共查询到20条相似文献,搜索用时 15 毫秒
1.
以某城市污水处理厂剩余污泥为研究对象,探讨臭氧预处理对剩余污泥破解效果以及对后续水解酸化有机物释放的影响。实验结果表明,随着臭氧投加量的增大,污泥溶胞率增加,有机质释放到污泥液相中,SCOD、蛋白质和多糖含量都大幅增加。臭氧预处理有利于污泥水解酸化过程,臭氧投加量越大,SCOD和蛋白质释放越多;随着水解酸化过程的进行,SCOD和蛋白质的含量逐渐趋于稳定,VFAs的浓度增大,臭氧投加量150 mg/g SS污泥产生的VFAs浓度是对照组的1.82倍。 相似文献
2.
采用3组构造一致的完全混合流态水解酸化反应器,分别以同等浓度的絮凝污泥、初沉污泥和剩余污泥作为底物污泥,在温度35℃,初始pH=10的反应条件下,研究污泥性质的差异对污泥水解酸化产物及产率的影响。实验结果表明:与初沉污泥、剩余污泥相比,絮凝污泥更易水解产酸发酵,至第9天水解产SCOD达到最大值2 713.2 mg/L,第7天酸化产VFAs达到峰值1 392.7 mg/L。3种污泥酸化产VFAs的主要组分均为乙酸和丙酸,但絮凝污泥VFAs组分中乙酸、丙酸这种优势更加明显,其所占比例分别高达48.9%和27.2%。此外,3种污泥水解酸化产碳源的同时均伴随着氮、磷元素的释放,整体而言,絮凝污泥产酸发酵中氮、磷元素的释放量及释放率均较低。 相似文献
3.
以超磁分离污泥作为研究对象,用2种不同的剩余污泥作为接种污泥,维持温度在30 ℃,探究了剩余污泥对超磁分离污泥厌氧水解酸化产物及产率的影响。结果表明:随着剩余污泥接种量的增加,混合污泥SCOD的析出量也逐渐增加;接种剩余污泥量的增加促进了混合污泥VFAs的生成;各种污泥产VFAs中,乙酸均具有明显优势,并会促进丙酸的累积;混合污泥较之于超磁分离和剩余污泥具有快速、高效的产酸优势,且随着剩余污泥接种量的增加,加快了水解酸化的速率并且加深了酸化的程度,但会延长其达到最大值的时间。污泥产酸发酵获得内碳源的同时,还存在着N元素的释放,且随着剩余污泥接种量的增加,这种伴随现象更明显。对比2种剩余污泥(W1、W2)发现,W1作为接种污泥时,并没有明显的P元素的释放;当W2作为接种污泥时,伴随着比较明显的P元素的释放。综合考虑剩余污泥对于超磁分离污泥水解酸化效果的影响发现,当剩余污泥接种量W1为12.2%,W2为13.6%时,既可以为系统提供更多的SCOD,又可以避免过高的氮负荷。 相似文献
4.
初沉污泥球磨破解后水解酸化研究 总被引:1,自引:0,他引:1
采用球磨机对污水处理厂初沉池的污泥进行球磨破解以控制初沉污泥粒径,然后在不同条件下(污泥粒径、系统pH、污泥投配率)考察初沉污泥的水解酸化效果(以溶解性COD(SCOD)变化显示),以确定初沉污泥水解酸化的最佳条件。结果表明,初沉污泥的最佳水解酸化条件为:污泥粒径25μm、系统pH 11、污泥投配率10%、水解酸化时间5d,此时反应后系统SCOD为8 256mg/L,污泥水解转化效率为32.0%。通过球磨破解、水解酸化的方式回收初沉污泥中的碳源具有一定的可行性和较好的开发利用前景。采用球磨机作为污水处理厂初沉污泥预处理的装置,与其他方法如超声波法、热处理法等相比较,具有适应力强、操作可靠、运行简单等优点。 相似文献
5.
