首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过共沉淀法将四氧化三铁(Fe_3O_4)纳米粒子负载于凹凸棒土(ATP)制备出兼具吸附与催化性能的非均相类芬顿催化剂ATP@Fe_3O_4。采用SEM(扫描电子显微镜)、XRD(X射线衍射)、XPS(X射线光电子能谱)、VSM(振动磁强计)等对材料的结构进行了表征分析,并研究了其对催化过硫酸盐(PS)降解四环素(TC)的效果。结果表明,ATP@Fe_3O_4复合材料是活化过硫酸盐(PS)生成硫酸根自由基(SO_4~-)强有力的催化剂,可大幅提高PS对水溶液中四环素的降解能力。当PS浓度为10 mmol·L~(-1)、ATP@Fe_3O_4投加量为1.5 g·L~(-1),其对pH=3.9的80 mg·L~(-1)四环素溶液的降解率在90 min可达98.75%。负载于ATP表面的Fe_3O_4粒子和部分溶解于水中的Fe~(2+)共同催化PS生成SO_4~-,将TC氧化为CO_2、H_2O和中间体,是ATP@Fe_3O_4/PS体系去除四环素的主要机理。以上研究结果可为催化材料的应用提供参考。  相似文献   

2.
对纳米SiO2改性聚偏氟乙烯(SiO2/PVDF)离子交换膜电渗析处理单组分电解质溶液进行了试验研究。结果表明,在不同操作条件下,SiO2/PVDF离子交换膜的极限电流密度和脱盐率均大于未改性聚偏氟乙烯(PVDF)离子交换膜。SiO2/PVDF离子交换膜的极限电流密度随着淡水流量和电解质浓度的增加而增加;随着电流强度的增加,SiO2/PVDF离子交换膜的脱盐率也相应增加;随着淡水流量增加,脱盐率会逐渐降低。为使SiO2/PVDF离子交换膜用于电渗析过程获得良好的脱盐效果和节约能量,NaCl质量浓度为500mg/L时电流密度应控制在1.17mA/cm2。  相似文献   

3.
为提高臭氧氧化法对难降解有机污染物的降解效率,采用在催化臭氧氧化体系中引入H_2O_2的方法,建立催化O_3-H_2O_2联合氧化体系,使O_3与H_2O_2在体系中起协同作用。采用等体积浸渍法筛选制备了具有高催化性能的Fe-Mn/γ-Al_2O_3催化剂,应用于O_3/Fe-Mn/γ-Al_2O_3/H_2O_2复合体系协同催化臭氧氧化处理间甲酚模型废水。通过扫描电子显微镜(SEM)、物理吸附、X射线衍射(XRD)、X射线荧光光谱(XRF)、X射线光电子波谱(XPS)对催化剂的物理化学性质进行表征。考察了O_3投加量、H_2O_2投加量、初始pH、空速等因素对Fe-Mn/γ-Al_2O_3催化O_3-H_2O_2氧化间甲酚处理效果的影响,并采用GC-MS和LC-OCD,对Fe-Mn/γ-Al_2O_3催化O_3-H_2O_2氧化间甲酚的中间产物的类型及相对分子质量进行分析。结果表明,当以Fe-Mn/γ-Al_2O_3为催化剂时,协同催化氧化体系的最优处理参数为:间甲酚浓度100 mg·L~(-1),O_3投加量481 mg·L~(-1),反应时间10 min,空速6 h~(-1),H_2O_2投加量211 mg·L~(-1),进水pH 6.7。在此条件下,TOC去除率可达68.37%,间甲酚转化率可达100%。以上研究结果可为2种技术联用降解煤化工废水提供参考。  相似文献   

4.
改性沸石对二级生化出水中氨氮的吸附特性   总被引:1,自引:0,他引:1  
采用氯化钠联合高温对天然斜发沸石进行改性,通过批次实验探究改性沸石吸附氨氮特性。结果表明:氯化钠浓度为0.8 mol·L~(-1),焙烧温度为300℃条件下,氨氮去除效果最佳;改性沸石在氨氮初始浓度为8mg·L~(-1),投加量为10 g·L~(-1),反应时间为120 min的条件下,去除率可达71%,相比天然沸石提高23.1%。通过扫描电镜(SEM)、X射线能谱(EDS)、比表面积(BET)、X射线衍射(XRD)和傅里叶光谱(FT-IR)考察改性前后沸石组成特征以及化学键的变化,可以看出,改性机制可去除孔道杂质及Na~+置换沸石中金属阳离子;氨氮吸附过程满足拟二级动力学方程(R~2=0.986),Langmuir等温线模型拟合结果 (R~2=0.998)优于Freundlich模型(R~2=0.839),且改性沸石最大吸附容量为5.94 mg·L~(-1)。热力学计算结果表明,沸石对氨氮的吸附过程是一个自发、吸热、熵增过程。上述结果表明,改性沸石能够有效地对污水厂二级生化出水中氨氮进行深度处理。  相似文献   

