首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 78 毫秒
1.
基于长江三角洲江苏、安徽、浙江和上海地区2008年粮食产量的统计年鉴,结合作物谷草比、排放因子等估算了上述地区2008年秸秆焚烧排放污染物清单,重点完善了各县级市污染物排放.结果表明2008年江苏、安徽、浙江和上海地区SO2、NOx、CO、CO2、PM2.5、BC、OC、NH3、CH4、NMVOC的排放总量分别为14.28、86.01、1 744.56、36 893.03、517.54、11.74、114.63、19.93、89.37和208.57 kt.江苏中部和北部、安徽北部地区秸秆露天焚烧污染物排放较多,而江苏南部和浙江地区污染物排放量较少.将建立的秸秆露天焚烧排放污染物清单应用于WRF-CMAQ空气质量模式,结果表明,考虑秸秆焚烧排放源后,对PM10、CO等大气污染物的模拟能力大幅提高,模拟浓度比使用原始排放源分别提高42%和28%,模拟浓度与实测浓度的相关系数分别提高0.25和0.17,模拟值较使用原始排放源更加贴近实测值.  相似文献   

2.
以黑龙江省为例,采用排放因子法计算了2016年秸秆露天焚烧污染物排放清单,分析了污染物的时空分布特征.结果表明,黑龙江省秸秆露天焚烧各污染物排放量为:CO2 1314.09万t、CO 41.92万t、CH4 3.77万t、NMVOCs 8.35万t、NH3 0.65万t、BC 0.44万t、OC 3.13万t、SO2 0.50万t、NOX 3.28万t、PM10 8.81万t、PM2.5 10.14万t.在95%的置信区间确定了排放清单的不确定性,不确定性范围为NOX的±86%的低值到CO的±187%的高值.通过可靠性分析推断,本文的排放清单是合理的.玉米和水稻秸秆露天焚烧对同种大气污染物的贡献高于其他作物秸秆.大气污染物排放高值区位于黑龙江省西部和东部,污染物排放的时段在全年范围内具有明显的双峰特征.秸秆露天焚烧率的下降能有效促进大气污染物的减排,且农垦地区集约化和规模化的管理模式能有效控制秸秆露天焚烧.  相似文献   

3.
秸秆露天焚烧典型大气污染物排放因子   总被引:2,自引:0,他引:2  
利用烟气污染物稀释采样系统,基于实际测试,针对玉米、小麦、花生和棉花4种农作物秸秆开展露天焚烧排放大气污染物采集和分析.利用修正燃烧效率区分燃烧状态,根据碳平衡法计算烟气中颗粒物和气态污染物排放因子.结果表明,4种秸秆露天焚烧CO、SO2、NOx和CH4平均排放因子分别在7.39~92.4g/kg、0.11~0.89g/kg、0.72~3.86g/kg和0.2~5.45g/kg之间,PM2.5平均排放因子在1.48~13.29g/kg之间.OC和EC的质量分别占PM2.5全部质量的27.7%~54.3%和4.4%~17.1%,是PM2.5的主要组成成分.污染物排放主要来自混合燃烧状态,焖烧状态排放污染物浓度相对较高.随着含水率升高,焖烧过程增强显著,CO、CH4、PM2.5和OC的排放因子升高,其中PM2.5排放量增高主要是由OC排放占比升高导致.  相似文献   

4.
四川省秸秆露天焚烧污染物排放清单及时空分布特征   总被引:6,自引:4,他引:6  
何敏  王幸锐  韩丽  冯小琼  毛雪 《环境科学》2015,36(4):1208-1216
根据收集的活动水平数据,采用排放因子法建立了四川省2012年秸秆露天焚烧污染物排放清单,并分析了污染排放的时空分布特征.结果表明,2012年四川省秸秆露天焚烧共排放SO2、NOx、NH3、CH4、NMVOC、CO、PM2.5、EC以及OC分别为1 210、12 185、2 827、20 659、40 463、292 671、39 277、1 984以及10 215 t;水稻、小麦、玉米、油菜是四大主要的焚烧作物秸秆,对污染物的总贡献率约为88%~94%;秸秆露天焚烧受农作收获的影响,全年的排放主要集中在7~8月,而5月是上半年的一个排放小高峰;秸秆焚烧排放的高值地区主要分布在成都平原、川北地区以及川南地区,川西地区排放分布相对较少;本清单的不确定性主要来自排放因子及秸秆焚烧量.  相似文献   

