首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用红薯粗淀粉酶解液为碳源进行发酵试验,采用单因素和均匀设计试验法对掷孢酵母(Sporobolomycesreseus)As.2.618产油脂发酵培养基进行优化,考察了二价金属离子及氧载体正十二烷对油脂积累的影响,以期降低微生物油脂的成本.通过DPS软件对均匀设计结果进行二次逐步回归分析,给出最优培养基组成(pig L-1)为:还原糖103、酵母粉11.5、磷酸二氢钾0.3、硫酸镁0.15.在此基础上添加30 mg L-1硫酸锌.在发酵条件为初始pH 6.0,发酵温度27℃转速200 r/min,装液量30 mL/500 mL三角瓶,接种量5%,发酵24 h后添加2 g L-1 CaCO3和2%(V/V正十二烷,振荡培养至168 h,菌体生物量高达35.05 g L-1,油脂产量也达到11.98 g L-1.  相似文献   

2.
温度是影响赤霉素发酵的重要因素,研究温度与菌丝生长和次级代谢物合成的关系将有助于发酵工艺优化.采用5 L全自动发酵罐,调控罐温在25-35℃范围内进行赤霉素发酵,分时记录菌体浓度、残糖浓度和产物赤霉素浓度变化情况.发酵过程数据经微分处理后,比较分析在不同温度下赤霉素发酵过程中菌比生长速率、菌得率及赤霉素比合成速率的变化特征.结果显示:最适菌丝生长温度是32℃,其比生长速率和得率分别为0.571/h和0.431 g/g;适宜GA3合成的温度是28℃,最大比合成速率为2.161 mg g~(-1) h~(-1).进而提出赤霉素发酵过程变温控制轨迹:发酵0-18 h,控温28℃;18-40 h,温度32℃;40-60 h控制温度为30℃;60 h后,控制温度28℃.采用此温度控制策略进行GA3发酵,赤霉素终浓度达到2 294 mg/L,比恒温28℃发酵浓度提高了11.14%.本研究表明赤霉素发酵过程分阶段变温控制策略能提高产量,具有产业应用前景.  相似文献   

3.
芳香基手性胺醇是许多手性药物合成的重要手性砌块,生物催化不对称还原前手性酮是合成该类醇的重要方法之一.以α-氨基苯乙酮盐酸盐为模型底物从土壤中筛选获得两株能分别高立体选择性催化底物产生R型、S型相应醇的菌株,对映体过量值(e.e.)分别为99%和77%,编号为1403和4802,鉴定菌株所属为镰刀菌属和地霉属.对两株菌培养时期和转化条件的研究表明镰刀菌1403最适生长时间为24 h,最优菌体浓度20 g/L,最优底物浓度5 g/L;地霉4802最适生长时间24 h,最优菌体浓度80 g/L,最优底物浓度3 g/L.底物特异性研究表明,菌株1403和4802均可转化α-氯代苯乙酮、α-溴代苯乙酮、α-羟基苯乙酮和苯乙酮为相应醇,且以α-羟基苯乙酮为底物时,其产物均为S型,e.e.值达99%.  相似文献   

4.
灵芝深层发酵生产胞外多糖和灵芝酸的动力学分析   总被引:1,自引:0,他引:1  
利用Sigmoidi函数构建了灵芝深层发酵生产胞外多精和灵芝酸的非结构动力学模型,并根据Boltzmann拟合求解出模型参数,模型预测值能够较好地吻合实验所测值.细胞最大比生长速率цmax为4.63x10-2 h-1,葡萄糖最大比消耗速率qs,max为6.70x10-2 h-1,胞外多糖最大比合成速率qEPs,max为4.65x10-3h-1,灵芝酸最大比合成速率qGA,max为9.09xlO-4 h-1.灵芝胞外多糖的合成与细胞的生长呈现部分偶联关系;灵芝酸的合成与细胞的生长呈现偶联关系,偶联系数αGA为0.020 4 g g-1.胞外多糖对葡绚糖的最大得率系数(YEPS/S)为O.214 g g-1;灵芝发酵40~80 h代谢碳流迅速从菌体自身生长迁移至胞外多糖合成,用于合成胞外多糖的最大碳流为23.60/0.  相似文献   

