转移等作用。研究结果表明合成的材料是高效的金霉素吸附剂,为金霉素引起的污染水体处理提供了一定思路。  相似文献   

9.
为了探索生物炭修饰材料对嘉陵江流域沿岸土吸附Cu~(2+)的影响,采用生物炭(B)、磁化生物炭(MB)以及50%和100%CEC十二烷基二甲基甜菜碱(BS-12)修饰MB(分别以50%BS-MB和100%BS-MB表示)作为炭修饰材料,分别将其以1%(质量比)加入嘉陵江流域(川渝段)内苍溪(CX)、南部(NB)、嘉陵(JL)和合川(HC)沿岸土中,共计形成20个混合土样(以原土作为对照),批处理法研究各样品对Cu~(2+)的等温吸附和热力学特征,并对比不同温度、pH值和离子强度下的吸附差异.结果表明,不同混合土样对Cu~(2+)吸附等温线均呈"L"型且符合Langmuir模型,最大吸附量q_m保持在62.20—308.88 mmol·kg~(-1)之间.相同生物炭修饰材料添加下Cu~(2+)吸附量表现为JLNBCXHC的趋势.20—40℃范围内,各混合土样对Cu~(2+)的吸附量均随温度的升高而增加,表现为增温正效应.离子强度从0.01 mol·L~(-1)增加到0.1 mol·L~(-1),各混合土样(除HC外)对Cu~(2+)的吸附量均呈现先增后降的趋势.pH值升高有利于混合土样对Cu~(2+)的吸附.各混合土样对Cu~(2+)的吸附是一个自发、吸热和熵增的反应过程,且CEC和比表面积是决定混合土样对Cu~(2+)吸附效果的关键.  相似文献   

10.
利用水生植物苦草和狐尾藻制备镁改性生物炭,并对生物炭的比表面积、孔隙度、元素组成、pHpzc、FTIR、XPS、XRD进行表征,开展吸附水中微囊藻毒素-LR(MC-LR)的研究.结果表明,与未改性生物炭相比,镁改性生物炭具有较大的比表面积和中孔孔容,其表面负载有MgO和Mg(OH)2,且具有更多的含氧基团和更高的pHpzc.以2.0 mol·L-1的MgCl2浸渍制备的镁改性生物炭对MC-LR的去除效果最佳.准一级、准二级动力学、Elovich和颗粒内扩散模型都能在不同程度上较好地描述吸附过程.吸附等温线符合Langmuir和Freundlich模型,且较高的温度有利于对MC-LR的吸附,而较高的pH和较大分子量的DOM会抑制吸附.颗粒内扩散、中孔填充是吸附的重要机制,还可能存在氢键、静电吸引和π+-π EDA相互作用力.本研究为水生植物残体资源化利用提供新的思路.  相似文献   

11.
以稻秆为原料,在不同温度(300,400,500,600,700℃)条件下采用限氧控温炭化制备生物炭,用HCl和HF对其进行酸化处理,利用傅立叶变换红外光谱仪、比表面积和孔径测定仪现代分析手段对生物炭酸化前后的表面官能团、比表面积、孔径等特性进行比较,分析制备温度和生物炭表面特性之间的关系,探究制备所需生物炭的最佳温度条件。通过生物炭酸化处理和镉吸附实验结果,研究酸可溶矿物在生物炭吸附镉的贡献及制备温度对生物炭吸附镉能力的影响,为生物炭吸附水体中重金属镉提供科学依据。傅里叶红外分析表明,不同温度生物炭表面官能团存在一定的差异,主要表现为随制备温度升高,烷烃基缺失,甲基-CH3和亚甲基-CH2逐渐消失,形成了芳香环且芳香化程度增加。生物炭酸化后无机矿物Si O2吸收峰逐渐消失,官能团种类并没有发生变化,不同官能团随制备温度变化规律仍与酸化前生物炭一致。表面积及孔径分析结果表明,生物炭孔结构主要为中孔,随着热解温度的升高,比表面积和总孔容有所增大,在600℃达到最大;平均孔径随着制备温度升高而变小。生物炭酸化处理可以显著增大生物炭比表面积,总孔容也有所增加。生物炭酸化后充分去除了矿物质,孔隙结构未发生变化,孔结构仍为中孔,微孔表面积减小。镉吸附实验表明生物炭对镉具有较强的吸附能力,不同温度条件下镉吸附率均高于75%,且随温度升高而上升。生物炭经酸化处理后,镉吸附能力显著下降,这说明生物炭中的酸可溶矿物质在镉溶液的吸附过程中有重要作用。  相似文献   