污泥水解酸化过程中污染物的释出及其影响因素研究 总被引:4,自引:1,他引:3
为了回收利用污泥中的有机物、氮和磷,研究了将厌氧污泥接种到吸附了污染物质的剩余污泥中,对污泥水解酸化的促进以及污泥中微生物所摄取污染物质的释出规律;揭示了厌氧条件下发酵时间、污泥量、pH和热处理对污染物释出的影响。结果表明,接种24 h后污染物被大量释放出来;在发酵时间为24 h条件下,污染物释出量与污泥质量成正比;吸附了污染物的剩余污泥相对含量越高,释磷量越大;污泥厌氧发酵时,碱性条件下有机物和正磷酸盐的释出量大于酸性条件,加碱调高pH可有效促进氨氮的释出;对吸附了污染物的剩余污泥进行短时热处理可有效缩短其厌氧发酵时污染物的释出时间。结果表明,控制污泥厌氧水解发酵条件可以促进污染物的释出,有利于下一步的回收。 相似文献
6.
温度和污泥浓度对碱性条件下剩余污泥水解酸化的影响 总被引:3,自引:0,他引:3
挥发性脂肪酸(VFAs)是脱氮除磷过程中易于利用的碳源。剩余污泥在碱性条件下发酵能产生大量的VFAs,而温度和污泥浓度是影响剩余污泥发酵的两个重要因素,为此考察了厌氧环境,温度15℃和35℃,pH为10的条件下,剩余污泥挥发性悬浮污泥浓度(VSS为1.708~11.049 g/L)对水解酸化的影响,为实现剩余污泥的资源化提供理论依据。研究得出如下结论:污泥浓度对剩余污泥溶解性化学需氧量(SCOD)溶出率影响不大。低污泥浓度和高污泥浓度均不利于剩余污泥产酸,最佳产酸的污泥浓度为8.540 g/L。各污泥浓度条件下产生的6种挥发性有机酸中乙酸的比例总是最大,且低污泥浓度条件下乙酸的百分含量要高于高污泥浓度条件下。温度对高污泥浓度条件下污泥的最大SCOD溶出量影响较大,而对低污泥浓度条件下污泥最大的产酸量影响较大。无论15℃还是35℃,中等污泥浓度对氨氮的释放量影响不大,35℃条件下污泥浓度对正磷酸盐的释放要比15℃条件下大。 相似文献
7.
剩余污泥中富含有机质和营养元素可回收利用物质,污泥水解酸化液中的有机酸在去除或回收利用氨和磷后可作为进水化学需氧量(COD)不足的污水处理厂的补充碳源。通过控制pH,对比分析了不同处理方式(单独碱处理、酸-碱处理和碱-酸处理)对污泥水解酸化的影响。结果表明,单独碱处理的溶解性化学需氧量(SCOD)溶出量比酸碱联合处理要大16%左右,预处理第8天,达到5 406.1 mg/L。采用先酸(pH 4.0,4 d)后碱(pH 10.0,4 d)预处理,乙酸产量达到74.4 mg COD/g VSS,占总SCFAs的60.5%,产量及其占总短链脂肪酸(SCFAs)百分比含量均高于其他预处理方式。且酸-碱处理方式下NO4+-N和PO34--P溶出要优于其他处理方式。而单独碱处理方式下污泥减量效果最好,VSS去除率为36.6%。 相似文献
8.
9.
为提高低挥发分城市污泥水解酸化的效率,采用超声处理与碱性调节组合的手段强化水解酸化过程,探讨组合的方式、条件及其作用效果。通过先进行碱性调节再超声处理与先超声处理再进行碱性调节2种组合方式下的6种组合条件,分析水解酸化过程SCOD、VFAs、氮、磷的变化情况。实验结果表明,2种组合方式的各条件均可促进污泥水解酸化;超声处理后即调pH为9.5的组合条件较其他组合条件更有利于有机质的转化和VFAs的产生,SCOD的转化率达到20.46%,VSS可降低约40%,在5 d水解酸化过程中污泥水解酸化液HAc/VFAs均高于50%,VFAs最高达1 072.51 mg/L;而各组合条件对水解酸化过程中氮磷的释放影响不大。研究指出,超声处理后即进行碱性调节的组合条件能显著强化低挥发分城市污泥的水解酸化效果。 相似文献
10.