5.
利用基于非完全平衡块原理的Plackett-Burman法和响应面法对不透明红球菌(Rhodococcus opacus DSM 43250)转化合成α-酮异己酸(KIC)的培养条件进行优化,以提高KIC的产量.首先采用Plackett-Burman(PB)设计对影响KIC产量的6个因素的效应进行评价,筛选出具有显著影响的关键因素——接种量、装液量和初始pH,然后通过最陡爬坡实验和Box-Behnken实验设计对关键因素的最佳水平范围进行研究,并利用SAS软件回归分析建立了二次多项式模型,通过模型求解确定最佳培养条件为:接种量6.93%,装液量33.38 mL,初始pH 7.6.在优化后的培养条件下,KIC的理论最高产量为31.08 mg/L,在验证实验中KIC最高产量为30.97 mg/L,比初始产量23.93 mg/L提高了29.42%,为进一步的发酵放大奠定了基础.图3表7参16  相似文献   

6.
利用植物激素提高微藻生长速率及油脂合成速率是降低微藻生物柴油开发成本的有效手段之一.对比不同浓度天然植物激素吲哚-3-乙酸(IAA)和人工合成类激素1-萘乙酸(NAA)作为微藻培养添加剂对小球藻(Chlorella vulgaris)生长及脂质积累的影响,以BG11培养基作为培养底物,探讨不同底物浓度(10%、25%、50%、75%、100%)对植物激素施用效果的影响.结果显示,两种植物激素对小球藻生长及脂质合成影响显著(P 0.05),IAA的促生长效果优于NAA,最佳施用浓度均为2 mg/L,培养15 d后所获生物量为(525.87±5.91)mg/L、(367.72±4.1)mg/L,分别是对照组生物量的2.48倍和1.7倍;IAA和NAA浓度与脂质积累呈线性相关,IAA在0.05-2 mg/L时表现为促进中性脂积累,NAA在1-5 mg/L时表现为促油脂积累;2 mg/L IAA和2 mg/L NAA诱导后的小球藻生物质产率及油脂产率最高,分别为(35.06±0.39)、(24.52±0.27)mg L~(-1) d~(-1),(21.96±0.62)、(14.38±0.09)mg L~(-1) d~(-1),与未加植物激素对照组相比,分别提高了59.68%、41.23%、74.99%、61.78%;小球藻在不同底物浓度中生长及脂质积累差异显著(P 0.05),但对植物激素施用效果影响不明显.本研究表明植物激素对微藻培养体系影响巨大,低浓度IAA与NAA的施用均有助于提升培养效率,且满足生态效益的要求,但从经济效益角度考虑,2 mg/L NAA更适宜作为小球藻养殖的植物激素及添加剂量.(图3表2参35)  相似文献   

7.
运用BP神经网络对红发夫酵母发酵培养基组成进行建模以及预测类胡萝卜素产量,在此基础上采用遗传算法对此模型进行全局寻优.得到红发夫酵母发酵培养基的最佳配比为:蔗糖45.10 g/L,硫酸铵3.00 g/L,硫酸镁0.80 g/L,磷酸二氢钾1.40 g/L,酵母膏3.00 g/L,氯化钙0.50 g/L,类胡萝卜素产量达到8.20 mg/L,干重达到9.47 g/L.采用上述方法优化后的培养基使类胡萝卜素的产量比起始培养基提高了95.90%.  相似文献   

8.
均匀设计法优化樟芝产三萜液体发酵条件   总被引:1,自引:0,他引:1  
为在兼顾生物量的基础上提高液体发酵中三萜的百分含量,首先通过单因子试验筛选出最佳的碳源、氮源、无机盐,然后采用均匀设计(UD)对其培养基配比和培养条件进行优化试验,建立适当的数学模型,并对模型进行验证确定优化条件.单因子试验结果表明玉米淀粉既能促进菌丝体的生长,又能促进三萜的合成;麸皮虽然对菌体生长略有不利,但是对三萜的积累作用特别显著;硫酸镁对菌丝体生长效果不显著,但是对三萜的合成比较有利.均匀设计试验结果表明,菌丝体干重最大的培养条件和三萜的最优培养条件相差甚远.菌丝体干重的最优培养条件为:1 L培养液中玉米淀粉47 g,麸皮47 g,硫酸镁0.5 g,初始pH 3.0,培养7 d;三萜最佳培养基配方为:1 L培养液中玉米淀粉20 g,麸皮20 g,硫酸镁1.85 g,初始pH 3.0,培养16 d.菌丝体干重在最优条件下能达到15.58(±0.37)g L-1;三萜百分含量在最优培养条件下高达6.04(±0.03)%,三萜的百分含量比基础发酵结果和报道的最高发酵结果3.18%提高了90%,因此,均匀设计法能有效优化液体发酵培养条件  相似文献   