12.
夏绮文  杨勇  梁雨  何江涛  邹华 《环境化学》2020,39(6):1670-1680
为探究溶解性有机质(DOM)对药物和个人护理品(PPCPs)类污染物吸附过程的影响,以卡马西平(CBZ)为目标污染物,以蒙脱土为介质,用商用腐殖酸(HA)制备DOM,开展吸附实验,并采用紫外-可见光吸收光谱和红外光谱表征等手段,研究了DOM对不同浓度CBZ在蒙脱土上吸附影响的差异及机制.等温吸附实验结果显示:DOM对不同浓度CBZ吸附影响方式不同.CBZ浓度较低时(0.2—1.5 mg·L~(-1)),DOM对CBZ的吸附表现为抑制作用,吸附等温线为L型;浓度较高时(5—40 mg·L~(-1))表现为由抑制转为促进作用,吸附等温线为C型.结合表征结果分析认为,CBZ浓度是影响DOM存在下CBZ吸附行为的主要因素.DOM与低浓度CBZ的结合能力弱,此时大分子量DOM与CBZ竞争有限的吸附位点,小分子量DOM与CBZ结合起到增溶作用,而DOM中以大分子量物质为主,因而DOM对CBZ的吸附抑制作用增强,形成L型吸附等温线;DOM与高浓度CBZ的结合能力较强,结合物质的分子量随CBZ浓度升高而逐渐增大,进而引起共吸附和累积吸附现象产生,在蒙脱土上形成的新的活性吸附位点,从而导致CBZ的吸附促进作用随污染物浓度的升高而增强,形成C型吸附等温线.  相似文献   

13.
为研究生物炭中可溶性组分对生物炭吸附重金属的影响,以玉米秸秆和松木屑为原材料,采用限氧升温炭化法,分别于200、400和600℃下制备生物炭,并通过批量吸附实验研究生物炭对镉的吸附特性及去除可溶性组分对其吸附Cd2+的影响。研究结果表明,随热解温度升高,生物炭的碳化程度增加,pH值增大,比表面积逐渐增大,含氧官能团数量减少,矿物组分不断富集,溶解性矿物离子K+、Ca2+、Mg2+和PO43-含量降低;去除可溶性组分后生物炭的pH值下降,溶解性矿物离子含量明显降低。LM模型更适合于对松木生物炭和200、400℃下制备的玉米秸秆生物炭吸附Cd2+的数据进行拟合,而FM模型更适合于拟合600℃下制备的玉米秸秆生物炭对Cd2+的吸附数据。玉米秸秆生物炭对Cd2+的吸附量(29.58—12.21mg·g-1)高于松木生物炭(1.72—4.14 mg·g-1)...  相似文献   

14.
以牛粪为生物质原料,在水溶液和KMn O4溶液中分别制备出牛粪水热炭(HC)和改性牛粪水热炭(MHC),对其灰分、元素组成、形貌、表面基团和织构性质进行了表征,并采用批量吸附实验研究了KMn O4改性对牛粪水热炭吸附Pb(Ⅱ)性能的影响.结果表明,KMn O4改性使牛粪水热炭的灰分和氧含量升高,碳、氢、氮的含量降低,芳香性和极性增强,并使比表面积和孔体积显著提高;在p H=4.0—7.0范围内,MHC对Pb(Ⅱ)的吸附率均高于未改性的水热炭;对Pb(Ⅱ)的吸附过程均遵循准二级动力学模型,KMn O4改性可改善吸附动力学性能;未改性的牛粪水热炭对Pb(Ⅱ)的吸附符合Freundlich等温方程,而MHC的吸附遵循Langmuir等温方程,其饱和吸附量随温度的升高而增大,25℃时其饱和吸附量为82.25 mg·g-1.对MHC吸附过程的ΔGθ、ΔHθ和ΔSθ的计算结果表明,该过程是自发的且固液界面自由度降低的放热过程.  相似文献   