剩余污泥水解酸化液磷去除的影响因素研究 总被引:3,自引:2,他引:3
城市污水厂剩余污泥水解酸化后可产生高浓度挥发性有机酸(VFAs),其中的乙酸和丙酸是增强生物除磷(EBPR)工艺的有利基质.但水解酸化液中含有大量的磷,如不进行处理就作为碳源回用到污水处理工艺中,势必增加除磷负荷.利用鸟粪石沉淀法可以去除污水中的磷.对城市污水厂剩余污泥水解酸化液形成鸟粪石的影响因素进行了试验研究.结果表明,在最佳工艺条件下,正磷和总磷的去除率分别可达92.5%和83.8%. 相似文献
11.
水解酸化应用于剩余污泥减量的试验研究 总被引:2,自引:1,他引:2
碱减量印染废水生物处理剩余污泥接种培养成熟的水解酸化菌,通过它们的新陈代谢作用,可以实现系统内生命物质的更新和减量,同时降解了污泥吸附的有机物等,达到对剩余污泥减量的目的.在系统污泥减量初期,水解酸化作用对微生物的"液化"、内容物释放和对有机物的生物降解作用是污泥减量的主要原因;随着中间代谢产物的积累,微生物活性受到抑制,试验后期剩余污泥减量主要是微生物内源呼吸的结果.试验条件下,接种了成熟水解酸化细菌的 2 组剩余污泥 MLSS 浓度分别为 7.765 和 11.250 g/L,MLVSS 浓度分别为 4.466和 6.360 g/L,经过 513 h后 MLSS、MLVSS 浓度较开始时分别下降了 40.31%、45.73%和 54.85%、63.18%.一定污泥浓度范围,污泥减量效果与污泥浓度正相关. 相似文献
12.
剩余污泥超声预处理后水解酸化特性 总被引:1,自引:2,他引:1
为探讨剩余污泥超声预处理后的水解酸化特性,考察了0.6 W/mL、5 min和1 W/mL、5 min 2种超声预处理条件下污泥水解酸化过程有机质、氮、磷的释放情况。实验结果表明,2种超声预处理均可促进污泥水解酸化,并且0.6 W/mL比1 W/mL的超声预处理更有利于SCOD的释放、VFAs的产生以及氮和磷的释放;水解酸化初期,超声预处理比未经超声预处理的污泥在有机质、氮、磷释放率上差异非常明显,随着水解酸化的进行,有机质和氮释放率差异仍很明显,而磷释放程度逐渐接近;经0.6 W/mL超声预处理,污泥水解酸化3 d后,SCOD释放率、VFAs浓度、TN释放率和NH4+-N释放率分别是未经处理污泥的1.85、2.63、1.85和1.41倍,而TP和PO43--P释放率较未经处理污泥仅分别多2.44和1.23个百分点。研究表明,控制适宜的声能密度、超声时间和水解酸化进程是超声预处理强化剩余污泥水解酸化效果的关键。 相似文献
13.
以超磁分离后初沉污泥作为研究对象,在维持初始pH在7.4~7.8的条件下,分别控制温度在20、25、30和35℃,探究温度对超磁分离初沉污泥厌氧水解酸化产物及产率的影响。结果表明,温度的升高加速了超磁分离初沉污泥的水解酸化。35℃时,SCOD在第3天即达到峰值970.32 mg·L~(-1),VFAs也达到峰值295.9 mg·L~(-1),此时,VFAs中含量最高的为乙酸217.1 mg·L~(-1),乙酸占比为73.3%;而25℃时,其占比为68%。超磁分离初沉污泥水解酸化获取内碳源的同时还伴随着N元素的释放,且温度越高,TN和NH_4~+-N的释放越明显。由于系统中聚合氯化铝((Al_2(OH)_nCl_(6-n))_m,PAC)的存在,所以并没有P元素的释放。在30℃的反应温度下,超磁分离初沉污泥水解酸化即可以获取更多的碳源,又可以避免产生过高的N、P负荷。 相似文献
14.