9.
低成本、高产量的发酵工艺是实现工业燃料乙醇经济和环境可持续性发展的关键,而不需要重大基础设施改变或投资.为获得酿酒酵母(Saccharomyces cerevisiae)利用甘蔗汁生产燃料乙醇的最优发酵工艺,首先对发酵体系的氮源条件进行优化;其次,在单因素试验基础上,以乙醇发酵效率为响应值,通过响应面法优化了燃料乙醇生产的发酵工艺,并通过补料分批发酵技术在5 L发酵罐中进一步扩大发酵.结果表明,以1.0 g/L (NH)SO和1.0 g/L酵母提取物作为发酵氮源,乙醇发酵效率和得率比对照可分别提高4.80%、9.52%.响应面设计获得的最优发酵工艺条件为在总糖浓度150.0 g/L、酵母提取物浓度2.0 g/L、发酵时间24.5 h、pH5.0、外加(NH)SO浓度1.0 g/L时,最高乙醇发酵效率可达到91.10%.在5 L发酵罐中采用补料分批发酵获得的最终乙醇浓度达到98.92 g/L,发酵效率维持在90%左右,乙醇生产力最高达到3.81 g Lh.本研究获得了一种高效生产糖质燃料乙醇的发酵工艺,可在较短时间内获得高浓度乙醇且消耗较少氮源,结果可为进一步利用糖质原料进行高效生物炼制及高浓度乙醇工业化生产提供参考.(图6表6参30)  相似文献   

10.
营养和环境条件对光滑球拟酵母葡萄糖代谢速度的影响   总被引:1,自引:0,他引:1  
增加培养基中Mg2 浓度,使磷酸果糖激酶和3-磷酸甘油醛脱氢酶活性提高22.2%和23.4%,葡萄糖消耗速率从1.94g L-1h-1提高到2.43g L-1h-1,提高了25%.较低kLa(200h-1)导致胞内ATP处于较低的水平,变构激活糖酵解关键酶活性,与高kLa(450h-1)比较,葡萄糖消耗速率(2.31g L-1h-1)提高了35%,低kLa虽能加快葡萄糖消耗,但不利于丙酮酸产量的提高.烟酸(NA)是细胞合成NAD 的前体,培养基中缺乏NA导致细胞生长微弱,葡萄糖消耗缓慢;NA质量浓度从4mg/L增加到8mg/L时,葡萄糖消耗速度(2.01g L-1h-1)和丙酮酸产量(46.4g/L)分别提高了48.4%和29%,高NA浓度有利于高葡萄糖消耗速度的提高,但降低了丙酮酸对葡萄糖的产率.一定浓度的(0~10mg/L)的外源电子受体乙醛提高了光滑球拟酵母中醇脱氢酶活性(提高8.6%),加速NAD 再生,降低NADH/NAD 比率,从而促进细胞生长和提高葡萄糖消耗速度.以上结果表明,营养和环境条件通过改变细胞胞内辅因子水平,影响糖酵解关键酶活性而改变葡萄糖代谢速度.图3表4参18  相似文献   

