首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
油茶果壳对水溶液中结晶紫的吸附性能   总被引:1,自引:0,他引:1  
研究了油茶果壳(COS)对结晶紫的吸附特性,考察了COS用量、pH值对COS吸附性能的影响。结果表明,在COS用量为0.30 g、结晶紫初始浓度为50 mg/L、pH=8.00溶液条件下,室温振荡3 h达到吸附平衡,平衡状态下油茶果壳对结晶紫的去除率达到98.01%。用拟一级动力学模型、拟二级动力学模型和内扩散模型分别对动力学数据进行拟合,结果发现,COS吸附结晶紫的动力学数据符合拟二级动力学模型,结晶紫初始浓度为40 mg/L时速率常数和相关性系数分别为0.0436 L/(mg·min)和0.9999。吸附等温线符合Langmuir吸附等温式,随温度在一定范围内升高,最大吸附量增大,且相关性系数均高于0.99,当T=293 K时COS对结晶紫的最大吸附量为26.932 mg/g。热力学计算结果表明,该吸附过程是一个伴有物理吸附的吸热反应,可自发进行。此外,再生实验结果发现,油茶果壳再生7次后,对结晶紫的去除率仍为95%以上。  相似文献   

2.
以阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)对油茶果壳进行改性,制备CTAB-油茶果壳(CTAB-COS)吸附材料,并采用批实验法对其对水溶液中甲基橙的吸附去除进行了研究。考察了溶液pH、吸附剂用量和离子强度等对水溶液中甲基橙的吸附影响,并研究了体系的吸附动力学和吸附热力学特征。结果表明,向100 mL浓度为50 mg/L的甲基橙溶液中加入0.40 g CTAB-COS,在最佳实验条件下,CTAB-COS对甲基橙的去除率可达96.66%。溶液离子强度增大,甲基橙去除率降低。CTAB-COS对甲基橙的吸附行为符合拟二级动力学模型,吸附等温线可用Langmuir模型进行较好拟合,在20 ℃时最大吸附量为18.31 mg/g。吸附热力学结果表明,吸附过程为可自发进行的放热过程。再生性实验结果表明,再生6次后,CTAB-COS对甲基橙的吸附去除率仍可达到80%。该改性油茶果壳可应用于阴离子型染料废水的吸附法处理。  相似文献   

3.
利用油茶果壳为原料,采用直接炭化法制备油茶果壳炭,主要讨论自制油烟吸附装置中油烟入口浓度、体积空速和吸附床层高度3个因素对穿透曲线和吸附容量的影响。结果表明,在油烟浓度为50 mg/m3,体积空速为1.7 h-1,吸附剂床层高度为40 cm的条件下,最大吸附量可达到122.6 mg/g;保护作用时间随油烟浓度的升高、体积空速的增大、吸附剂床层高度的减小而变短。SEM分析表明,油茶果壳炭含有众多孔径不一的孔隙,有利于油烟这种含有多种组分污染物分子的吸附作用。  相似文献   

4.
硝酸改性对不同介孔结构生物质炭铅吸附的影响   总被引:2,自引:0,他引:2  
在通过成功制备2种不同介孔结构的生物质炭AC-1与AC-2的基础上,研究了硝酸氧化改性对不同介孔结构生物质炭铅吸附特性的影响与等温吸附特性。低温氮吸附测试表明,生物质炭AC-1与AC-2的微孔孔容相近,而介孔孔容相差较大,分别为0.319和0.535 cm3·g-1。改性后AC-2-HNO3的介孔孔容与表面含氧酸官能团含量均高于AC-1-HNO3。吸附数据表明,硝酸改性可增强介孔生物质炭对水中铅的吸附去除能力,特别是改性前吸附量较低的AC-2,由于具有较大的介孔孔容和介孔尺寸,经硝酸改性后对铅的吸附性能与去除率均高于微孔孔容相近的生物质炭AC-1,这表明增大介孔孔容与介孔尺寸不仅有利于在介孔炭上接枝活性吸附位,并可缩短被吸附重金属铅离子到吸附活性点的路径,增大硝酸改性生物质炭活性位点对水中铅离子的捕捉机率,从而增大改性生物质炭对铅的吸附性能。Freundlich模型能很好地描述改性前后4种炭对铅的吸附行为,说明上述生物质炭的吸附位主要是非均匀孔隙或表面。  相似文献   

