首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
针对传统印染废水处理工艺通常需要投加大量混凝药剂,导致工艺流程长,化学污泥产量高,且化学药剂对后续好氧生化段微生物活性造成抑制的问题,对好氧生化法进行工艺优化,发现在各项工艺参数适宜的条件下,好氧活性污泥对印染废水原水具有良好的适应性,且长期运行对于COD去除率平均可达65%,可以为实际印染废水处理工程应用中使好氧工艺发挥最佳性能提供参考。  相似文献   

2.
为通过物理活化法制备羊骨活性炭,采用响应曲面(Response surface methodology,RSM)实验设计,以活化温度、活化时间、CO2流量为试验因素,以碘吸附值为响应值,建立数学模型,工艺条件进行优化。结果表明:最佳工艺条件为活化温度476.05℃、活化时间9.34 min、CO2流量159.4 mL/min,在此条件下碘吸附值为411 mg/g;通过对碘吸附值曲面方程和二次多项回归方程解逆矩阵得知该方程的预测值与实际值之间具有较好的拟合度。  相似文献   

3.
前期研究表明在人工潜流湿地(SFCWs)中设置好氧段和厌氧段可显著提高SFCWs对COD、NH4+-N的去除率.然而曝气产生的富氧环境不利于NO3--N和NO2--N的去除,一定程度上抑制了反硝化反应的进行.反硝化程度较低是实验中仍需进一步解决的问题.本研究在前期研究的基础上,对好氧/厌氧多级串联潜流人工湿地结构及工艺进行了改进优化,采用多点进水的措施来强化反硝化过程,并设计相应的区段去除该部分污染物.结果表明,水力负荷约为0.06m3.(m2.d)-1时,进一步优化结构和比例的好氧-缓冲-厌氧-缺氧-好氧曝气多点进水湿地对COD、NH4+-N和TN的去除率可达到91.6%、100%和87.7%.在补充进水之后的区段,COD/N迅速升高到10以上,做到了补充碳源的同时最大限度地利用湿地去除污染物.改良后的湿地达到了净化工艺优化的目的,为提高人工湿地总氮去除效率提供了理论依据及应用基础.  相似文献   

4.
张千  吉芳英  徐璇 《环境科学研究》2015,28(7):1138-1144
为预测反硝化生物滤池深度处理城镇污水处理厂二沉池出水的脱氮效果,优化工艺运行参数,以黏土陶粒反硝化生物滤池作为反应器,以人工合成污水模拟污水处理厂二沉池出水,采用中心组合试验设计,利用响应曲面法研究反应器NO3--N去除率与HRT(水力停留时间)、进水中ρ(CODCr)和ρ(NO3--N)之间的关系. 统计结果显示,NO3--N去除模型极显著(P<0.000 1),并且模型预测值与试验值能很好地吻合. 方差分析结果表明,HRT及其与进水中ρ(NO3--N)和ρ(CODCr)的交互作用对反硝化滤池NO3--N的去除率影响不显著(P>0.05),而进水中ρ(NO3--N)和ρ(CODCr)及其交互作用对反硝化滤池NO3--N的去除具有显著影响(P<0.05). 3个因素对NO3--N去除率影响强弱的顺序为进水ρ(CODCr)>进水ρ(NO3--N)>HRT. 在HRT为2.50 h的条件下,当进水中ρ(NO3--N)<11.00 mg/L及ρ(CODCr)>43.00 mg/L时,反硝化滤池NO3--N的去除率可以达到71.0%以上.   相似文献   