11.
卵孢菌素(Oosporein)是具有广谱抗菌活性的二联苯醌类化合物;角毛壳菌(Chaetomium cupreum)CH21-20为本实验室通过遗传改良获得的卵孢菌素高产菌株.利用该菌株进行发酵条件研究,获得其最适发酵条件为接种量(体积分数)3%、初始p H 7.0、装液量60 mL/250 mL、摇床转速180 r/min、培养温度24℃.培养基碳氮源和无机盐筛选结果表明,15.0 g/L蔗糖、5.0 g/L蛋白粉及0.5 g/L氯化钠能显著提高卵孢菌素产量.以卵孢菌素为响应值,对蔗糖、蛋白粉、氯化钠进行三因素三水平的Box-Behnken实验设计及响应面法优化研究,得到蔗糖、蛋白粉及氯化钠的最佳配比分别为15.63 g/L、5.22 g/L、0.53 g/L,预测在此发酵条件下卵孢菌素最高产量可达2 547μg/mL,实验验证得到卵孢菌素产量为2 478μg/mL,与预测值接近;发酵条件优化后,卵孢菌素产量提高了56.14%.本研究获得了卵孢菌素稳定高产的摇瓶发酵技术参数.  相似文献   

12.
为提高短乳杆菌L2菌株γ-氨基丁酸(GABA)的产量,建立了一个反映因素与产量之间的非线性关系模型.运用Plackett-Burman设计、中心组合试验设计(CCD)对MRS培养基组成和培养条件进行了优化,筛选出4个影响发酵的关键因素:蛋白胨、葡萄糖、谷氨酸钠、初始pH.在此基础上,采用误差反向传播神经网络(BPN)和遗传算法(GA)确定了4个关键因素的适宜参数:蛋白胨21.185 g/L,葡萄糖3.857 g/L,谷氨酸钠48.948 g/L,初始pH 4.05.最终使短乳杆菌L2菌株的GABA产量达到了27.765 g/L,比原始MRS培养基的13.452 g/L提高了106.4%.研究表明利用BPN-GA方法进行发酵条件优化是一种行之有效的途径.  相似文献   

13.
为构建一套乳酸合成丁酸的工艺,在开放体系中,驯化培养丁酸合成混合菌,并对发酵工艺条件进行系统研究和优化.首先通过单因素试验设计确定各因素的最佳水平范围.结果表明,p H值控制在5.5-7.5之间,乳酸浓度控制在20-40 g/L之间,外加乙酸浓度控制在1.5-3.5 g/L之间可以得到丁酸的最大产率.在此基础上,进一步对p H值、乳酸浓度和外加乙酸浓度进行三因素三水平的Box-Behnken试验设计及响应面法分析,以丁酸产率作为响应值,探究影响丁酸产率的各因素之间相互作用.通过方差分析显著性及求解回归方程得到最优发酵工艺条件:在p H值为6.72,乳酸浓度为27.83 g/L,外加乙酸浓度为2.79 g/L时,丁酸最高产率理论可达2.47 g L~(-1) d~(-1).验证试验得到的结果是丁酸产率为2.43g L~(-1) d~(-1),与预测值接近,较优化前产率提高了47.27%.此外,利用高通量测序技术(Miseq)对微生物群落结构进行分析,发现混合微生物中占优势的菌群是Clostridium sensustricto、Lactobacillus与Clostridium IV,其丰度分别为69.35%、15.41%与10.05%.利用本发酵新工艺能够得到相对稳定的丁酸产率,因此在工业中具有广阔的应用前景.  相似文献   

14.
天然丁二酮是一种香精载体,为提高其产量,有必要筛选出丁二酮高产菌株及其最佳发酵条件.从保存的一株丁二酮高产菌株6-1(2)出发,通过分子生物学方法对其进行鉴定,采用单因素试验和最佳单因素组合实验的方法筛选出该菌株的最佳发酵条件.结果表明,实验菌株6-1(2)与植物乳杆菌Lactobacillus plantarum的AB326301.1序列同源性最高,初步鉴定为植物乳杆菌;发酵条件经过优化后,丁二酮的产量从初始的38 mg/L提高到167.56 mg/L,提高了340.95%,产量提高显著.优化发酵条件为:牛肉膏10 g/L,柠檬酸氢二胺2 g/L,酵母浸粉15 g/L,磷酸氢二钾2 g/L,乙酸钠2 g/L,葡萄糖20 g/L,蛋白胨30 g/L,吐温-80 1 mL/L,初始pH 6.2-6.4,接种量1.5%,37℃静置培养10 h;该发酵条件下的丁二酮产量提高显著.本研究对丁二酮的工业化生产具有一定的参考价值.  相似文献   

