首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以厌氧(AN)-准好氧(SA)联合生物反应器中渗滤液pH、COD、UV254、NH3-N以及铁离子浓度的监测结果为依据,研究了厌氧-准好氧联合生物反应器处理农村生活垃圾产生的渗滤液中Fe的变化规律。结果表明,渗滤液中Fe的浓度随时间变化规律为先上升后下降,在填埋第76天左右,厌氧和准好氧单元中Fe的浓度先后达到最大值73.44和78.71mg·L~(-1);在第350天,厌氧和准好氧单元中Fe的浓度分别降至17.84和8.52 mg·L~(-1)。Pearson相关分析显示渗滤液中铁离子的浓度与COD之间存在显著的正相关关系;与pH、NH3-N之间存在负相关关系;而与UV254之间的相关关系较弱。  相似文献   

2.
臭氧氧化处理养猪场厌氧沼液   总被引:1,自引:0,他引:1  
实验在MAP沉淀处理的基础上,采用臭氧氧化技术对养猪场厌氧沼液进行处理。研究了氧化过程中臭氧的投加量、反应时间对沼液pH、COD和UV254的去除效果、沼液可生化性、氮形态转化的影响。结果表明,在臭氧氧化过程中,随着反应时间的延长,沼液pH呈逐渐下降的趋势。在臭氧投加量为6 mg/L、反应时间为40 min时,COD和UV254去除率达到最大,分别为21.7%和60%。此外,臭氧氧化能把BOD5/COD的比值从0.24提高为0.41,有效提高了沼液的可生化性。在臭氧投加量为6 mg/L、反应时间为2 h时,TN的浓度基本维持在370~410 mg/L之间,氨氮浓度随时间呈现先升高后降低的变化趋势,且最终维持在132.7 mg/L,然而,硝态氮浓度反而升高了近一倍,由此可见,臭氧氧化不能完全脱氮,只能使氮从一种形态转化为另一种形态。  相似文献   

3.
采用1 100 m3BLR(biogas-lift reactor)厌氧反应器对垃圾焚烧厂渗滤液进行工程化处置,接种污泥为消化污泥,正常运行温度控制在(33±2)℃,启动负荷为1 kg COD/(m3·d),120 d后容积负荷达到10 kg/(m3·d)并稳定运行,出水COD浓度为4 500~6 500 mg/L,COD去除率为88%~92%,出水VFA含量为200~600 mg/L,p H值稳定在7.4~7.7,出水SS含量为1 000 mg/L左右,并可观察到沉降性较好的颗粒化污泥。反应器运行初期将VFA/ALK控制在1.6以内,系统并未因VFA积累而酸化崩溃,运行后期VFA/ALK值小于0.3,系统稳定运行。运行过程中进水氨氮浓度从400 mg/L升高到2 200 mg/L,未发现氨氮对厌氧生物处理的明显抑制现象。垃圾渗滤液中平均每去除1 kg COD产生沼气量为0.32 m3。  相似文献   

4.
研究了垃圾卫生填埋场渗滤液的年产量、夏季产量及其与填埋场规模、运行年限之间的关系。分析了填埋场夏季渗滤液的COD、BOD5、氨氮、p H值和BOD5/COD规律。研究结果表明,渗滤液年产量与填埋场规模、运行年限有关。渗滤液夏季产量变化规律与其相应的年产量并不一致。规模M≤100 t/d、100M≤200 t/d、200M≤500 t/d和M500 t/d的填埋场夏季渗滤液产量呈现出不同的变化特征。各填埋场的夏季渗滤液水质差别较大,COD值总体偏小,处于35.5~3 029.8 mg/L之间;BOD5值处于6.5~1 120.7 mg/L之间;64.2%的填埋场夏季渗滤液的BOD5/COD值≥0.30,可生化性较好;氨氮为21~1 273 mg/L。研究结果可为国内城市垃圾卫生填埋场渗滤液处理工作提供参考。  相似文献   