5.
KOH为活化剂,正交实验方法优化了煤质炭的制备条件。对2种酚类有机物苯酚、氯苯酚进行了静态吸附,观察了温度、时间、初始浓度及投加量对吸附性能的影响,优化了吸附条件。实验数据与Langmuir、Freundlich和Temkin吸附等温线进行了拟合,并对准一级、准二级动力学模型和内扩散模型拟合。结果表明,优化得煤质炭制备条件为:碱碳质量比3:1,浸泡时间12 h,活化时间80 min,活化温度800℃。在温度为25℃,投加量为0.05 g时,苯酚的平衡时间为60 min,初始浓度为200 mg/L时的吸附量为58.89 mg/g;氯苯酚的吸附平衡时间为90 min,初始浓度为300 mg/L时的吸附量为84.32 mg/g。煤质炭对苯酚的吸附过程与Langmuir吸附等温线,氯苯酚的吸附过程与Temkin吸附等温线拟合得较好。二级动力学模型能够较好地描述这2个吸附过程,且颗粒内扩散不是唯一的速率控制步骤。  相似文献   

6.
通过微波快速热解活化技术制备并探究了中孔蔗渣生物质炭对水中对氯苯酚的吸附性能、影响因素及等温吸附行为与动力学特性。结果表明,微波活化蔗渣炭富含微中孔结构,主要分布在2~5 nm,对水中对氯苯酚的吸附值高达165 mg·g-1,5 min内完成饱和吸附量的75%,表明中孔蔗渣炭是去除对氯苯酚的良好吸附材料。值得注意的是,蔗渣中孔炭对对氯苯酚吸附性能与效率均高于以微孔为主的市售炭粉与炭纤维,说明介孔结构的存在可缩短被吸附物质到达吸附活性点的路径,增大多孔炭对水中有机物的捕捉机率,增强多孔炭对水中对氯苯酚的吸附效率。降低溶液pH和温度有利于中孔蔗渣炭对水中对氯苯酚的吸附,吸附行为符合弗兰德里希和雷德利克·彼得森模型,表明吸附呈多分子层的指数分布。  相似文献   

7.
活性炭对含铅废水吸附特性研究   总被引:5,自引:6,他引:5  
采用静态法用活性炭吸附处理含铅废水,考察了活性炭对含铅废水的吸附特性。结果表明:活性炭对铅离子吸附平衡时间为100 m in;吸附等温方程为:Ce/qe=0.4298+0.0594Ce(25℃),该方程符合Langmu ir型吸附模式,不同温度下吸附平衡参数0RL1,表示该吸附为有利吸附。实验数据应用数学模型拟合,二级相关系数R2=0.9998,显示吸附过程动力学与二级动力学模型相关性较好;计算不同温度下各热力学参数:△Hθ大于零、△Gθ小于零,证实该吸附过程是一个自发吸热过程。△Sθ大于零,表明铅离子在固液界面有序性减小、混乱度增大。△Hθ值很小,说明该过程为物理吸附。  相似文献   

8.
生物炭吸附重金属的研究进展   总被引:12,自引:0,他引:12  
生物炭是一种废弃物资源化利用的产物。作为新型环境功能材料,生物炭以其优良的环境效应和生态效应成为环境科学等学科研究的前沿热点。因其孔隙结构发达、比表面积巨大和独特的表面化学性质,对环境介质中的重金属离子有很强的吸附作用,进而影响了重金属离子的迁移与归宿。主要从生物炭的材料来源、吸附重金属离子的机制、影响因素以及对土壤中重金属生物有效性的影响等方面进行综述,并提出生物炭吸附重金属离子的未来研究方向。  相似文献   