5.
臭氧催化氧化-BAF组合工艺深度处理抗生素制药废水   总被引:1,自引:0,他引:1  
针对抗生素制药废水组分复杂、毒性强、难生物降解的特点,以Ce负载天然沸石作为催化剂(Ce/NZ),采用臭氧催化氧化-曝气生物滤池(BAF)组合工艺对抗生素制药废水二级生化处理出水进行深度处理。结果表明,Ce/NZ催化剂可显著改善臭氧预处理单元的处理效率,在臭氧进气浓度为50 mg·L~(-1)、臭氧进气量为600 mL·min~(-1)、催化剂用量为1 g·L~(-1)、臭氧反应时间为120 min的条件下,臭氧催化氧化预处理对抗生素制药废水的COD去除率达到43%,平均COD由220 mg·L~(-1)降至125 mg·L~(-1),BOD_5/COD由0.12升至0.28,废水的可生化性得到显著提高。臭氧预处理单元出水采用BAF进行生化处理,在进水平均COD为125 mg·L~(-1)、平均NH_4~+-N为12 mg·L~(-1)、水力停留时间为4 h、气水比为4∶1的条件下,COD和NH_4~+-N的平均去除率分别为62%和64%。组合工艺处理后出水平均COD和NH_4~+-N分别为46 mg·L~(-1)和4.1 mg·L~(-1),出水水质可以稳定达到《发酵类制药工业水污染物排放标准》(GB 21903-2008)。相较于单独BAF工艺,组合工艺出水COD和NH_4~+-N平均去除率分别提高了66%和15%,出水水质明显优于单独BAF工艺出水。  相似文献   

6.
使用新型铁基催化剂催化臭氧氧化,深度处理煤化工废水的生化出水。通过XRD、FTIR技术分析,确定了催化剂主要成分为FeOOH。考察了pH值、催化剂投加量、臭氧投加量对催化效果的影响,结果表明:当pH为7.0、催化剂量为200g·L~(-1)、臭氧投加量为10.7 mg·min~(-1)时,催化效果显著,COD去除率可达(66.2±1.7)%,而单独臭氧氧化为(47.6±2.6)%;TOC去除率可达(58.4±2.1)%,比单独臭氧氧化的(28.8±1.9)%,提高了近1倍。使用EPR技术直接验证、HCO_3~-为自由基淬灭剂间接验证,均证明羟基自由基是催化效果的主要原因。  相似文献   

7.
采用γ-氨丙基三乙氧基硅烷化学修饰活化后的硅胶,以戊二醛为交联剂,接上羧甲基壳聚糖,继而接枝上β-环糊精作为功能单体,制备了一种用于分离富集水样中Cu(Ⅱ)的固相萃取新材料。利用红外光谱(FT-IR)、比表面分析(BET)、X射线衍射光谱(XRD)以及热重分析(TG)等方法对吸附剂进行结构表征。采用火焰原子吸收(FAAS)作为检测手段,考察了溶液p H、振荡时间、吸附剂用量、样品流速、洗脱液浓度和体积等对吸附剂吸附Cu(Ⅱ)的影响。吸附剂饱和吸附容量为9.37 mg/g,最大富集倍数高达350。吸附过程能用准二级动力学模型和Langmuir等温吸附方程进行很好的拟合。应用于环境水样中Cu(Ⅱ)的分离富集与测定,回收率在96.8%~105.2%之间,效果较好。  相似文献   