15.
氮源是微生物过量合成L-精氨酸的重要营养因子之一,不同氮源对钝齿棒杆菌JDN28-75合成L-精氨酸的影响研究结果表明,硫酸铵为合适的氮源.不同初始硫酸铵浓度对JDN28-75产L-精氨酸的影响研究结果表明,氮源浓度过高或不足,都会使最终L-精氨酸产量有所降低.低浓度的硫酸铵虽然有利于菌体生长,但对L-精氨酸的合成明显不利,同时糖酸转化率也较低;而高浓度的硫酸铵尽管不利于细胞的生长且造成发酵结束时残糖含量过高,却有利于细胞合成L-精氨酸且实际耗糖的糖酸转化率维持在一个较高的水平.初始硫酸铵浓度为60 g/L时,对JDN28-75菌体的生长有明显的抑制作用,最终发酵液中剩余的硫酸铵也较多(大于30 g/L),但高浓度的硫酸铵是L-精氨酸合成所必需的.在上述研究结果的基础上,确定了初始硫酸铵浓度为20 g/L条件下的补氮策略,比较了4种不同的硫酸铵补加模式对产L-精氨酸的影响,结果表明,在总的硫酸铵浓度相同的情况下,采取分批、低浓度添加氮源的方式既可以有效解除发酵前期高浓度硫酸铵对菌体生长的抑制作用,又可以有效维持发酵中后期体系中菌体合成L-精氨酸所需的较高比例的氮源.最后,在5 L全自动发酵罐中采用20 g/L的初始硫酸铵浓度,连续流加25%的氨水来控制发酵体系pH及补加氮源,L-精氨酸的产量可以达到31.7 g/L,较对照组的产酸量(26.0 g/L)提高了21.9%.图4表2参11  相似文献   

16.
为了高效生产L-苹果酸,首先在大肠杆菌w3110中敲除ldh A、pox B、pfl B和pta-ack A基因积累丙酮酸,为L-苹果酸合成提供前体,并且通过苹果酸酶的引入构建L-苹果酸一步合成路径,将丙酮酸转化为L-苹果酸.在此基础上,敲除frd BC、fum B和fum AC阻断L-苹果酸代谢路径,并结合pos5基因的表达对胞内辅因子路径进行优化.结果表明:(1)ldh A、pox B、pfl B和pta-ack A基因的敲除能有效地提高丙酮酸产量到20.9 g/L;(2)苹果酸酶突变及过量表达使得L-苹果酸和琥珀酸产量分别提高了87.2%和31.6%,达到1.46 g/L和3.25 g/L;(3)通过敲除frd BC、fum B和fum AC,L-苹果酸产量增加到3.42 g/L;(4)pos5基因的表达降低了胞内NADH/NAD+比率,增加了NADPH含量,最终突变菌株Escherichia coli F0921的L-苹果酸产量达到9.34 g/L.因此,通过苹果酸酶构建L-苹果酸生物合成路径提高L-苹果酸的生产是可行的,结果可为代谢工程改造大肠杆菌生产L-苹果酸提供了新的研究思路.  相似文献   

17.
为进一步提高重组Bacillus subtilis WSHB06-07发酵生产角质酶的产量和生产强度,在pH两阶段控制策略的基础上,考察了温度(27~40℃)对菌体生长和产酶的影响.研究发现,37℃适于菌体生长而30℃适于菌体产酶.通过分析发酵过程中菌体比生长速率及产物比合成速率的变化,确定了温度两阶段控制策略,即0~4 h时控制温度37℃,4 h后将温度调至30℃.通过采用这一优化策略,角质酶酶活和生产强度分别可达312.5 U/mL和13.02 kU L-1 h-1,相比恒定温度37℃控制模式下分别提高了83.4%和10.9%.图6表2参13  相似文献   