9.
稻壳基活性炭的制备及其对亚甲基蓝吸附的研究   总被引:5,自引:3,他引:5  
以稻壳为原料,采用K2CO3活化法和H3P04活化法制备了比表面积为1312m^2/g和682m^2/g的活性炭,通过扫描电子显微镜(SEM)、X-射线衍射仪(XRD)对样品进行了表征,并将孔隙发达的活性炭样品用于对亚甲基蓝的吸附,结果表明,K2CO3活化法制备的活性炭样品具有更多的微孔结构;随着亚甲基蓝溶液初始浓度的增加、活性炭吸附时间的延长,亚甲基蓝的去除率呈现逐渐降低和逐渐增大的变化规律,当pH值为6时,活性炭对亚甲基蓝的吸附效果最佳;稻壳基活性炭对亚甲基蓝的吸附等温线符合Langmuir模型,Qm最高可达476.2mg/g;热力学参数△G^0△H^0和△S^0均为负值,表明稻壳基活性炭对亚甲基蓝的吸附是一个自发的放热反应。  相似文献   

10.
稻壳生物质炭对水中氨氮的吸附   总被引:6,自引:0,他引:6  
以稻壳生物质为原材料,在350℃和500℃ 2种温度条件下制备生物质炭(BC350和BC500),采用扫面电镜(SEM)和红外光谱(FTIR)对稻壳生物质炭进行了表征。通过实验考查了稻壳生物质炭对氨氮的吸附等温线、影响因素和动态吸附。结果表明,稻壳生物质炭的平衡吸附量随着平衡浓度的增大而增大后趋缓,Langmuir方程比Freundlich方程更好地描述稻壳生物质炭吸附氨氮的行为,BC500比BC350具有更大的吸附氨氮的能力,其最大吸附量分别为5.82 mg/g和6.51 mg/g。pH和离子强度影响BC500对氨氮的吸附效果。动态吸附实验表明,BC500对氨氮的平均吸附量为1.78 mg/g。可见,稻壳生物质炭可以用作高效吸附剂去除废水中的氨氮。  相似文献   

11.
以氯化铁(FeCl3·6H2O)、氯化锰(MnCl2·4H2O)、氯化锌(ZnCl2)、氯化钴(CoCl2·6H2O)、氯化镍(NiCl2·6H2O)和氧化石墨烯(GO)为原料,制备了4种铁酸盐与还原氧化石墨烯(RGO)的复合材料(RGO-MFe2O4,M=Mn,Zn,Co或Ni),通过扫描电子显微镜、X-射线衍射仪、拉曼光谱仪进行了表征,系统研究了4种材料对亚甲基蓝的吸附。结果发现,RGO-NiFe2O4对亚甲基蓝的吸附能力最好,而对吸附起主要作用的是RGO。随着温度升高、染料初始浓度的增加和吸附时间的延长,RGO-NiFe2O4吸附量逐渐增大。RGO-NiFe2O4对亚甲基蓝的吸附动力学拟合符合伪二级动力学模型。吸附等温线模型拟合结果表明,Langmuir方程可以很好地描述其对亚甲基蓝的吸附。热力学参数ΔG0在不同温度下均为负值,ΔH0为正值,ΔS0为正值说明吸附过程是自发的吸热反应。  相似文献   

12.
利用海藻酸钠和氯化钙成球原理,包埋制备有机凹凸棒土颗粒(GOAT)吸附剂,通过SEM图和红外谱图进行表征,通过批量实验考察了凹凸棒土颗粒吸附剂对水体天然有机质单宁酸的吸附行为,结果表明,凹凸棒土颗粒吸附剂内部形貌和粉体吸附剂(POAT)相比无明显变化;平衡吸附量(142 mg/g)稍低于粉体吸附剂(148 mg/g);吸附速率较快,100 min时吸附趋于平衡,吸附行为符合准二级动力学方程;吸附等温线符合Freundlich等温方程,吸附为放热反应;pH为6时吸附性能最佳。  相似文献   