5.
2007年中国大陆地区生物质燃烧排放污染物清单   总被引:38,自引:0,他引:38       下载免费PDF全文
采用排放因子法计算了中国2007年间CH4、SO2、NOx、NH3、EC、OC、NMVOC、CO、CO2、TSP、PM10、PM2.5的排放总量,建立了生物质燃烧污染物排放清单,计算了各污染物总排放量的空间分布及不同生物质燃烧类型对各污染物总排放量的贡献率,重点完善了各省市生物质燃烧排放不同粒径颗粒物清单.结果显示,2007年我国大陆生物质燃烧排放CH4、SO2、NOx、NH3、OC、EC、NMVOC、CO、CO2、TSP、PM10、PM2.5排放总量分别分为3332.7, 335.3, 951.3, 7754.9, 783.7, 267.7, 6049.6, 76579.6, 743743.7, 7677.8, 6668.9, 4043.7kt.四川、安徽、广西、山东、河南、江苏等地区生物质燃烧各污染物排放量较高,北京、天津、海南、宁夏、青海和西藏等省区各污染物排放量较少.不同地区排放污染物的主要生物质类型存在较大的差异,单位面积排放强度和人均排放量区域间差异显著.人类活动是生物质燃烧排放污染物的主要影响因素,秸秆和薪柴燃烧是污染物排放量最大的2种生物质,其对各种污染物的贡献率为93.8%~98.7%.  相似文献   

6.
基于广东省粮食产量的统计年鉴,建立了广东省2008~2016年秸秆燃烧污染物排放清单和2016年广东省秸秆燃烧VOCs物种清单,并对VOCs臭氧生成潜势进行评估.结果表明,2013~2016年广东省秸秆燃烧各大气污染物排放量较2008~2012年有所降低.这主要是由于禁止秸秆露天燃烧政策的出台及农村生活水平的提高降低了秸秆燃烧比例.2016年各类大气污染物SO_2、NO_x、NH_3、CH_4、EC、OC、NMVOC、CO和PM_(2.5)的排放量依次为2 443.7、16 187.9、6 943.8、29 174.4、3 625.5、14 830.7、65 612.6、591 613.9和49 463.0 t.稻谷秸秆燃烧是最主要的秸秆燃烧污染物来源,占据了污染物总排放量的约68.55%.污染物贡献最大的5个市分别为湛江、茂名、梅州、肇庆和韶关,约占总排放量的58.63%.2016年广东省秸秆燃烧VOCs物种排放清单中,排放量贡献前10的物种分别为:乙烯、乙醛、甲醛、苯、乙炔、丙烯、乙烷、甲苯、正丙烷和丙醛,占总VOCs量的67.91%.在VOCs物种清单的基础上估算了其臭氧生成潜势(OFP),OFP贡献前10 VOCs物种分别为:乙烯、甲醛、乙醛、丙烯、1-丁烯、丙醛、甲苯、丙烯醛、异戊二烯和丁烯醛,占总OFP量的80.83%.  相似文献   

7.
分析秸秆焚烧事件引起的空气污染状况,常使用CMAQ、NAQPMS、WRF-CHEM等模型进行空气质量模拟,而污染源排放清单是模拟模型的关键输入.为满足模型清单输入要求,以2014年5月7日四川盆地内发生的一次由油菜秸秆焚烧引起的重污染事件为例,采用排放因子法进行污染物年排放量估算,结合卫星火点数据、土地利用数据对其进行空间特征分析,并使用Bluesky CONSUME模型估算了污染物的烟羽抬升,结合激光雷达获取了气溶胶消光系数以分析其时间特征.结果表明:以2013年为基准年,全年区域内CO、NOx、SO2、PM2.5、PM10及NMVOC(非甲烷挥发性有机化合物)的年排放量分别为5 791.022、193.842、43.268、574.602、1 495.350和1 495.350 t,成都市、德阳市、绵阳市、眉山市、资阳市各污染物排放量占比分别为13.90%、22.39%、31.81%、12.11%、19.79%.各污染物排放量均在地面层呈3个大值中心、2个空值带的分布趋势.采用环境1B卫星和MODIS火点数据结合提取焚烧火点分析发现,5月7日四川盆地内5个城市均存在不同程度的秸秆焚烧情况.经空间分配后发现,此次排放的重点在德阳市及绵阳市南部,污染物排放量最大值出现在德阳市中部,成都市秸秆焚烧火点最少,污染物排放量也最小.受当天大气边界层高度的影响,污染物垂直分布主要集中在35 m以下,并在30 m左右形成污染物极大层.另外,受秸秆焚烧管制影响,在16:00-翌日04:00排放量呈逐渐上升趋势,09:00-16:00排放量较少.研究显示,秸秆焚烧源排放清单与前人研究结果较为一致,排放清单的烟羽抬升结果与气溶胶消光系数的垂直分布较为吻合.   相似文献   

