首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
南京北郊冬季挥发性有机物来源解析及苯系物健康评估   总被引:4,自引:3,他引:1  
采用2015年12月GC5000在线气相色谱仪对南京北郊大气中的挥发性有机物(VOCs)进行观测,结合PMF受体模型对VOCs进行来源解析分析其主要组成与变化特征.并利用美国环保署(EPA)人体暴露分析评价方法对VOCs中的苯系物进行健康风险评估.结果表明,南京冬季大气VOCs存在6种来源,天然气泄漏为32.05%,汽车尾气为18.99%,溶剂使用为13.67%,工厂排放2为13.20%,汽油挥发11.72%,工厂排放1(化工型)为10.36%.通过风向概率分析,发现排放源贡献高值区与观测点周边污染源分布较为一致.南京北郊B/T为0.74处于较高水平.非致癌风险危害商值(HQ)在06:00达到最高值.HQ风险值均在EPA认定的安全范围内.各来源HQ最高是汽车尾气排放为20.67×10-2,其次是溶剂使用为6.97×10-2和天然气泄漏为6.34×10-2.在6种来源中对于苯的致癌风险(R)中汽车尾气排放为4.11×10-6,天然气泄漏为1.09×10-6,均高于EPA规定的安全阈值.  相似文献   

2.
南京北郊大气VOCs体积分数变化特征   总被引:14,自引:10,他引:4  
安俊琳  朱彬  李用宇 《环境科学》2013,34(12):4504-4512
利用2011-03-01~2012-02-29南京北郊大气VOCs观测资料,对大气VOCs体积分数的时间序列变化特征、光化学活性差异和来源特征进行了研究.结果表明,VOCs体积分数平均为43.52×10-9,并呈现夏季高,冬季低的季节变化.VOCs体积分数呈现夜间高,白天低的日变化特征.VOCs体积分数夜间呈现夏季>秋季>春季>冬季,白天呈现冬季>夏季>春季>秋季.VOCs日变化幅度秋季最大,冬季最小.烷烃和烯烃日变化幅度最大值出现在秋季,芳香烃和炔烃日变幅最大值出现在春季.采用丙烯等量体积分数方法表示,VOCs物种中烯烃含量最高,芳香烃次之,烷烃最小.T/B、E/B和X/B比值平均值分别是1.23、0.95和0.81,反映出影响观测点的气团呈现一定老化程度.以3-甲基戊烷作为机动车排放典型示踪物,估算得到乙烯、甲苯和间,对-二甲苯分别有85%、71%和82%来自非机动车源.  相似文献   

3.
北京大气中BTEX的观测分析与研究   总被引:13,自引:6,他引:7  
采用二步深冷浓缩与气相色谱/质谱联机对北京大气中的苯类物质(BTEX) 进行了长期连续观测.最近4年观测数据表明:日变化有双峰和3峰变化,冬、春季呈现与交通高峰期吻合的双峰变化,即上午08:00至10:00和下午17:00前后各出现一个高值;秋季日变化中,夜间22:00出现第3峰值;夏季日变化呈3峰型,最大峰值在正午前后.2000~2002年BTEX月平均总浓度为(44.1±24.5) nmol/mol(碳单位),季变化峰值出现在夏季.年际变化趋势中,北京大气BTEX的总平均浓度从 1999 年到2002年大幅度下降.  相似文献   

4.
南京北郊冬春季气溶胶数浓度变化特征分析   总被引:3,自引:1,他引:2  
吴丹  张璠  刘刚  吴明  夏俊荣  盖鑫磊  李凤英  杨孟 《环境科学》2017,38(10):4015-4023
使用APS-3321对2014年南京北郊冬春季0.5~20μm粒径段大气气溶胶数浓度进行了较长时间的连续观测,对其变化特征进行了分析.观测期间南京北郊冬、春季大气气溶胶平均数浓度分别为(364.8±297.8)个·cm~(-3)和(79.6±62.4)个·cm~(-3),细粒子(0.5~1.0μm)分别占整个观测粒径段数浓度的87.8%和86.6%,在不同时间段,数浓度变化很大.南京北郊数浓度具有明显的日变化特征,夜晚浓度高,白天浓度低,冬季07:00和春季09:00达到早高峰,冬季17:00和春季18:00数浓度开始迅速增加.数浓度粒径谱分布冬季为单峰型,峰值粒径在0.583~0.626μm之间,春季峰值粒径小于0.542μm,冬季峰值粒径大于春季.随着相对湿度的增加气溶胶数浓度不断增加,同时峰值粒径向较大粒径方向偏移,体现了吸湿增长对气溶胶粒径谱分布的影响.观测期间,霾天比例高达83.3%,随着霾污染加重,在小于2.0μm的粒径段数浓度显著增加且冬季更为明显;春季,细粒子比例随霾的加重而增加,但冬季由于气溶胶老化导致大粒径粒子浓度显著增大,重度霾天时,细粒子比例有所降低.对1月典型污染过程的分析表明,气团来源与地面风向存在很好的对应关系,苏北近距离污染输送和地面小风造成的污染物累积是此次重污染过程形成的重要原因.  相似文献   