18.
运动发酵单胞菌是乙醇发酵的极佳菌种,但其所能利用的发酵底物范围狭窄,不能利用淀粉作为发酵底物.为增加其利用底物的范围使其能够水解淀粉,本研究构建了3种表达淀粉酶的运动发酵单胞菌菌株:1)Zymomonas mobilis(pAmyE)表达α-淀粉酶;2)Z.mobilis(pGA)表达葡萄糖淀粉酶;3)Z.mobilis(pAmyGA)共同表达α-淀粉酶和葡萄糖淀粉酶.DNS法测定淀粉酶活显示,每种转化菌株的胞外淀粉酶活性均高于胞内,且两种淀粉酶共表达的酶活高于这两种淀粉酶单独表达的酶活之和,说明这两种淀粉酶能够协同作用降解淀粉.对于重组菌株Z.mobilis(pAmyGA),约59.3%的淀粉酶活性都在胞外检测到.用淀粉含量高且耐贮存的徐薯18匀浆加少量葡萄糖作为培养基直接用上述3个菌株发酵生产乙醇.结果显示,共表达α-淀粉酶和葡萄糖淀粉酶的重组菌株Z.mobilis(pAmyGA)的乙醇产量为54.7 g/L,达到了理论值的83.2%,表明本研究得到了能够直接高效利用淀粉生产乙醇的运动发酵单胞菌的菌株.  相似文献   

19.
植物根际促生菌(PGPR)具有促进植物生长的作用.从盐碱地植物根际土壤中分离筛选耐盐菌,测定其在盐胁迫下的1-氨基环丙烷-1-羧酸(ACC)脱氨酶活性、吲哚乙酸(IAA)合成能力、嗜铁素合成能力、无机磷溶解能力,以及在Ashby无氮培养基上的生长情况;并对同时具有以上促生功能的耐盐菌进行不同盐浓度下的促生功能测定、小黄白(白菜Brassica pekinensis的一个品种)种子萌发促生实验和菌株鉴定.结果显示,在筛选得到的15株耐盐菌中,菌株YZX4在10 g/L NaCl浓度下同时具有多种促生特性.在不同盐浓度下促生功能测定实验中,当盐浓度为10 g/L时,菌株的ACC脱氨酶活性(以α-KA/Pr计)、IAA合成量和嗜铁素相对含量最高,分别为11.07(±1.89)μmol mg~(-1)h~(-1)、36.42 (±1.81) mg/L和0.61 (±0.15),且随着盐浓度的增加而降低;在20 g/L盐浓度下,该菌株的固氮量、有机磷溶解量和无机磷溶解量最高,分别为4.79 (±1.61) mg/L、1.68±(0.04) mg/L和23.77 (±1.30) mg/L.在小黄白种子萌发促生实验中,当盐浓度为5.84 g/L时,YZX4的菌液(105 CFU/mL)对小黄白的种子萌发率、幼苗根、茎长和平均鲜重分别提高了7.19%、17.33%、23.85%和22.69%.根据形态特征、生理生化鉴定结果和16S rDNA序列分析,初步确定菌株YZX4为油菜假单胞菌(Pseudowonas brassicacearum).上述研究结果表明在盐胁迫下同时具备多种促生特性的菌株YZX4可作为盐碱地改良微生物菌剂的优良菌源.(图6表4参37)  相似文献   

20.
1,3-丙二醇(1,3-PD)是一种重要的化工原料,其最重要的用途是作为合成聚酯PTT的单体.由于微生物发酵法生产1,3-PD具有操作简单,不易产生有毒副产物等特点,已得到广泛关注.本研究在前期工作的基础上,分别获得了来源于肺炎克雷伯氏菌的甘油脱水酶编码基因dhaB和来源于大肠杆菌的1,3-PD氧化还原酶同工酶编码基因yqhD,利用温控表达载体pBV220串联构建了重组质粒pBV220-yqhD-dhaB,将其转化大肠杆菌得到产1,3-丙二醇温控重组大肠杆菌JM109(pBV220-yqhD-dhaB).该重组菌在LB培养基中,30℃好氧培养12 h至对数生长中期,再经42℃好氧诱导发酵4 h,测得胞内甘油脱水酶和1,3-丙二醇氧化还原酶同工酶的酶活力分别达到260 U/mg蛋白和140U/mg蛋白;在含甘油40 g/L的发酵培养基中,30℃好氧培养12 h至对数生长中期,再经42℃好氧诱导发酵4 h,测得发酵液中1,3-PD含量为8.5 g/L.这将为进一步构建基因工程菌生产1,3-PD打下坚实的基础.图6表1参18  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号