5.
异养硝化-好氧反硝化菌是一种新型生物脱氮菌,筛选出脱氮效率高的菌株并对其硝化条件进行优化具有重要意义。从实验室筛选出的异养脱氮菌XH02出发,通过生理生化及分子生物学方法对其鉴定,结果表明,高效脱氮菌株XH02与人苍白杆菌Ochrobactrum anthropi的ATCC 49188序列同源性最高,初步鉴定为人苍白杆菌;利用响应面法对温度、转速、碳氮比(C/N)和初始p H值4个异养硝化影响因子进行优化,得到在10%接种量下XH02菌最佳硝化条件,即温度34℃,转速125 r/min,C/N 7.5,初始pH 7.5;该条件下,在24 h时氨氮去除率可达82.4%。通过3次平行试验验证表明,在4个环境影响因子优化后的条件下,该菌对氨氮的去除率为82.2%,与预测值相对误差为0.3%,表明模型模拟效果良好。文章对具有异养硝化好氧反硝化功能的Ochrobactrum anthropi菌用于生物脱氮的工程实践提供参考。  相似文献   

6.
鲁磊  信欣  鲁航  朱辽东  谢思建  武勇 《环境科学》2015,36(10):3778-3785
在连续流合建式反应器中接种成熟好氧颗粒污泥处理低碳氮比(COD/N)的实际生活污水,研究了曝气量和水力停留时间(hydraulic retention time,HRT)对连续流好氧颗粒污泥系统脱氮除磷和颗粒污泥稳定性的影响.结果表明,当曝气量为300 m L·min-1(表观气速为1.2 cm·s-1)、HRT为7.5 h时,反应器对化学需氧量(chemical oxygen demand,COD)、总氮(total nitrogen,TN)和总磷(total phosphorus,TP)去除率达到最高,分别为76.34%、51.23%和53.70%.整个系统在此条件下能够稳定运行,污泥浓度(mixed liquor suspended solids,MLSS)为2 000 mg·L-1左右,污泥体积指数(sludge volume index,SVI)保持在50 m L·g-1以下,好氧颗粒污泥形态完整,沉降性能良好.低COD/N的实际生活污水促进了好氧颗粒污泥胞外多聚物(extracellular polymeric substance,EPS)的增长,蛋白质(protein,PN)和多聚糖(polysaccharide,PS)的比值高达17.9,相对于PS,PN对颗粒污泥的稳定性有更大的促进作用.  相似文献   

7.
采用响应曲面法优化了KOH改性污泥生物炭(SB-KOH)的制备条件,研究了各因素之间对生物炭吸附性能的交互影响,并且探讨了KOH强化生物炭吸附能力的机制.同时,研究了吸附时间、吸附温度及pH对SB-KOH吸附Pb(Ⅱ)的影响,探讨其吸附机理.结果表明:KOH浸渍浓度是最显著因素,较高浸渍浓度有利于提高SB-KOH的吸附性能;增加KOH浸渍浓度和升高热解温度可以协同提高SB-KOH的吸附性能;最佳制备条件为2.5 mol·L-1的KOH浸渍浓度、7 h的浸渍时间、631 ℃的热解温度和44 min的热解时间.KOH改性后的污泥生物炭表面粗糙, 比表面积增大,微孔数量增加,SB-KOH的比表面积为141.22 m2·g-1,是原污泥生物炭(SB,5.93 m2·g-1)的24倍,改性后的生物炭碱性提高、K元素含量增加.SB-KOH吸附Pb(Ⅱ)是以化学吸附为主的多分子层混合吸附,膜扩散是主要的速率控制步骤,增加溶液pH、提高温度可促进吸附.吸附机制涉及矿物沉淀(Qmp)、离子交换(Qie)、含氧官能团的络合(Qoc)和金属π键结合(Q),不同吸附机理的贡献顺序为:Qmp(143.5 mg·g-1)>Qie(39.67 mg·g-1)>Qoc(8.56 mg·g-1)>Q(1.65 mg·g-1),KOH改性强化了生物炭对Pb(Ⅱ)的矿物沉淀和离子交换吸附量.本研究丰富了KOH改性污泥生物炭的制备理论,阐明了SB-KOH吸附Pb(Ⅱ)吸附机理及其影响的主要机制.  相似文献   