8.
为解决膜分离技术在水处理中存在膜污染和高能耗的问题,通过电氧化聚合法将聚吡咯(polypyrrole,PPy)沉积在PVDF/碳纤维膜上,制备高活性的PPy-PVDF/碳纤维膜;研究不同沉积时间对电催化膜催化活性的影响及微电场环境对PPy-PVDF/碳纤维膜污染的影响;并构建MFC-电催化膜反应器,测试反应器在处理污水时的产能效果。结果表明,恒电位(0.8 V)聚合10 min时,PPy10-PVDF/碳纤维膜的催化活性最高,PPy的最佳沉积密度为0.75 mg·cm-2。抗污染通量测试结果表明,在0.4 V·cm-1的微电场下,PPy10-PVDF/碳纤维膜的稳定通量(317 L·(m~2·h)~(-1))比无电场时(212 L·(m~2·h)~(-1))提高了约49.5%,说明MFC-电催化膜反应器中的微电场可以有效减缓膜污染。在MFC-电催化膜处理污水的过程中,反应器对COD去除率高达96%以上;反应器产能最大功率密度为166 mW·m-3,与空白PVDF/碳纤维膜(产能密度为99 mW·m-3)相比提高了约67%。PPy10-PVDF/碳纤维膜在MFC-电催化膜反应器表现出较高的污染物去除率、能源回收效率及对膜污染的有效控制。  相似文献   

9.
臭氧处理污泥后释放的碳物质可作为低碳市政污水生物处理的重要碳源补充。为突破传统臭氧处理效率低等问题,研究采用微气泡臭氧技术以强化污泥碳源释放效果。结果表明,在臭氧投加量为200 mg O_3·(g SS)~(-1)时,污泥SCOD增长了1 964 mg·L~(-1),为传统臭氧处理的2.1倍,DDCOD由18.1%上升至41.5%,污泥碳源释放效果显著提高。同时确定了微气泡臭氧处理在臭氧浓度为100.0 mg·L~(-1),污泥浓度为5 g·L~(-1),污泥初始p H为9的条件下,污泥碳源矿化损失较小且污泥碳源释放效果较好,在臭氧投加量为160 mg O_3·(gSS)~(-1)时污泥SCOD增长了1 923 mg·L~(-1),DDCOD达到41.2%。与传统臭氧处理相比,微气泡臭氧处理能提高臭氧传质效率与间接反应强度,更有利于污泥碳源的释放。  相似文献   

10.
李茹  李青  梁煜  李茜  张宇  牛惠翔 《环境工程学报》2020,14(7):1752-1761
采用远程氨等离子体对聚偏氟乙烯(PVDF)超滤膜进行了表面改性实验,通过水接触角表征了改性前后PVDF超滤膜表面的亲水性能,利用扫描电镜(SEM)和X-射线光电子能谱(XPS)表征了改性前后PVDF超滤膜表面的形貌、化学成分变化,通过牛血清白蛋白(BSA)过滤实验评价了改性前后PVDF超滤膜的过滤性能及抗污染性能。结果表明,远程氨等离子体改性的最佳条件为射频功率为40 W,处理时间为45 s,气体流量为20 cm~3·min~(-1);远程氨等离子体通过将含氧、含氮官能团引入PVDF超滤膜表面,使其表面亲水性官能团增多,表面的亲水性能得到提高,水接触角从95.63°降至52.79°,同时降低了对材料表面的刻蚀作用;通过BSA溶液过滤实验,改性后PVDF超滤膜具有良好的过滤性能和抗污染性能,其水通量、 BSA通量分别从87.42、48.00 L·(m~2·h)~(-1)增至129.36、79.98 L·(m~2·h)~(-1),截留率从81.43%增至87.70%,总污染率从70.25%降至45.96%。综合上述结果,经过远程氨等离子体改性后,PVDF超滤膜的亲水性能、过滤性能及抗污染性能均得到改善。  相似文献   

11.
页岩气压裂返排液的有效处理是页岩气开发急需解决的关键环保问题之一。针对新页HF-1井页岩气压裂返排液经预氧化结合湿式氧化(PO-WAO)工艺处理的出水COD不达标、含盐量高等技术难题,采用膜蒸馏处理技术对工艺的出水进行深度处理。通过膜蒸馏单因素和正交实验表明料液温度和冷凝温度对膜蒸馏处理效果影响较大,在料液温度、冷凝液温度、真空度、运行时间分别为80℃、8℃、0.090 MPa和60 min的最佳工艺条件下,膜通量可达1.750 L·(m2·h)-1,出水COD浓度为95.8 mg·L~(-1),出水水质可满足《污水综合排放标准》(GB 8978-1996)中一级排放的要求。膜蒸馏出水中电导率为63μS·cm-1,氯化钠的质量浓度为1.168 0 mg·L~(-1),可有效降低处理后的压裂废液对周围土壤的盐碱化伤害。  相似文献   

