首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
糖蜜酒精废液厌氧发酵出水(以下简称厌氧发酵出水)有机物浓度高、色度大、可生化性差,是一种典型的难降解有机工业废水。为提高废水的可生化性,采用电Fenton工艺预处理糖蜜酒精废液厌氧发酵出水,研究了电Fenton反应中影响因子对废水COD去除速率和BOD5/COD(B/C)值的影响。结果表明,当初始pH调至3,电流密度0.6 m A·cm-2、H_2O_2(w/w,30%)投加量20 m L·L~(-1)、极间距2 cm、反应90 min后,废水COD去除率达75%,B/C由0.113增大为0.479,废水可生化性得到显著改善。同时发现,分步投加H_2O_2效果优于反应初始时刻一次性投加,反应的前30 min内结束投加效果最好。为探索糖蜜酒精废液厌氧发酵出水的高效处理方法提供了有意的参考。  相似文献   

2.
采用铁刨花强化Fenton对制药废水二级生化出水处理效果进行深入研究。考察了铁刨花和药剂投加量对强化Fenton的影响,对比了常规Fenton和强化Fenton两者COD降解情况和出水pH值变化情况。结果表明:强化Fenton中投加的铁刨花可以提供充足的亚铁离子,无需投加Fe SO_4·7H_2O即可高效降解废水中有机物;当初始pH=3.8,铁刨花投加量100 g·L~(-1),30%H_2O_2投加量0.6 m L·L~(-1),曝气反应120 min,强化Fenton出水COD去除率高达66.5%,比常规Fenton提高20%以上;常规Fenton出水pH值在3.0左右,而强化Fenton出水pH在6.0以上,可有效节约后续pH回调时药剂使用量,降低运行成本。  相似文献   

3.
为得到Fenton法预处理腈纶废水的最优条件参数,以初始pH、H_2O_2投加量、Fe~(2+)投加量、反应时间为考察因素,废水COD去除率为评价指标,在单因素实验基础上,通过Box-Behnken方案构建与拟合响应面模型,分析4个独立因素及各因素之间的交互作用对COD去除效果的影响。确定了最佳Fenton法预处理工艺:初始pH为3.0,H_2O_2投加量为5.0mL/L,Fe~(2+)投加量为4.9g/L,反应时间为150min时。此时,COD去除率预测结果为44.08%,实际运行结果为43.89%,表明该模型可靠。考察了无机离子对Fenton法预处理的影响,并研究预处理前后腈纶废水可生化性的变化。结果表明,SO~(2-)_4对腈纶废水的降解无明显影响,Fenton法预处理显著改善了腈纶废水可生化性。通过对比Fenton法预处理前后腈纶废水的傅立叶变换红外光谱(FTIR)可以得出,Fenton法预处理有效去除了腈纶废水中难降解有机物。  相似文献   

4.
采用Fenton氧化法深度处理经生化降解后的纤维素乙醇废水,考察了初始pH值、Fe~(2+)与H_2O_2的投加比例(物质的量之比)、H_2O_2投加量与COD的比例(质量之比)以及反应时间对COD和浊度去除的影响,并通过正交实验确定了反应的最佳条件。研究表明:初始pH值、Fe~(2+)/H_2O_2、H_2O_2/COD以及反应时间对深度处理效果有不同程度的影响;在初始pH值为3.0、Fe~(2+)/H_2O_2为2∶3、H_2O_2/COD为2.8、反应时间为3 h的最佳反应条件下,出水COD为45~56 mg·L~(-1),浊度为2~3 NTU,达到了纤维素乙醇废水的排放标准。  相似文献   

5.
采用Fenton法处理某电镀厂强碱性有机废水。考察了pH和Fenton氧化对废水特性的影响,优化了处理参数,研究了Fenton氧化对废水可生化性的影响。结果表明:Fenton氧化前,调节pH可提高有机物去除效果,一定程度上去除重金属;Fenton法能够有效处理电镀有机废水,并充分提高废水可生化性,最高COD去除率可达75%;在反应时间为30min、H_2O_2投加量为68mg·L~(-1)、Fe~(2+)投加量为111mg·L~(-1)条件下,废水COD去除率为22%,B/C为0.28,适宜后续接入生化工艺以进一步提高废水处理效果,可降低成本并提高处理效率,为电镀企业处理强碱性有机废水提供参考。  相似文献   