8.
王猛  曹宏斌  张懿 《环境科学》2011,32(2):596-602
以氨水-铵盐缓冲溶液作为浸出试剂,氧气作为氧化剂,在高压釜中通过加压氨浸法回收废弃印刷线路板中的铜、锌和镍,分别研究了浸出时间、氨水浓度、铵盐浓度、搅拌速率、氧气压力、温度和不同种类铵盐对浸出效果的影响,并得到浸出的最优工艺条件:铵盐选择碳酸铵浸出效果最佳,浓度为1 mol/L,氨水浓度为4 mol/L,搅拌速率为70...  相似文献   

9.
固体废物浸出毒性浸出方法标准研究   总被引:10,自引:2,他引:10  
对国内外浸出方法标准体系、研究方向、应用目标、方法的特点和缺陷进行了系统总结,介绍了《固体废物 浸出毒性浸出方法 硫酸硝酸法》(HJ/T299—2007)和《固体废物 浸出毒性浸出方法 醋酸缓冲溶液法》(HJ/T300—2007)的模拟场景、方法学探讨和实验研究结果. 目前,HJ/T299—2007已经成为我国危险废物浸出毒性鉴别的指定标准方法,而HJ/T300—2007也被用于特定危险废物和一般工业废物进入生活垃圾填埋场的入场检验. 新制定的浸出方法标准的环境保护目标和模拟场景假设明确,实验参数由理论计算和系统的实验获得,具有较充分的方法学依据. 尽管如此,对于该标准的客观、全面的评估还需要经过长期的执行过程才能获得,新的浸出方法标准只是在现有研究基础上的阶段性成果,还要随着环境管理的需要和细化以及研究的不断深入而加以补充和修改.   相似文献   

10.
废催化剂浸出规律的静态实验方法   总被引:8,自引:1,他引:8  
利用静态浸出实验方法对废催化剂中重金属在不同固水比和浸出次数条件下的浸出规律进行了系统研究。实验发现浸出次数大于3次后,重金属的浸出浓度和浸出速率趋于稳定,同时固水比的增加也没有明显改变废催化剂中重金属的浸出。认为在浸取次数大于3次以后,随着表面溶质的溶解,浸出过程主要为内扩散所控制。  相似文献   

11.
固体废物中多环芳烃类化合物(PAHs)的浸出特性研究   总被引:6,自引:0,他引:6  
参照美国环境保护局(USEPA)方法1311(TCLP)和1312(SPLP)对油墨渣和环氧树脂废料中的多环芳烃类化合物(PAHs)进行了浸出实验,并对在实验室条件下影响PAHs浸出的主要因素(如浸提剂,液固比,pH,浸提时间和粒径)进行了识别和研究.浸出液采用固相萃取方法处理,用GC/MS和GC进行定性、定量分析.结果表明浸提剂对PAHs浸出的影响显著,醋酸缓冲溶液浸出体系比HNO3/H2SO4浸出体系具有明显的优势;液固比的增加、浸提时间的延长或样品粒径的减小均能增加PAHs的浸出量;在实验设计的范围内,pH对PAHs的浸出影响不明显.  相似文献   

12.
目的利用钾长石提钾后的固体渣,开发双价多功能絮凝剂,研究其除藻性能,实现钾长石的综合利用,为除藻等水处理提供新型药剂。方法利用压力酸浸(PAL)工艺提取固体渣中的铝、铁,通过引入Fe(II)源,制备得到含Fe(II)的双价聚硅硫酸铝铁(PSAFS),以铜绿微囊藻(Microcystis aeruginosa)为模式藻,研究PSAFS的混凝除藻效果及其与H2O2的耦合效应。结果当硫酸浓度为2.8 mol/kg,固液比为1:3时,在105℃下反应2 h,PAL可提取近100%的铝和85.6%的铁。含Fe(II)的双价聚硅硫酸铝铁新型絮凝剂对于Microcystis aeruginosa具有优异的去除效果,引入Fe(II)可以拓宽絮凝剂应用的p H范围。同时,在H2O2存在时,产品明显增加了藻细胞的失活。结论以钾长石提钾后的固体渣为原料,采用PAL工艺,可绿色经济地制备含Fe(II)的双价PSAFS,是一种具有应用前景的多功能絮凝剂。  相似文献   