5.
臭氧强化光催化对垃圾渗滤液的深度处理   总被引:2,自引:0,他引:2  
用臭氧强化光催化工艺对垃圾渗滤液进行了深度处理,优化了工艺参数,对比了最佳工艺条件下各时间段的出水指标.该工艺在催化剂投加量0.5 g/L,pH值8.45左右,O3流量0.4 L/min,O3浓度16.8 mg/L,初始COD浓度430 mg/L时最佳,COD和UV254的去除率均在60%以上;最佳工艺条件下1.0 h出水的BOD5提高了75.42%,2.0 h出水BOD5/COD从初始的0.05升高至0.23.结果表明,臭氧强化光催化工艺不仅可以提高处理能力,还有效地改善了出水的可生化性.  相似文献   

6.
研究采用水解酸化+CAST工艺,对盐酸金霉素生产废水进行二级处理。试验结果表明,在进水COD质量浓度高达6000mg/L左右、氨氮质量浓度高达2200mg/L的情况下,系统出水COD浓度为350mg/L,去除率达94%以上;氨氮出水质量浓度为400mg/L,去除率达到81%,取得了较好的去除效果。  相似文献   

7.
聚合氯化铝与粉末活性炭联合强化混凝处理垃圾渗滤液   总被引:1,自引:0,他引:1  
研究了联合粉末活性炭与聚合氯化铝(PAC)强化混凝对垃圾渗滤液原水的处理效果。结果表明,在原水COD为4 100 mg/L、浊度为147 NTU、UV254为20的条件下,粉末活性炭的加入可以有效增加垃圾渗滤液中有机物的去除率,PAC投加量为0.6 g/L时,投加0.6 g/L粉末活性炭,COD的去除率由21.6%提高到29.1%,UV254去除率由29.8%提高到39.9%,剩余浊度由138 NTU降到133 NTU。该强化混凝过程使原水中溶解性小分子有机物的去除率提高显著,PAC投加量为0.6 g/L时,投加0.6 g/L粉末活性炭,在分子量小于1 kDa的范围内,UV254去除率由2.9%上升为10%。  相似文献   

8.
二氧化氯深度处理垃圾渗滤液研究   总被引:2,自引:0,他引:2  
利用二氧化氯对生物处理后的垃圾渗滤液进行深度处理,根据废水中有效氯浓度、COD、氨氮及细菌数等参数的分析,初步探讨了不同浓度的二氧化氯在不同处理时间内对垃圾渗滤液的处理效果。结果表明,对于COD初始浓度为450 mg/L左右的水样,二氧化氯的投加浓度达100 mg/L(有效氯),反应时间在50 min时,处理水样可达到同类废水的国家二级排放标准;对于同样条件下的水样,当加入约25 mg/L的二氧化氯时可以杀灭水样中的大肠杆菌,加入浓度达到90 mg/L的二氧化氯时,可以杀灭水样中几乎所有的细菌。  相似文献   

9.
混凝沉淀-SBR-活性炭过滤处理垃圾渗滤液   总被引:1,自引:0,他引:1  
采用沉淀-SBR-活性炭过滤复合工艺对城市垃圾渗滤液进行处理,确定混凝、SBR和活性炭过滤的最隹参数.结果表明,当进水COD为2500mg/L、氨氮在900mg/L的条件下,经该系统处理后,出水COD均在300mg/L以下,氨氮在20mg/L以下,COD去除率达90%以上,氨氮去除率达98%以上,达到较好的去除有机物和去氨效果.  相似文献   

10.
采用两级UASB与好氧组合工艺处理早期城市生活垃圾渗滤液.系统出水按不同比例回流到一级UASB中进行反硝化,同时进行产甲烷反应,有机物在二级UASB中被进一步降解,好氧池完成剩余有机物的去除和氨氮的硝化.启动阶段通过对原渗滤液不同比例的稀释,分5次逐步提高进水浓度,启动结束时完成了对原渗滤液的高效处理.在进水COD浓度从3000 mg/L提高到15000 mg/L,氨氮浓度从250 mg/L提高到1400 mg/L时,最终COD去除率稳定在92%左右,氨氮去除率可达99%以上,一级UASB中反硝化率接近100%,回流比为300%时系统总氮去除率为70%~80%.  相似文献   