5.
基于2019~2020年在南京北郊收集的大气降水进行降水pH、电导率和化学组分分析,研究南京北郊大气降水pH值和电导率的季节变化规律,分析了降水中水溶性无机氮(WSIN)和水溶性有机氮(WSON)的污染水平和沉降特征.结果表明,观测期间南京北郊大气降水发生酸雨(pH<5.6)的频率达到37.18%,降水酸化在秋冬季节较严重,pH值随季节表现出春季>夏季>秋季>冬季的变化趋势.降水电导率平均值为29.49μS·cm-1,春季出现高pH和电导率与该季节大气中含量较高的扬尘有关.降水中WSIN和WSON的季节差异较大,最高和最低NO-3-N和NH+4-N浓度分别出现在春季和夏季;WSON浓度则表现为秋季(2.63 mg·L-1)最高.降水中WSON与水溶性总氮(WSTN)浓度平均比值约为0.47,说明WSON对总氮研究具有重要意义.WSIN和WSON湿沉降通量的平均值分别为12.10 kg·(hm2·a)-...  相似文献   

6.
李栩婕  施晓雯  马嫣  郑军 《环境科学》2020,41(2):537-553
2017年12月至2018年11月在南京北郊采集了大气PM_(2.5)样品,对其中的有机胺、主要水溶性离子、有机碳和元素碳进行了定量分析.共测定南京北郊大气PM_(2.5)中5种有机胺:甲胺、乙胺、二甲胺、三甲胺和苯胺.有机胺年平均总浓度为(54. 2±29. 2) ng·m~(-3),其中最丰富的物种为二甲胺[年均值:(20. 2±13. 7) ng·m~(-3)],其次为甲胺[年均值:(13. 1±6. 3)ng·m~(-3)]、三甲胺[年均值:(8. 6±4. 1) ng·m~(-3)]、乙胺[年均值:(6. 3±4. 1) ng·m~(-3)]和苯胺[年均值:(5. 9±3. 9) ng·m~(-3)],有机胺总浓度呈现出明显的季节变化,表现为夏季秋季春季冬季.污染天有机胺的浓度大于清洁天,主要是受大气颗粒物酸性影响大气有机胺气/粒转换所致,并且大气颗粒物酸性也是导致夏季高温条件下颗粒态有机胺仍高于其它季节的另一原因.在新粒子生长天,发现有机胺的浓度会有所增加. PMF法溯源结果显示南京北郊大气PM_(2.5)中主要有6种有机胺排放源:即工业源、农业源、生物质燃烧、机动车排放、二次源和道路扬尘.其中甲胺、乙胺主要来源于二次源和机动车排放;二甲胺、三甲胺主要来源于生物质燃烧、二次源和机动车排放;苯胺主要来源于工业排放和生物质燃烧.有机胺的来源具有显著的季节差异,春季秋季道路扬尘源占比较高,夏季二次源为有机胺主要的污染源,冬季机动车排放源和生物质燃烧源有一定提升.而有机胺的昼夜差异并不明显,二次源、机动车排放源以及生物质燃烧源是3个主要影响因素.  相似文献   

7.
基于江西景德镇温室气体站2017年12月~2018年11月筛分获得的CH4及CO大气本底和污染浓度数据,对大气CH4和CO浓度季节变化及其排放源特征进行研究,结果表明:大气CH4和CO本底浓度季节变化特征与浙江临安本底站类似,即夏季低而冬季高,而夏季江西地区水稻田和湿地排放导致CH4污染浓度显著抬升,相比本底浓度抬升幅度可达133.9×10-9,冬季受西北部地区取暖排放的区域输送的影响,1月CO污染平均浓度较本底浓度抬升达227.2×10-9.基于本底数据及污染数据,结合后向轨迹模型分析发现景德镇站大气CO潜在排放源主要分布在湖北东南部(四季)、安徽(秋冬季)、山东中部(秋季)、长江三角洲上海及杭州(夏秋季)、湖南东部和江西地区(冬季)等区域,其中冬季湖南东部和江西地区贡献率达53.7%,CH4排放源主要集中在江西地区(夏季)、长江三角洲杭州、南京及安徽南部覆盖区域(夏季)、湖北东南部(夏秋季)以及安徽(秋季)、山东中部(秋季)等区域,夏季南京、杭州及安徽南部覆盖区域的CH4排放对景德镇站CH4浓度抬升的贡献率达到69.5%.大气CH4及CO呈现较好的相关性,冬季其相关系数可达0.86,受CH4和CO源汇季节变化影响,CH4/CO排放比呈现冬季低值(0.31)、夏季高值(1.06).  相似文献   