13.
以玉米秸秆、稻壳在350~500℃制成的生物质炭作为吸附剂,研究其对溶液中Cd2+的吸附特性。通过模拟实验,考察了初始pH、生物质炭用量、吸附时间和Cd2+的起始浓度对吸附的影响。结果表明,2种生物质炭对Cd2+的吸附反应适应pH范围较宽(4.0~7.0);玉米秸秆炭和稻壳炭对Cd2+的吸附速度较快,分别在10和20 min时达到吸附平衡;玉米秸秆炭对溶液中Cd2+的吸附遵循Langmuir等温线模型,而稻壳炭对Cd2+的吸附遵循Freundlich等温线模型。在实验设定的条件下,玉米秸秆炭对溶液中Cd2+的吸附能力强于稻壳炭。  相似文献   

14.
应对农业固废利用率低及过度施肥带来的环境问题,以4种常见农业固废(花生壳,PS;瓜子壳,SS;稻壳,RH;甘蔗渣,BA)为材料,研究300、450和600℃热解制备的生物质炭对水体中铵态氮吸附效果。结果显示,等温吸附Freundlich模型相比Langmuir模型具有更好相关性,更加适合描述12种生物质炭对铵态氮吸附过程。BA300(K=0.54)的吸附能力最强,RH450(K=0.01)的吸附能力最弱。在1%、3%和5%(质量分数)施用量下,土壤对铵态氮的平衡吸附量随生物质炭投加量的增加而增大。结果表明,生物质炭的施加可以改变土壤理化性质,促进土壤对铵态氮的固持能力。  相似文献   

15.
活性炭纤维对水中微囊藻毒素的吸附性能   总被引:1,自引:0,他引:1  
利用活性炭纤维对水中微囊藻毒素MC—LR的吸附,研究了吸附过程的热力学与动力学特性。结果表明,活性炭纤维对MC—LR的平衡吸附量在相同温度下随MC-LR初始浓度的增加而显著增大,并随着温度升高而增加,最大吸附量达246μg/g。不同温度条件下,活性炭纤维对MC-LR的吸附均较好地符合Langmuir等温吸附模型。通过热力学分析发现,△H=15.7kJ/mol、△G〈0、△S〉0,表明该吸附是自发的、吸热的过程,温度升高有利于吸附反应。动力学研究表明,该过程符合一级动力学方程。吸附反应速率受颗粒内扩散和液膜扩散共同影响。活性炭纤维经再生后,平衡吸附量变化较小,具有良好的重复使用性能。  相似文献   

16.
以玉米秸秆为原料,通过500℃限氧裂解制备生物炭(记为500BC),并采用批量吸附实验对比500BC及腐殖酸负载后生物炭(记为500BC-HA)对于水环境中两种雌激素(双酚A(BPA)和17α-乙炔雌二醇(EE2))的吸附性能及作用机制。结果表明,腐殖酸分子可阻塞部分500BC孔隙,使500BC的孔径、孔容及比表面积下降,负载腐殖酸后,500BC的比表面积由8.43m~2/g减小至4.40m~2/g,孔径从26.1nm减小至3.2nm,孔容由0.018cm~3/g下降至0.001cm~3/g;与500BC相比,500BC-HA对BPA、EE2的吸附能力均明显降低,一方面是因为腐殖酸分子占据了500BC表面的吸附点位并堵塞部分孔隙,使其吸附能力降低,另一方面腐殖酸负载后引入更多的含氧官能团,使500BC表面疏水性降低,与雌激素间的疏水作用减弱。腐殖酸负载质量浓度为0~10mg/L时,增加负载质量浓度对500BC吸附性能影响明显,当负载质量浓度大于10mg/L时,腐殖酸在500BC表面达到饱和,继续增加负载浓度对500BC的吸附性能不再产生影响。  相似文献   