11.
超声/Fenton联用技术处理垃圾渗滤液中的有机物   总被引:7,自引:2,他引:5  
详细研究了超声/Fenton联用技术对垃圾渗滤液中有机物的处理效果.研究内容包括:超声波频率对垃圾渗滤液色度和COD去除率的影响,超声波功率对垃圾渗滤液色度和COD去除率的影响以及Fenton试剂用量和pH值对垃圾渗滤液色度去除率和COD去除率的影响.还利用一次正交回归实验确定了超声/Fenton联用技术处理垃圾渗滤液的优化条件,并在优化条件的基础上,对超声波技术、Fenton高级氧化技术和超声/Fenton联用技术对垃圾渗滤液的处理效果进行比较研究.研究结果表明:超声/Fenton联用技术对垃圾渗滤液的色度去除率和COD去除率最高,其色度去除率接近100%,COD去除率达到73.5%.超声/Fenton联用技术处理垃圾渗滤液的优化条件是:超声频率为28 kHz,超声功率为75W,Fe2 浓度为280 mg/L,H2O2浓度为1.29×104 mg/L,pH值为2.5.超声波的频率、功率和Fenton试剂用量之间存在优化匹配值.  相似文献   

12.
以传统卫生填埋柱R2为对照,通过往生物反应器填埋柱R1内加载可渗透反应介质层1和2进行模拟试验,主要探讨了填埋柱R1垃圾渗滤液COD、总氮、氨氮及总磷的变化趋势,探索一种新型的加载介质层垃圾填埋处理方法。试验结果表明,填埋20周后, R1柱COD浓度基本维持在40 000~45 000 mg/L间,约为R2柱的20%~30%;第24周,R1柱总氮和氨氮分别为206.5 mg/L和167.3 mg/L,在16~24周内,R1总氮和氨氮分别约为R2的14.5%~17.5%和36.2%~43.6%;18周时,R1柱总磷达最大值1.704 mg/L,至第24周降为0.673 mg/L, 整个实验过程R1柱总磷约为R2的0.15%~0.56%。  相似文献   

13.
吹脱法去除垃圾渗滤液中的氨氮研究   总被引:17,自引:0,他引:17  
对吹脱法去除垃圾渗滤液中的氨氮进行了研究,控制吹脱效率高低的关键因素是温度、气液比和pH值。在水温大于25℃,气液比控制在3500左右,渗滤液pH值控制在10.5左右,对于氨氮浓度高达2000~4000mg/L的垃圾渗滤液,去除率可达到90%以上。  相似文献   

14.
生活垃圾渗滤液对厌氧颗粒污泥产甲烷活性的影响研究   总被引:2,自引:2,他引:0  
通过厌氧毒性实验、恢复实验和特征毒性模拟实验,研究了生活垃圾渗滤液对厌氧颗粒污泥微生物产甲烷活性的影响。结果表明,1 000 mg/L氨氮浓度下产甲烷活性均大于85%,说明相应氨氮浓度范围,垃圾渗滤液基质对厌氧颗粒污泥的微生物没有明显抑制作用。恢复实验后活性得到完全恢复,属代谢毒性。模拟废水氨氮浓度大于1 000 mg/L浓度时,开始出现抑制;氨氮浓度大于3 000 mg/L时,有明显抑制,产甲烷活性下降32.1%;相同氨氮浓度下,渗滤液最大活性区间滞后于模拟废水,产甲烷活性也小于模拟废水,存在除氨氮以外的毒性物质的影响。  相似文献   

15.
絮凝法处理垃圾填埋场渗滤液的研究   总被引:6,自引:3,他引:3  
用无机低分子絮凝剂硫酸铁和无机高分子絮凝剂聚合硫酸铁和聚硅硫酸铁处理厌氧好氧后的垃圾渗滤液,并通过急性毒性检测试验研究絮凝处理前后垃圾渗滤液对植物种子萌发的影响。研究结果表明,浓度为10 mmol/L,pH值为8的聚合硫酸铁对垃圾渗滤液的色度、COD有较好的去除效果,色度和COD的去除率分别达到93.1%和61.4%。通过毒性检测证明,聚合硫酸铁絮凝处理后的垃圾渗滤液几乎没有毒性,对植物的正常生长没有影响。  相似文献   