15.
以生活中常见的丝瓜络为原材料,在氮气保护和不同温度(600、700、800、900℃)的条件下热解制备了三维多孔丝瓜络生物炭(LSBC600、LSBC700、LSBC800、LSBC900)。表征了丝瓜络生物炭的理化性质,通过动力学吸附实验和等温线吸附实验研究了不同热解温度条件下制备的丝瓜络生物炭对菲的吸附动力学特征和吸附等温线特征,探讨了可能的吸附机理,评估三维多孔生物炭对菲的去除能力,为水生态系统保护和饮用水安全提供科学依据。结果表明,热解温度会影响生物炭的表面官能团组成,进而影响其芳香性。丝瓜络生物炭呈现多管束堆叠的三维多孔结构,随着热解温度的升高,挥发性物质减少,丝瓜络生物炭的表面变得粗糙,比表面积增大,芳香结构增加;LSBC900的比表面积达到了467 m2·g-1。吸附动力学结果说明,丝瓜络生物炭对菲的吸附是复杂和多阶段的,主导吸附速率的是液膜扩散过程,其次是颗粒内扩散过程。在600-900℃范围内,随着热解温度的升高,丝瓜络生物炭对菲的平衡吸附量升高,吸附速率加快。吸附等温线结果说明,热解温度升高可以提高丝瓜络生物炭对菲的吸附容...  相似文献   

16.
农林废弃物基生物炭对重金属铅和镉的吸附特性   总被引:2,自引:0,他引:2  
以沙柳、水稻和玉米秸秆3种农林废弃物为原材料,于500℃条件下热解制备生物炭,并通过元素分析、比表面积分析仪、扫描电镜(SEM)和红外光谱(FTIR)等分析方法对所制备的生物炭进行表征。探究了溶液初始pH、干扰离子强度和初始吸附剂投加量等因素对3种生物炭吸附Pb~(2+)和Cd~(2+)作用的影响,讨论了吸附动力学特性及吸附等温特性。结果表明:不同生物质制备出的3种生物炭的碱性和灰分含量由高到低依次为沙柳秸秆生物炭(SWB)、玉米秸秆生物炭(CB)和水稻秸秆生物炭(SB),FTIR检测结果显示3种生物炭表面均含有大量含氧官能团;当溶液pH为3~6时,3种生物炭对Pb~(2+)和Cd~(2+)吸附量随pH值的增加而升高,对Pb~(2+)的吸附效果随着溶液中离子强度的增强而降低,而SWB对Cd~(2+)的吸附效果随离子强度的增加而增加;3种生物炭对Pb~(2+)和Cd~(2+)的吸附过程符合准二级动力学模型,R~2均大于0.99,表明生物炭吸附速率主要由化学吸附机制决定;SWB、SB和CB对Cd~(2+)的吸附过程既符合Langmuir模型,又符合Freundlich模型,而生物炭对Pb~(2+)的吸附过程更适合Langmuir等温模型,表明生物炭对Pb~(2+)的吸附近似单分子层吸附,而对Cd~(2+)的吸附存在多分子层吸附。  相似文献   

17.
改性豆饼生物质炭对铅的吸附特性   总被引:1,自引:0,他引:1  
以豆饼为前驱体制备生物炭,并对其进行KOH刻蚀改性,利用场发射扫描电子显微镜(SEM)、比表面积及孔径分析仪(BET)、X-ray能谱仪(EDS)、多晶X射线衍射仪(XRD)和傅里叶变换红外光谱仪(FTIR)等对豆饼生物炭(SYB)和改性豆饼生物炭(SYBK)进行表征,比较SYB和SYBK对Pb~(2+)的吸附性能,并研究时间、Pb~(2+)溶液初始浓度和pH对吸附效果的影响规律。结果表明,SYBK含有更丰富的官能团,且比表面积大大增加,SYB和SYBK对Pb~(2+)的等温吸附曲线均符合Langmuir吸附模型,SYBK对Pb~(2+)的实际最大吸附量达711.0 mg·g~(-1),明显高于SYB(293.0 mg·g~(-1))。对比SYB和SYBK的XRD谱图可知,吸附过程中SYB和SYBK表面形成了碱式碳酸铅沉淀,且吸附后溶液中含有大量矿物阳离子Ca~(2+)、Mg~(2+)等。上述结果可为高效吸附环境中Pb的生物炭的修饰或改性方法的研究提供参考。  相似文献   