水解酸化-A~2O污泥减量工艺的运行性能研究 总被引:2,自引:0,他引:2
生物处理单元采用水解酸化、多级串联接触曝气、连续流的除磷脱氮A2/O工艺,并辅以外排厌氧富磷污水侧流除磷,开发了一个新型的具有强化除磷脱氮功能的污泥减量HA-A/A-MCO工艺。用该工艺处理校园生活污水发现,在SRT60 d、进水COD 316~407 mg/L、NH4+-N30~40 mg/L、TN35~53 mg/L、TP 8~12 mg/L的条件下,出水COD≤18 mg/L、NH4+-N≤2.1 mg/L、TN≤10.3 mg/L、TP≤0.44 mg/L。研究还发现,水解酸化池处理产生的VFA能有效促进生物除磷脱氮,导致厌氧释磷量达57 mg/L,进入化学除磷池的侧流液量仅相当于进水量的13%;系统最主要的脱氮形式是SND和缺氧反硝化,SND脱氮占脱氮总量的50%,缺氧反硝化占26%;HA-A/A-MCO系统有效实现了生物相分离,并利用生物捕食作用获得较低的污泥产率,0.1 g MLSS/g COD。 相似文献
15.
接种比对碱超声波耦合溶胞污泥水解酸化的影响 总被引:1,自引:1,他引:1
以城市污水生物处理过程中的剩余污泥减量化为研究背景,通过实验研究了经碱超声波耦合溶胞后的剩余污泥在不同接种比下水解酸化的效果,分析了污泥上清液中pH、SCOD、VFAs、NH4+-N和PO3-4-P等参数随时间的变化趋势。结果表明,溶胞污泥经过72 h的水解酸化反应,20%接种比下的水解酸化COD溶出率和VFAs增长率最高,分别为75.5%和177%。蛋白质水解程度为16.9%,也高于50%和70%两组接种比。此外,COD、NH4+-N和PO3-4-P等主要溶出物均在12 h后达到基本稳定状态。 相似文献
16.
生物处理单元采用水解酸化、多级串联接触曝气、连续流的除磷脱氮A2/O工艺,并辅以外排厌氧富磷污水侧流除磷,开发了一个新型的具有强化除磷脱氮功能的污泥减量HA—A/A—MCO工艺。用该工艺处理校园生活污水发现,在SRT60d、进水COD316~407mg/L、NH4+-N30~40mg/L、TN35~53mg/L、TP8—12mg/L的条件下,出水COD≤18mg/L、NH4+-N≤2.1mg/L、TN≤10.3mg/L、TP≤0.44mg/L。研究还发现,水解酸化池处理产生的VFA能有效促进生物除磷脱氮,导致厌氧释磷量达57mg/L,进入化学除磷池的侧流液量仅相当于进水量的13%;系统最主要的脱氮形式是SND和缺氧反硝化,SND脱氮占脱氮总量的50%,缺氧反硝化占26%;HA-A/A—MCO系统有效实现了生物相分离,并利用生物捕食作用获得较低的污泥产率,0.1gMLSS/gCOD。 相似文献
17.