13.
毒杀芬由于高毒性、高稳定性及生物累积性而备受关注,它由1000多种化合物组成.固废浸出液成分较复杂,建立准确可靠的固体废物浸出液中毒杀芬的分析方法具有重要意义.通过优化毒杀芬分析的色谱分析条件与固体废物浸出液中毒杀芬的前处理方法、探索其定性定量方法,建立了毒杀芬"数量化"的定性模式,最终建立固体废物浸出液中毒杀芬含量的分析方法.所建立方法的校准曲线相关系数大于0.998,检出限为1.16 g·L-1,RSD为5.01%,该方法被用于实际固体废物浸出液中毒杀芬的分析,回收率良好.方法的"数量化"的定性模式有望用于其他混合物的定性分析.  相似文献   

14.
为提高污水样品中雌酮(E1)的固相萃取回收率,应用响应面法(RSM)对影响固相萃取的关键参数进行了优化,建立了固相萃取回收率的二次多项式模型,分析了模型有效性和因子交互作用,确定了最佳固相萃取条件;并对实际污水处理厂进、出水样品中的E1进行了固相萃取和浓度检测。结果表明,影响E1固相萃取回收率的因素重要性依次为:洗脱体积>进样速率>洗脱速率。最佳固相萃取条件为:洗脱体积11.15 mL;进样速率10.62mL/min;洗脱速率4.15 mL/min;在此条件下,预测回收率最大可达81.82%。分别采用SBR、氧化沟和A2/O工艺的3座污水处理厂进水E1浓度分别为36.889.0、24.189.0、24.128.4和27.828.4和27.858.1 ng/L,对应去除率分别为62.8%58.1 ng/L,对应去除率分别为62.8%77.0%、49.3%77.0%、49.3%63.6%和56.1%63.6%和56.1%74.9%。3种污水处理工艺对E1均有一定的去除能力,但出水中残余E1仍远超过预测无效应浓度。  相似文献   

15.
文章建立了直接浸入固相微萃取-气质联用测定饮用水中邻苯二甲酸二正丁酯(DBP)含量的方法。通过响应面法优化100-μm PDMS纤维萃取自来水中DBP的条件,以DBP的峰面积为指标,考察了萃取温度、萃取时间和解析时间三个主要因素对萃取效果的影响。经响应面优化的最佳SPME萃取条件如下:萃取温度53.17℃,萃取时间50.49 min,解析时间4.62 min。在优化条件下,DBP的理论最大峰面积为7.16×108,验证值为6.68×108,与理论值相差6.70%。结果表明,响应面法适用于饮用水中邻苯二甲酸二正丁酯固相微萃取条件的优化,经优化得到的参数准确可靠。  相似文献   

16.
以肼黄染料废水为模拟对象,在单因素试验的基础上通过响应面法优化Fenton氧化的脱色效果,研究了初始pH值、Fe2+投加量和H2O2投加量3个因素在该废水脱色过程中的显著性和交互性.结果表明,这3个因素对肼黄染料废水的脱色率的影响均具有显著性,且初始pH值与Fe2+投加量的交互影响、Fe2+投加量与H2O2投加量的交互影响也具有显著性.响应面法优化得到的最佳脱色工艺:初始pH值为3.19,Fe2+质量浓度为23.2 mg/L,H2O2质量浓度为345.4 mg/L,反应温度45℃,反应时间5 min;在此条件下的理论脱色率为90.85%,与3次实际平行试验的脱色率均值仅相差2.30%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号