6.
Fenton氧化对制浆造纸废水分子量及可生化性变化的影响   总被引:1,自引:0,他引:1  
以制浆造纸废水的初沉池出水为研究对象,对不同剂量的Fenton氧化试剂处理制浆造纸厂初沉废水的效果进行了研究,初沉废水中的分子量大于10 000的有机污染物含量占到83%,废水可生化性较差;在Fe2+与H2O2的摩尔比为1∶5,废水pH为3.5的条件下,H2O2(30%)投加量小于3.25 mL/L时,Fenton试剂的氧化效率更高;H2O2(30%)投加量为6.50 mL/L时,废水中污染物的去除率更高,其中废水COD的去除率为79.5%,AOX的去除率为75.3%,色度去除率为97.5%,同时处理后废水中分子量在500~3 000之间的有机物含量占到82.98%,废水的BOD5/COD值提高到0.56。Fenton氧化作为前置技术处理制浆造纸废水,可以降低废水中的有机物分子量,减少废水的生物毒性,增加废水生物降解性,有助于后续生物处理的正常运行。  相似文献   

7.
铁炭微电解/Fenton试剂预处理土霉素废水的研究   总被引:10,自引:3,他引:7  
研究了铁炭微电解/Fenton试剂法工艺对高浓度难生化处理的土霉素废水预处理效果.结果表明,当原水COD在6 000 mg/L、pH值为2.2时,铁炭微电解反应时间为80 min,铁炭微电解对原水COD的去除率>40%;铁炭微电解出水再投加220 mg/L的H2O2(30%)进行Fenton试剂法处理,常温下反应50 min对原水COD的去除率可提高到75%以上.铁炭微电解 Fenton试剂联合工艺的处理效果好、运行稳定、成本低廉,适宜对难降解的土霉素废水的预处理.  相似文献   

8.
研究了Fe/AC內电解-H_2O_2联合技术在降解浮选废水中浮选药剂苯胺黑药(DDA)的效果及可行性。通过正交和单因素实验,考察了其工艺条件参数对DDA和COD处理效果的影响。结果表明,在初始p H=3,Fe/AC质量比为2∶1,H_2O_2投加量为0.6 mmol·L-1,Fe/AC IME和Fenton氧化工段HRT分别为60 min和20 min的条件下,模拟废水DDA和COD浓度由200 mg·L-1、395 mg·L-1分别降至28.7 mg·L-1和32.9 mg·L-1,去除率分别高达85.6%和91.7%。Fe/AC IME-H_2O_2连续处理实际浮选废水(COD 880~910 mg·L-1)96 h后,COD去除率仍维持在88.0%以上,残留浓度低于《污水综合排放标准》(GB 8978-1996)二级标准值。  相似文献   

9.
利用芬顿试剂(Fenton)氧化预处理杀螟丹农药废水,分别考察了H2O2与Fe SO4·7H2O投加量、初始p H、反应时间、温度和摇床转速对Fenton试剂处理杀螟丹废水的影响。结果表明,杀螟丹废水初始COD为676.8 mg/L时,取废水样100 m L,优化反应条件为Fenton试剂的用量1 g Fe SO4·7H2O+4 m L H2O2,初始p H值为3,搅拌强度为160 r/min的摇床转速,反应温度25℃,反应时间60 min。在优化反应条件下COD的去除率达到83.9%。通过Fenton降解,废水可生化性BOD5/COD从0.0745~0.0747上升至0.9066~0.9228,可生化性大幅提高,为后续生化处理创造了条件。考虑到运用于工业废水处理中经济成本等实际问题,建议选取Fenton试剂的用量0.5 g Fe SO4·7H2O+1 m L H2O2,COD去除效率能达到65.5%。  相似文献   

10.
采用由Fe0/GAC和H_2O_2构建的微电解与Fenton异相耦合降解体系对焦化废水进行深度处理,通过单因素影响实验和正交优化实验,考察了H_2O_2投加量、进水pH、HRT和mFe0/mGAC对处理效果的影响并确定了最佳反应条件。结果表明:随着各工艺参数取值的增大,系统对有机物的去除效率呈先上升后下降或趋于稳定的趋势;各影响因素的主次顺序为:H_2O_2投加量进水pHHRTmFe0/mGAC,H_2O_2投加量和进水pH为显著性影响因素;当H_2O_2投加量为1.2 m L·L~(-1),进水pH=3,HRT=90 min,mFe0/mGAC=3时,系统处理效果最佳,COD由306 mg·L~(-1)降至94 mg·L~(-1),去除率稳定达到69.2%,满足《炼焦化学工艺污染物排放标准》(GB 16171~(-2)012)对现有企业直接排放的要求。  相似文献   