为回收剩余污泥水解酸化液中的营养元素与有机质,构建了白云石-水解酸化液钙镁溶出体系,获得富含钙镁的溶出液,控制溶出液反应pH和反应时间进行第1阶段回收,以回收后的上清液进一步作为钙镁源从水解酸化液中进行第2阶段回收。结果表明,钙镁溶出的适宜条件为酸化pH 4.0~4.5、白云石颗粒50~80目、固液比3∶100(每100mL水解酸化液中投加3g筛分后白云石)、溶出时间10h;第1阶段回收适宜的反应pH为8.5,氮(以氨氮计)回收率、磷(以可溶性正磷酸盐(以P计)计)回收率分别为10.24%和95.89%;第2阶段回收适宜的镁磷摩尔比为0.60、反应pH为9.0,此时氮、磷回收率分别为14.60%和83.91%;傅立叶红外变换(FTIR)和电感耦合等离子直读光谱(ICP)分析表明,回收产物主要由无机养分和有机质组成,重金属含量极少。利用白云石提供钙镁源能经济有效地回收剩余污泥水解酸化液中的氮、磷等营养元素,同时回收有机质,回收产物品质符合《有机-无机复混肥料》(GB 18877—2009)中Ⅰ型肥料要求。 相似文献
18.
针对城市污泥厌氧消化由于融胞困难所导致的消解速率低、产气量低等问题,采用热水解与超声组合的方法对污泥进行预处理,考察经预处理后污泥融胞效率的变化及对厌氧消化产气潜力的影响.结果显示,热水解与超声波组合工艺对污泥的破胞作用明显,在30 min热水解与0.53 W/mL超声声能密度组合工艺反应60 min条件下,相对于处理前污泥,预处理后污泥溶解性COD(SCOD)溶出率可提高41.6%,蛋白质增加值达282.7 mg/L,污泥厌氧消化的产气潜力显著增加;30 min热水解分别与0.53、0.33 W/mL超声声能密度组合工艺对污泥破胞效率的差异不大;随着超声时间的延长,在组合预处理工艺前20 min内SCOD的溶出速率较慢,20260 min时溶出速率逐渐提高.试验结果可为城市污泥厌氧消化预处理工艺的选择提供一定的理论依据. 相似文献
19.
pH对剩余污泥和初沉污泥水解酸化的影响已有报道,但pH对混合污泥水解酸化的影响尚鲜见报道。为此对厌氧环境,(20±1)℃,pH=4~11以及不控制pH条件下混合污泥的水解酸化特征进行了研究。研究发现:对pH调控有利于污泥SCOD的溶出,在较强的碱性条件下污泥溶出的SCOD要大于其他条件下的,特别是pH=10和11条件下污泥溶出的SCOD要远高于其他条件下。碱性环境和酸性环境以及中性环境相比更有利于混合污泥产酸,最佳产酸pH条件为pH=10。在酸性和极端碱性条件下均有利于混合污泥中氨氮和磷的释放。碱性环境利于挥发性悬浮固体(VSS)的去除,但不利于总悬浮固体(TSS)的去除。在不同pH条件下将混合污泥的发酵特征和剩余污泥和初沉污泥发酵特征比较,发现3种污泥水解和产酸均在碱性条件下最好,且在20~22℃的条件下,产酸量均在pH=10的条件下达到最大。 相似文献
20.
酸碱联合调节剩余污泥过程中氮、磷和有机质的释放 总被引:1,自引:0,他引:1
实现城市污泥的减量化和资源化是污水厂面临的难题之一。通过采用(1)先酸性(pH=3)后碱性(pH=10)、(2)先碱性(pH=10)后酸性(pH=3)的两段控制方式(每段反应8 d),同时做pH不调的对比实验,研究剩余污泥水解酸化过程中氨氮、磷酸盐和溶解性COD(SCOD)、碳水化合物、蛋白质和挥发性脂肪酸(VFAs)等有机质组分的释放。结果表明,酸碱联合调节有利于各组分的释放;氮和磷在酸性条件下的释放量大于碱性,有机质在碱性条件下的释放量大于酸性;采用(2)方式,调为酸性后反应1 d,氨氮的释放量即达到最大(17.28 mg/g TS);采用(1)的调节方式反应7 d,磷酸盐能达到最佳释放量(14.16 mg/g TS);总VFAs的产生受反应时间的影响较大,其余有机质组分在(2)的调节方式下,6 d左右即可达到较大释放量。 相似文献