12.
研究比较了臭氧氧化(O3)、臭氧/活性炭氧化(O3/AC)、真空紫外/臭氧(VUV/O3)、真空紫外/臭氧/活性炭氧化(VUV/O3/AC)对甲基肼废水的处理效果,以甲基肼和COD去除率为指标,其中VUV/O3/AC最为有效。考察了活性炭投加量、臭氧投加量、初始pH值和活性炭使用次数等因素的影响。结果表明,反应最佳工艺条件为臭氧投加4.2 mg·min~(-1)、pH值为9.60、活性炭投加量为6 g·L~(-1)。反应60 min,甲基肼去除率可达99.3%,COD去除率可达75.7%。同时,探究了活性炭的重复使用效果,分析了反应过程的中间产物。  相似文献   

13.
以微量的改性纳米四氧化三铁与聚偏氟乙烯(PVDF)共混,制备具有良好亲水性、纯水通量和防污性能的PVDF复合膜。通过溶剂热法合成了经1,6-己二胺改性的纳米四氧化三铁(H-Fe_3O_4),同时比较了未经改性的四氧化三铁(Fe_3O_4)和改性后的四氧化三铁(H-Fe_3O_4)的结构性能差异。通过相转化法制备了H-Fe_3O_4(质量分数小于1.0%)与PVDF的共混复合膜(H-Fe_3O_4@PVDF复合膜)。通过测试膜的晶相组成、表面和断面形貌、静态纯水接触角、平均孔隙率、平均孔径、纯水通量、牛白蛋白截留率以及通量恢复率,研究微量H-Fe_3O_4的投加对复合膜性能的影响。结果表明,经1,6-己二胺调控合成的H-Fe_3O_4,比Fe_3O_4拥有更小的粒径、更好的单分散性以及更多的亲水官能团。向膜中添加0.3%的H-Fe_3O_4,可使复合膜的静态纯水接触角由80.9°降到66.6°,亲水性得到良好的改善。复合膜的平均孔隙率、平均孔径、纯水通量以及通量恢复率随H-Fe_3O_4投加量的增加均明显提高。当H-Fe_3O_4质量分数为0.4%时,复合膜的纯水通量从原膜的10.4 L·(m~2·h)~(-1)增加到了144.0 L·(m~2·h)~(-1),通量恢复率也从原膜的51.4%增加到了87.5%。微量H-Fe_3O_4的添加较好地改善了PVDF膜的性能,具有较好的实用价值。  相似文献   

14.
采用固相混合法制备了钢渣污泥陶粒催化剂,SEM、XRD测试结果显示,催化剂具有较为发达的孔隙结构,活性组分以MnO_2和CuO晶型形态分布于陶粒中。对含盐炼油废水生化尾水进行了臭氧催化氧化研究,考察了废水初始pH、催化剂用量、臭氧投加量等因素对COD去除效果的影响。结果表明,当反应初始pH为7.36、催化剂用量为15 g·L~(-1)、臭氧投加量为4.21 mg·min~(-1)时,反应35 min,废水中COD从86.97 mg·L~(-1)降至48.02 mg·L~(-1),出水水质达到新修订的《石油炼制工业污染物排放标准》。所制备的催化剂活性稳定、使用寿命长,活性组分锰、铜溶出率低,无二次污染产生。  相似文献   

15.
对膜接触反应器传质过程及其在模拟印染废水降解中的应用进行了研究。实验表明,产水臭氧浓度随着液相雷诺数、气相臭氧浓度和膜长的增加而升高,随着温度升高而下降。在膜接触反应器中,臭氧体积传质系数kLa可达0.317s~(-1),比鼓泡反应器大15~62倍。对模拟印染废水的降解速率常数ka可达0.336 s~(-1),比鼓泡反应器大65%,而比臭氧消耗量为鼓泡反应器的45%。实验表明,膜接触反应器具有体积较小,臭氧利用效率较高等优势。  相似文献   