11.
针对焦化废水生物处理后COD难于达标排放的问题,以焦化废水生化出水为对象,对微波强化Fenton技术(频率915 MHz)的深度处理效果和反应机理进行了探讨。结果表明:在Fe~(2+)和H_2O_2投加量分别为1.8 mmol·L~(-1)和15.6 mmol·L~(-1)条件下,Fenton处理方法对COD的最佳去除率仅为18%,利用微波强化Fenton技术对COD的去除率可提升到77%,出水COD可降至52 mg·L~(-1),满足《炼焦化学工业污染物排放标准》;通过比较Fenton和微波强化Fenton反应出水过滤后的COD,发现Fenton反应对COD的去除率可由18%提升至72%,表明泥相可进一步吸附部分COD;而微波强化Fenton反应的COD去除率仅略微提高至81%,表明氧化是微波强化Fenton反应的主要作用机理,这可能与微波辐射通过热效应或非热效应可加快羟基自由基的生成、从而提高了氧化反应效率有关。以上结果表明,微波强化Fenton反应是焦化废水达标排放的一种可供选择的技术,可为目前我国焦化废水处理和达标排放处理技术的选择提供借鉴。  相似文献   

12.
混凝-Fenton-BAF深度处理垃圾渗滤液中试研究   总被引:5,自引:0,他引:5  
针对经过SBR处理后,难以再进一步生化降解的垃圾渗滤液,提出混凝-Fenton-曝气生物滤池(BAF)工艺进行深度处理.首先利用混凝去除SBR出水的悬浮性有机物,降低Fenton试剂的处理成本;然后采用Fenton试剂进行氧化处理,既降低垃圾渗滤液的COD值,又提高其可生化性,最后通过BAF工艺去除有机物,实验结果表明,在SBR出水COD为600~800 mg/L的情况下,最终出水的COD低于80 mg/L,处理成本仅为2.6元/t.  相似文献   

13.
针对某工园区综合化工废水的水质特征,拟将零价铁(ZVI)还原与厌氧折板反应器(ABR)、前置反硝化(A/O)工艺耦合对其进行处理,考察了系统的运行效果,并对废水中的特征污染物——对氯硝基苯的降解性能进行了分析。结果表明,ZVI预处理后化工废水中残留的对氯硝基苯在ABR中厌氧微生物作用后得到进一步降解,且在ABR处理过程中COD去除率较单独ZVI或微生物作用时大幅提高,虽然ZVI对难降解有机物无矿化作用,但可将难降解有机物转化为毒性较小的有机物,明显改善废水的生化性;通过控制合适的混合液回流比、有效补充碳源和碱度,可以提高A/O系统的运行效率;在较佳的工况(ABR系统HRT为24h,A/O池污泥回流比为100%、混合液回流比为3∶1,碳源投加量为3.5g)下运行连续2个月,整个系统的COD平均去除率在90%以上,出水COD质量浓度基本低于100mg/L,NH3-N去除率在80%~90%,出水NH3-N质量浓度在20mg/L以下,出水对氯硝基苯、对氯苯胺质量浓度分别在0.58~4.08、0.68~5.88mg/L,出水水质符合《江苏省化学工业主要水污染物排放标准》(DB32/939—2006)。  相似文献   

14.
Fenton试剂法预处理发酵甘油生产提取废水   总被引:1,自引:0,他引:1  
采用Fenton试剂预处理高浓度难降解发酵法甘油生产提取废水。研究了pH、Fe2 + 、H2 O2 、反应时间和H2 O2 投加次数对废水COD去除效果的影响。结果表明 ,通过Fenton试剂氧化可使废水中的COD值从 135 0 0mg/L降至 4 0 30mg/L ,COD去除率达到 70 1%。废水的BOD5/COD值从 0 2 0 2提高至 0 5 6 8,可生化性得到较大提高 ,为后续处理创造了条件。研究成果为发酵法甘油生产提取废水的预处理提供了一种非常有效的方法。  相似文献   

15.
对模拟磷霉素钠制药废水进行Fenton-水解酸化-接触氧化小试处理实验,考察了COD、有机磷的去除效果,并对处理前后的废水进行了GC-MS分析。结果显示,增加了Fenton预处理后磷霉素钠制药废水的COD和有机磷分别降低到100和2 mg/L,去除率均可达87%以上,出水COD满足化学制药行业污染物排放标准(GB 21904-2008);Fenton过程对制药厂废水中的复杂有机物去除效果明显,GC-MS结果表明,出水中基本检测不到复杂有机物。与制药厂采用的水解酸化-接触氧化处理效果相比,增加Fenton预处理可以提高废水的可生化性和系统的处理效率。  相似文献   