16.
高浓度氨氮对IC厌氧反应器运行的抑制性研究   总被引:1,自引:0,他引:1  
在中温(35±1)℃条件下,以葡萄糖为有机碳源,研究氨氮对IC厌氧反应器运行的影响.实验结果表明,氨氮浓度超过3 036 mg/L时对反应器的运行有抑制作用,随着氨氮浓度的增加,抑制作用更加明显,氨氮对系统的IC50为4 500 mg/L;系统运行过程中VFA低于400 mg/L,pH值和碱度分别维持在7.21~7.62之间和2 356~3 065 mg/L之间;反应器对氨氮的平均去除率为12.67%.在毒性恢复实验中,7 d后COD去除率恢复到93.01%;恢复期系统VFA逐渐降低,从第6 d开始维持在152~162 mg/L之间;出水碱度和pH值维持在1 769~2 298 mg/L和7.09~7.27之间,系统运行稳定.  相似文献   

17.
两种填埋结构中氨氮的空间变化规律研究   总被引:1,自引:0,他引:1  
依据准好氧填埋和厌氧填埋的原理,构建了准好氧和厌氧填埋的实验室模拟装置,研究了2种填埋结构渗滤液中氨氮的空间分布规律。结果表明,准好氧填埋结构3层渗滤液中氨氮浓度都呈不断稳定下降的趋势,29周时上层、中层和下层渗滤液中氨氮浓度分别从填埋初的931.8、1796和3019 mg/L下降到25.6、328.9和820.1 mg/L;厌氧填埋结构3层渗滤液中氨氮浓度下降趋势不明显且波动性较大。准好氧填埋与厌氧填埋结构渗滤液中氨氮浓度表现出明显的空间层次效应,为下层>中层>上层。  相似文献   

18.
以东江、西江和北江3种原水为研究对象,采用臭氧预处理-常规处理-臭氧活性炭系列处理,研究原水中有机物的去除及臭氧化副产物的产生和转化。结果表明,东江、西江和北江水中CODMn、UV254、甲醛和溴酸盐沿各处理单元过程变化规律基本一致;CODMn总去除率分别为60%、51%和39%,uV。总去除率分别为74%、96%和97%,最终出水甲醛浓度分别为0.004mg/L、0mg/L和0mg/L,B-O3-分别为3.1μg/L、8.7μg/L和35.5μg/L;CODMn的去除主要在预臭氧和活性炭过滤2个处理单元,预臭氧对UV254总去除率贡献最大,甲醛和溴酸盐浓度在主臭氧处理单元达到其峰值(西江甲醛除外);氨氮和有机物浓度较低、pH值较高的北江原水,出水溴酸盐浓度最高。  相似文献   

19.
吹脱法去除垃圾渗滤液中的氨氮研究   总被引:2,自引:0,他引:2  
对吹脱法去除垃圾渗滤液中的氨氮进行了研究 ,控制吹脱效率高低的关键因素是温度、气液比和 pH值。在水温大于 2 5℃ ,气液比控制在 35 0 0左右 ,渗滤液 pH值控制在 1 0 5左右 ,对于氨氮浓度高达 2 0 0 0~ 4 0 0 0mg/L的垃圾渗滤液 ,去除率可达到 90 %以上  相似文献   

20.
采用超声辅助化学合成法制备K2Fe O4,用X-射线衍射、红外光谱和扫描电镜等对其进行表征。研究了K2Fe O4对餐厨垃圾渗滤液中COD和氨氮的处理效果。结果表明,本法制备的K2Fe O4具有四方结构,空间群为D2h(Pnma),其产率达到68.2%,纯度高达98.3%。扫描电镜表明,制备的K2Fe O4由规则的条状颗粒组成,颗粒之间存在一定团聚。对餐厨渗滤液处理实验表明,在COD初始浓度为140.6 g/L的餐厨垃圾渗滤液中投加0.12 mol/L K2Fe O4,调节p H为8.7,经处理24 min后COD去除率达到80.4%,氨氮的去除率达到75.9%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号