16.
以污泥臭氧减量化过程中含氮物质的转变为研究核心,分析了减量过程中不同形态氮溶出物随臭氧投量的变化,并利用线性回归方程归纳出污泥溶解过程中各形态含氮物质的溶出规律。结果表明:当臭氧投量在0.15 g O_3·(gTSS)~(-1)时,TN的增长速率最高,增幅达437.44%,此时MLSS减少了41.28%,可将0.15 g O_3·(gTSS)~(-1)视为臭氧最佳投量;XPS图谱显示,溶出的NH_4+~-N、NO_3~--N主要由污泥絮体中铵态氮和硝态氮的释放所致,而凯氏氮主要来源于胞内蛋白质-N(有机态凯氏氮)的溶出,在臭氧投量为0.30 g O_3·(gTSS)~(-1)时,凯氏氮占溶出TN的93.46%;最终建立TN关于ΔMLSS、臭氧投量D和臭氧浓度C的数学模型为TN=ΔMLSS·(0.000 96C+0.011 2)=e~(3.992)·D~(0.774)·C~(1.466)·(0.000 96C+0.011 2),该模型应用范围为MLSS=4 000~5 000 mg·L~(-1),20 mg·L~(-1)C40 mg·L~(-1),0.02 g O_3·(gTSS)~(-1)D0.30 g O_3·(gTSS)~(-1)。  相似文献   

17.
采用电絮凝-超滤(electrocoagulation-ultrafiltration,EC-UF)技术协同去除水中腐殖酸(HA),主要考察了电流密度、初始pH、初始HA浓度、初始电导率等因素对HA去除率的影响,解析了在这些影响因素下HA的去除机理,并对滤饼层特征和膜污染机制进行了研究。结果表明,在电流密度j=10 A·m~(-2)、初始pH=7、初始电导率σ0=1 000μS·cm~(-1)、电解时间为15 min的条件下,初始HA浓度为10 mg·L~(-1)时,EC-UF工艺对水中的HA的去除率可以达到97.3%,膜污染为可逆污染,被污染的膜经过清洗后通量可恢复到初始的94%。  相似文献   

18.
采用超滤与膜接触臭氧氧化组合工艺处理印染废水二级生化出水,对超滤膜切割分子量、膜接触反应器膜长、臭氧浓度、气体流量和产水速率等工艺条件进行优化选择,并对该组合工艺的处理效果进行了研究。通过系列实验确定的优化参数为:超滤膜切割分子量100 kDa,膜接触反应器膜长2 m,臭氧浓度10 mg·L~(-1),气体流量0.6 L·min~(-1),产水速率1.4 L·h~(-1)。连续运行8 d,平均COD由131 mg·L~(-1)降到70 mg·L~(-1),平均色度由130度降到20度,平均浊度由11 NTU降到2.3 NTU,B/C值也由0.167提高到0.244。  相似文献   

19.
周璇  周少奇  郑可  周晓 《环境工程学报》2019,13(6):1282-1291
通过添加有机磷酸化纳米二氧化钛(organophosphorylated titania nanoparticles,OPTi)的方法提高聚氯乙烯(PVC)阳离子交换膜的性能,先采用氨基三亚甲基膦酸通过磷氧化学键合将纳米二氧化钛有机磷酸化,再将制备好的OPTi与PVC粉末共混制备阳离子交换膜。通过X射线光电子能谱和傅里叶变换红外光谱分析OPTi的元素组成和表面特征官能团,通过扫描电镜研究了异相膜的表面和断面形貌。此外,还考察了不同OPTi的添加量对膜的含水率、离子交换量、机械性能和膜面电阻等性质的影响。结果表明,OPTi的加入使膜的固定电荷浓度、离子选择性和机械性能提高,膜面电阻大大降低并且在电渗析实验中,改性异相膜与原膜比较达到能耗降低26.68%、电流效率提高29.27%的显著效果。  相似文献   

20.
以聚偏氟乙烯(PVDF)中空纤维膜为膜曝气生物反应器(MABR)的膜载体,探讨了MABR对模拟地表水的处理效果及其主要控制条件。采用序批式处理方式,重点考察了不同曝气强度(0.5、1和1.5 L·min~(-1))、不同压力(0.01、0.015和0.02 MPa)以及不同膜面积(0.3、0.5和0.6 m2)等受试条件下,MABR对TOC、总氮、氨氮、硝态氮、亚硝态氮等主要污染物的处理效果。结果表明:在受试范围内相同膜面积下压力越大,氨氮、总氮处理效果越好。不同压力对TOC的去除率影响不大,TOC去除率均在85%左右。压力对硝态氮含量影响效果显著,0.01 MPa下同时硝化反硝化作用最好。曝气强度为1 L·min~(-1)MABR处理效果优于0.5和1.5 L·min~(-1)曝气强度,而膜面气流流速为6.7 cm·s~(-1)时MABR处理效果最佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号