16.
采用铁碳微电解/H_2O_2耦合类Fenton法预处理高浓度焦化废水,通过正交和单因素实验研究了废水初始pH、不同质量的微电解填料、H_2O_2投加量及反应时间对COD处理效果的影响,同时研究了COD降解动力学。结果表明:最佳控制条件是废水初始pH为3、铁碳填料投加量为300 g/L、H_2O_2投加量为80 m L/L、反应时间为160 min,此时COD的去除率达到87%以上;H_2O_2的加入可使铁碳微电解/H_2O_2系统COD的去除率提高37.34%,铁碳微电解/H_2O_2系统COD反应动力学方程为y=0.5296x-0.6218,相关系数R~2为0.9917。  相似文献   

17.
Fenton试剂法预处理发酵甘油生产提取废水   总被引:3,自引:0,他引:3  
采用Fenton试剂预处理高浓度难降解发酵法甘油生产提取废水。研究了pH、Fe^2 、H2O2、反应时间和H2O2投加次数对废水COD去除效果的影响。结果表明,通过Fenton试剂氧化可使废水中的COD值从13500mg/L降至4030mg/L,COD去除率达到70.1%。废水的BOD5/COD值从0.202提高至0.568,可生化性得到较大提高,为后续处理创造了条件。研究成果为发酵法甘油生产提取废水的预处理提供了一种非常有效的方法。  相似文献   

18.
垃圾渗滤液是一种高浓度难降解废水,含有大量有毒物质和溶解性有机质(dissolved organic matter,DOM),可生化性差。Fenton试剂(Fe~(2+)+H_2O_2)能产生活性极强的羟基自由基(·OH),能快速氧化渗滤液中DOM和微量有机物质。本研究采用Fenton法处理垃圾渗滤液,结果表明,在优化的处理条件下,渗滤液COD和TOC去除率分别为65%和42%,其中混凝作用去除的COD和TOC分别为20%和21%。进一步通过紫外可见光谱扫描、SUVA_(254)、E_3/E_4等指标评价,发现Fenton法可以有效降低渗滤液中的DOM含量,大分子有机物的含量明显减少,而分子量小的有机物含量相对增加,反应体系中溶解性有机物分子量随着反应的进行而降低,腐殖化程度降低。利用GC-MS定性出渗滤液原液中47种有机物,该类有机物在Fenton反应后上清液中未再检出,但5种物质(邻苯二甲酸二(2-乙基己)酯、植酮、角鲨烯、麥角甾烷醇和二氢胆固醇)在沉淀的铁泥中检出。研究发现不同p H值、H_2O_2和Fe~(2+)浓度条件下,残留的COD与DOM、TOC和UV_(254)存在显著的相关关系(R20.9)。本研究结果为改进垃圾渗滤液处理工艺和探索DOM在Fenton过程中的降解行为提供科学依据。  相似文献   

19.
采用Fenton氧化-前置反硝化缺氧好氧池(A/O)对荧光增白剂废水IC出水进行中试实验研究。实验表明,在Fe2+投加量为0.003 mol/L,进水pH值为3,[H2O2]/[Fe2+]为4∶1,反应时间为2 h的条件下,Fenton氧化法对COD的去除率可以达到46%以上,出水BOD5/COD的值由0.26提高到0.58。氧化后废水进入前置反硝化生物脱氮系统进行生化处理,该系统采用间歇式进水,水力停留时间为2 d,实验结果表明,A/O系统对COD、氨氮和总氮的去除率分别达41%、90%以上和86%。该组合工艺对COD的总去除率可达到67%,出水氨氮在20 mg/L以下,总氮在37 mg/L以下。  相似文献   

20.
采用Fe/C微电解耦合H_2O_2工艺对经复合混凝处理后的某页岩气井钻井废水进行处理,考察了Fe/C质量比、Fe/C投加量、溶液pH值、气水比、H_2O_2(30%)投加量和反应时间对COD去除率的影响。结果表明,耦合工艺最佳实验条件为Fe/C质量比1∶1、Fe/C投加量500 g·L-1、溶液pH值2.5、气水比20∶1、H_2O_2(30%)投加量6 m L·L-1、反应时间120 min。最佳工艺条件下,页岩气钻井废水经处理后,出水COD质量浓度为89.54 mg·L~(-1),去除率达到81.60%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号