8.
根据2008年长三角地区江苏、安徽、浙江3省各地级市及上海市水稻、小麦、玉米、油菜4种农作物的年产量,结合谷草比、秸秆焚烧比例及排放因子建立了长三角地区秸秆焚烧大气污染物排放清单.结果表明:长三角地区秸秆焚烧产生的PM10、PM2.5、SO2、NOx、CO、EC、OC分别为36.8×104、14.4×104、1.5×104、9.2×104、20.8×104、2.6×104、12.2×104t.秸秆焚烧污染物排放量较大的区域主要集中在江苏中北部和安徽北部.在区域大气环境模拟系统RegAEMS中考虑秸秆焚烧源的影响,针对2008年10月底江苏一次重霾污染天气事件进行模拟,发现考虑秸秆焚烧源后模拟结果有较大的改善.秸秆焚烧可以导致区域PM10、CO浓度上升30%以上,黑碳和有机物的消光贡献明显增强.区域输送研究表明,苏中地区、外省秸秆焚烧排放源对此次重霾污染的贡献分别达到32.4%、33.3%.  相似文献   

9.
中国生物质燃烧大气污染物排放清单   总被引:37,自引:12,他引:37  
根据2000-2007年各省市生物质燃烧消耗量和排放因子,估算了中国大陆生物质燃烧所导致的NOx、SO2、CO、CO2、CH4、NMHC、PM、BC排放量,并给出了分省区、分生物质类型的排放清单.研究表明,2007年中国生物质燃烧排放的NOx、SO2、CO、CO2、CH4、NMHC、PM和BC排放量分别为109万t,1...  相似文献   

10.
张勇  陈骥  张锋 《中国环境科学》2020,40(1):100-108
基于我国2000~2017年食用菌年产量数据,采用排放因子法估算了菌糠露天焚烧的污染物排放量,利用Mann-Kendall法和聚类分析法分析了排放量的时空分布特征,使用回归分析法预测了污染物的排放趋势.结果表明:(1)2000~2017年全国菌糠露天焚烧污染物排放量持续上升,PM2.5、CO2、CO、CH4、NMVOCs、PAHs、NOx、SO2累积排放量分别为1.40×106,3.48×108,1.99×107,8.43×105,2.08×106,3.00×104,6.34×105,8.29×104t;(2)污染物排放量较高的省区包括山东、黑龙江、浙江、湖南、江苏、福建和河南,排放量较低的省区包括贵州、宁夏、天津、北京、新疆、重庆、甘肃;(3)预计2021年菌糠焚烧污染物总排放量高达4.25×10  相似文献   

11.
农业残留物燃烧温室气体排放清单研究:以江苏省为例   总被引:7,自引:2,他引:7  
刘丽华  蒋静艳  宗良纲 《环境科学》2011,32(5):1242-1248
通过问卷调查确定了江苏省农业残留物在不同时间阶段(1990~1995、1996~2000、2001~2005和2006~2008年)作为生活燃料和田间直接燃烧的比例,利用燃烧炉模拟秸秆燃烧试验确定了6种农业残留物(水稻、小麦、玉米、油菜、棉花和大豆)燃烧产生的CO2、CO、CH4和N2O的排放因子;基于此,结合江苏省不...  相似文献   

12.
PCDD/Fs排放清单是进行PCDD/Fs控制、环境归趋行为研究和健康风险评估的基础.本研究基于我国官方发布的2004年各行业PCDD/Fs排放清单的基础上,结合联合国环境规划署(UNEP) 2013年发布的最新《鉴别及量化PCDD/Fs类排放标准工具包》中PCDD/Fs排放因子,估算了我国2016年各省各行业PCDD/Fs大气排放量,并结合各行业网格化指代数据,建立了我国PCDD/Fs大气网格化排放清单(1/4°×1/4°经纬度),最后利用蒙特卡洛模型分析了清单的不确定性.结果表明,2016年我国PCDD/Fs大气排放量(以TEQ计,下同)为10 366 g,与2004年相比增加了约2倍.从排放行业来看,金属生产是我国大气中PCDD/Fs的主要来源,2016年排放量为5 333 g,其次为垃圾焚烧(2 469 g),供热和发电(1 290 g)和矿物产品生产(933 g),以上4个行业排放量占我国PCDD/Fs大气总排放的97%.从空间来看,我国大气PCDD/Fs排放主要集中在京津冀、长三角和珠三角地区,其中京津冀和长三角地区PCDD/Fs排放主要来自钢铁生产,珠三角地区主要来自垃圾...  相似文献   