18.
本研究考察了卡马西平(CBZ)在9种不同条件(裂解温度200、300、500℃,无酸,HCI和HCI-HF)处理的生物炭上的吸附动力学,分别应用拟一级、拟二级和双室一级3种动力学模型对实验数据进行拟合.研究结果表明,双室一级动力学模型对吸附动力学提供了更精确的描述.裂解温度和酸处理对CBZ的吸附动力学有显著影响,具体表现为不同酸洗导致矿物含量发生显著变化,矿物对生物炭吸附CBZ的快室吸附单元起主要作用,生物炭内部的芳香环随生物炭的升高而更加致密,生物炭内部的芳香环结构主要贡献于慢室吸附单元.生物炭的矿物组分一方面屏蔽了有机质上的一些吸附点位,另一方面矿物自身可以有效地吸附污染物,酸洗去矿物对生物炭吸附污染物的表观影响可能取决于两个方面的平衡.  相似文献   

19.
镁改性芦苇生物炭对水环境中磷酸盐的吸附特性   总被引:1,自引:0,他引:1  
为了实现湿地水生植物资源化利用,加强对水环境中磷污染的控制,以中国东北地区湿地典型水生植物芦苇(Phragmitesaustralis)为生物质材料,在700℃条件下制备成生物炭,用六水合氯化镁作为改性剂对生物炭进行改性,通过SEM和能谱分析对芦苇生物炭改性前后进行表征,发现未改性的芦苇生物炭的电镜呈明显的孔隙结构,孔壁薄,孔隙排列有序,Mg元素含量仅为0.17%;而镁改性芦苇生物炭的孔隙负载了一些针状结构,且Mg元素的含量达到5.04%。说明镁离子成功负载在生物炭的表面。通过SEM、EDS、FTIR、XRD等技术对镁改性芦苇生物炭吸附磷酸盐前后进行表征,发现磷酸盐主要以Mg HPO_4和Mg_3(PO_4)_2的形态吸附在镁改性生物炭上。吸附动力学实验结果表明,镁改性生物炭对磷酸盐的吸附过程符合准二级动力学模型,吸附机理是由物理吸附和化学吸附共同作用的。通过颗粒内扩散模型的分析发现吸附速率由表面吸附、液膜扩散和颗粒内扩散等共同决定。镁改性生物炭对磷酸盐的吸附热力学可以用Langmuir方程描述(R~2=0.938 6),表明该吸附行为主要是单分子层吸附。共存离子实验表明,HCO_3~-和CO_3~(2-)能明显抑制镁改性生物炭对磷酸盐的吸附。经过3次解吸,镁改性生物炭吸附后的磷可全部释放。当温度为308 K,改性剂浓度为2 mol·L~(-1),改性生物炭投加量为2.0 g·L~(-1),p H为7.0时,吸附效果最佳,吸附量可达到2.37 mg·g~(-1)。  相似文献   

20.
近年来,抗癌药的环境污染特征及其生态风险引起了广泛关注。为获取典型抗癌药5氟尿嘧啶的基础生态毒性数据,以蛋白核小球藻(Chlorella pyrenoidosa)和羊角月芽藻(Selenastrum capricornutum)为受试生物,考察了5氟尿嘧啶对2种绿藻的生长和叶绿素含量的影响。结果表明,5氟尿嘧啶对蛋白核小球藻和羊角月芽藻的生长具有抑制作用,随着暴露浓度升高,细胞生长抑制率增强。5氟尿嘧啶对2种绿藻的96 h半数抑制浓度(EC50)分别为450.36 mg·L~(-1)和692.30 mg·L~(-1),属于低毒性物质。暴露96 h后,低浓度5氟尿嘧啶(32 mg·L~(-1))对蛋白核小球藻和羊角月芽藻叶绿素含量有一定的促进作用,高浓度5氟尿嘧啶(32~500 mg·L~(-1))则抑制了2种绿藻的叶绿素含量,且两者具有明显的负相关关系。和叶绿素b相比,叶绿素a对5氟尿嘧啶胁迫更为敏感。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号