17.
为了解生物炭应用于邻苯二甲酸酯污染土壤修复的可行性,选择邻苯二甲酸二甲酯作为目标污染物,以花生壳为原料制备生物炭,通过室内模拟试验研究生物炭对邻苯二甲酸二甲酯在土壤中自然降解和吸附行为的影响。结果表明,未添加与添加生物炭土壤中邻苯二甲酸二甲酯的自然降解过程均遵循一级动力学方程,生物炭含量0.5%和1.0%的土壤中邻苯二甲酸二甲酯的半衰期分别延长2.185 d和4.151 d,表明添加生物炭会不同程度地延缓土壤中邻苯二甲酸二甲酯的自然降解;在不同的生物炭含量水平下,土壤对邻苯二甲酸二甲酯的吸附均能很好地符合Freundlich方程所描述的规律,生物炭含量0.1%、0.5%和1.0%土壤的吸附常数Kf分别为35.647、45.830和57.649,显著高于对照土壤(7.793),表明土壤对邻苯二甲酸二甲酯的吸附作用随生物炭含量增加而显著增强。  相似文献   

18.
采用水热炭化的方法制备柚子皮水热炭吸附剂,用红外光谱仪和氮吸附仪测定水热炭表面的官能团和孔结构,考察了吸附剂用量、溶液pH值、Cr(Ⅵ)初始浓度、吸附时间对吸附Cr(Ⅵ)的影响。结果表明:水热炭是典型的介孔材料且有较多的含氧官能团,有利于Cr(Ⅵ)的吸附。溶液pH值小于7时,吸附效果较好;当溶液中Cr(Ⅵ)离子的初始浓度为50 mg·L-1,pH=6,吸附剂用量为0.4 g·(50 mL)-1、吸附时间为90 min时、水热炭对Cr(Ⅵ)的吸附率和吸附量分别为99.03%、6.19 mg·g-1。柚子皮水热炭对Cr(Ⅵ)的吸附过程符合准二级吸附动力学模型,且35、45、55 ℃的等温吸附数据拟合结果表明等温吸附过程符合Freundlich模型。  相似文献   

19.
为探究生物炭小球对雌激素污染物的吸附机制,以农业废弃物核桃壳为原材料,在400 ℃下热解碳化制备生物炭,与黏土、碳酸氢钠、硅酸钠混合制备生物炭小球。采用ESEM观察、比表面积测定、红外光谱对其表面结构和组成进行表征,并将其用于对雌酮(E1)、雌二醇(E2)和雌三醇(E3)的吸附去除研究。分别考察了吸附时间、溶液pH、生物炭小球投加量以及雌激素初始浓度对吸附效果的影响,并通过颗粒内扩散、等温吸附、吸附动力学探讨其吸附机制。结果表明:生物炭小球对雌激素的吸附平衡时间为15 min;投加量为1 g、pH为5、初始浓度为2 500 μg·L-1时平衡吸附量最大;颗粒内扩散模型研究结果表明吸附机制包括分配作用和表面吸附;准二级动力学可较好地描述生物炭小球对雌激素的吸附过程;生物炭小球对雌激素的吸附过程符合Freundlich等温吸附模型。所制备的生物炭小球对雌激素污染物具有较好的去除效果,在环境治理方面具有一定的应用前景。  相似文献   

20.
柚子皮制备生物炭吸附苯酚的特性和动力学   总被引:2,自引:0,他引:2  
廉价的柚子皮作为原材料制备生物炭吸附剂对含苯酚废水进行吸附研究。扫描电镜结果表明,柚子皮制备的生物炭具有较好表面吸附空间结构,比表面积测定为261.69 m2/g。此外,能谱对柚子皮生物炭元素分析发现,生物炭主要含有C、O、P、K,这些是生物质特点。红外对柚子皮生物炭分析发现生物炭含有羟基、氨基、羰基、羧基、磷酸酯或者硫酸酯等活性基团,这些是吸附苯酚的特性官能团。在初始浓度为100 mg/L,投加量为3 g/L,中性pH,30℃条件下吸附30 min后柚子皮生物炭对苯酚的去除率达到76.4%。伪二级动力学方程能很好地拟合柚子皮生物炭对苯酚的吸附过程。同时,Langmiur和Freundlich等温方程在整个温度都能较好地拟合数据,在30℃时,Langmuir理论最大吸附容量可达到49.75 mg/g。通过实际废水应用实验,表明柚子皮生物炭是一种有潜力可用于高浓度含酚废水的处理的有效材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号