13.
中国民用煤燃烧排放细颗粒物中重金属的清单   总被引:3,自引:2,他引:3  
刘海彪  孔少飞  王伟  严沁 《环境科学》2016,37(8):2823-2835
基于稀释通道采样系统和室内模拟燃烧实测,并搜集全国各省区煤中11种重金属的含量,推算出两种常用民用煤(蜂窝煤和块煤)燃烧排放的细颗粒物(PM_(2.5))中V、Cr、Mn、Co、Ni、Cu、Zn、As、Cd、Sb和Pb等11种重金属排放因子.计算了2012年全国(除港、澳、台地区)民用燃煤排放PM_(2.5)中重金属的排放量,并建立了全国30 km×30 km的网格化清单.结果表明,蜂窝煤燃烧排放PM2.5中,Pb、Zn、As和Cu的排放因子较高,分别为27.1、16.8、0.99和0.97 mg·kg-1,分别是块煤的56、6、10和2倍.2012年我国民用燃煤燃烧排放PM_(2.5)中V、Cr、Mn、Co、Ni、Cu、Zn、As、Cd、Sb和Pb的排放总量分别为0.5、30.1、59.5、1.1、29.3、20.0、188.9、64.9、1.6、3.4和176.7 t.湖南、河北、内蒙古、河南和山东等省区民用煤燃烧排放的各种重金属总排放量较高,分别占全国排放总量的12.4%、12.3%、10.4%、9.9%和9.3%.不同重金属的单位面积排放强度与人均排放量显示,北京、河南、山东、湖南、江西、贵州以及内蒙古等地区存在较高的重金属健康风险.空间分布信息显示,Zn和Pb年排放量较大的地区分布较广,主要分布在内蒙古、河北、北京、天津、山东、河南、甘肃、湖南以及江西等省(市)区.本研究所得细粒子中重金属清单可为区域空气质量模拟、人体健康风险评估等提供基础数据.  相似文献   

14.
为准确掌握贵州省生物质燃烧源大气污染物的排放状况,基于收集资料和实地调查结合的方式获取活动水平,引用文献和本地实测数据结合的方式选取排放系数,采用排放系数法结合GIS技术,建立了贵州省2019年3 km×3 km生物质燃烧源9种大气污染物排放清单.结果表明:(1)全省生物质燃烧源CO、 NOx、 SO2、 NH3、 VOCs、 PM2.5、 PM10、 BC和OC的排放量分别为:293 505.53、 14 781.19、 4 146.11、 8 501.07、 45 025.70、 39 463.58、 41 879.31、 6 832.33和15 134.74 t.户用生物质炉具CO、 SO2、 NH3和BC的排放量贡献率最大,秸秆露天焚烧NOx、 VOCs、 PM2.5、 PM10和OC的排放量贡献率最大.(2)各市(州)生物质燃烧源排放的大气污染物分布不均衡,主...  相似文献   

15.
农作物秸秆燃烧PM2.5排放因子的研究   总被引:16,自引:2,他引:14  
农作物秸秆燃烧是一类重要的生物质燃烧形式,已是大气细粒子的来源之一.建立了实验室模拟-稀释通道采样系统,并利用这一系统测定了浙江、四川、河南、河北、北京(主要粮食产区)五地的玉米、小麦和水稻秸秆燃烧过程中PM2.5的排放因子.结果表明:实验室模拟明火燃烧的w(PM2.5)为7.2~39.0 g/kg,与文献[5],[7]~[8]中野外燃烧结果相似,表明两者燃烧状态具有相似性;排放因子受秸秆燃烧状态影响显著,闷火燃烧为明火燃烧的2.4~11.5倍;同时,农作物种类不同PM2.5排放因子也存在明显差别;而排放因子随秸秆生长地域变化比较小.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号