8.
本研究于2018年夏季和冬季,在南京使用吸附浓缩在线监测系统(AC-GCMS 1000)对大气中的挥发性有机化合物(VOCs)进行测量,估算其所造成的健康风险并解析VOCs所造成致癌与非致癌风险的污染来源.结果表明,采样期间南京市冬季φ(总VOCs)为105.7×10-9,为夏季(34.5×10-9)的3.1倍,以烷烃为主要物种.在健康风险方面,冬季毒性VOCs所造成的非致癌风险及致癌风险值分别为9.43和1.0×10-4,是夏季非致癌(5.58)与致癌风险(2.69×10-5)的1.7和3.8倍,而丙烯醛和1,2-二氯乙烷是非致癌与致癌风险的主要物种.最后,利用PMF模型解析5个VOCs的污染来源,分别是有机涂料溶剂源、生物质燃烧源、车辆排放源、石油化工源和溶剂源2.车辆排放源是造成致癌风险的最大来源(夏季28.2%和冬季48.0%).因此,建议有针对性地控制毒性VOCs及车辆尾气的排放,以减小可能对公众健康产生的危害.  相似文献   

9.
南京北郊黑碳气溶胶的来源解析   总被引:4,自引:4,他引:0  
利用七波段黑碳仪对2015年1~12月南京北郊地区黑碳(black carbon,BC)气溶胶实时监测,并结合黑碳仪模型对该期间内BC进行来源解析,探讨化石燃料排放产生BC(BCff)与生物质燃烧产生BC(BCbb)各自的贡献大小.结果表明,观测期间BC的吸收波长指数(α)和生物质燃烧对BC的贡献百分比(BB)的变化范围都较大但趋势较为一致;冬季α值偏高而夏季α值较低,表明不同季节时间BC来源和强度的差异性.BCff在各季节BC总浓度中占比略有不同但均高于75%;BC、BCff和BCbb的日变化趋势均呈双峰特征,在07:00~09:00和18:00~21:00左右浓度有最大值;全天中,BCff对BC贡献最大,浓度值约为BCbb的3~5倍;夜晚BC浓度普遍高于白天,其平均浓度值是白天的1.2倍.由浓度权重轨迹分析的结果可知,影响南京北郊地区高浓度BC的源区主要集中在浙江、安徽以及江西和福建等地区.  相似文献   

10.
南京大气PM2.5中碳组分观测分析   总被引:17,自引:1,他引:16       下载免费PDF全文
为了解南京地区大气细颗粒物及化学成分在灰霾期间的污染水平及可能来源,于2007年6月至2008年5月,采集PM2.5样品,并测定了其中有机碳(OC)和元素碳(EC)的含量.并考察了有机碳和元素碳的季节变化特征,比较分析了南京地区灰霾与非灰霾期间含碳气溶胶的污染特征.结果显示,南京大气中PM2.5、OC和EC浓度变化范围分别是12.1~287.1,2.6~47.0和1.0~33.6mg/m3,其中夏季PM2.5(109.6mg/m3)和OC(20.8mg/m3)的值在四个季度中最高,呈现出夏季>秋季>冬季>春季的季节变化特征;EC则具有秋季>春季>冬季>夏季的季节变化特征. 霾日的OC、EC、总碳含量(TC)浓度及OC与EC比值分别是非霾日的2.0、1.8、1.9和1.7倍.后向轨迹分析表明,在有利的天气背景下,具有丰富水汽和污染物的混合气团最易使南京产生霾天气.  相似文献   

11.
北京市BTEX的污染现状及变化规律分析   总被引:5,自引:1,他引:4  
孙杰  王跃思  吴方堃 《环境科学》2011,32(12):3531-3536
2008年10~2009年10月,利用前级浓缩-气相色谱/质谱法,对北京市大气中5种苯系物BTEX(苯、甲苯、乙苯、间、对二甲苯、邻二甲苯)的组成及浓度变化进行了采样分析研究.结果表明,北京市大气BTEX平均浓度为13.9~44.0μg.cm-3,其中甲苯的含量最高,苯次之,邻二甲苯含量最低,与国外城市和地区相比北京大气中BTEX浓度较低,研究发现北京市BTEX主要来自机动车排放,城市燃煤和工业溶剂挥发也是BTEX的重要来源.一年的观测结果表明,BTEX春、夏季节浓度较高,秋季浓度较低,季节性排放源的变化是BTEX季节变化的主要原因,同时也不能忽视温度和大风等天气因素对BTEX浓度的影响.受交通排放和边界层高度的影响,BTEX类化合物的日变化形式为夜晚高于白天,呈双峰形,日最低浓度出现在14:00前后.  相似文献   

12.
The atmospheric concentrations of carbonyls and BTEX (benzene, toluene, ethylbenzene, m,p-xylene and o-xylene) were measured simultaneously at a same sampling site in Beijing from September 2008 to August 2010. The average concentrations of the total measured carbonyls during autumn, winter, spring, and summer were 37.7, 31.3, 39.7, 50.5 μg/m3, respectively, and maximal values for their diurnal variations usually happened at noontime. In contrast to carbonyls, the average concentrations of the total measured BTEX during the four seasons were 27.2, 31.9, 23.2, 19.1 μg/m3, respectively, and minimal values for their diurnal variations always occurred in the early afternoon. The average concentration for carbonyls increased about 24% from September 2008-August 2009 to September 2009-August 2010, for BTEX, increased about 15%. Integrated life time cancer risks for three carcinogens (benzene, formaldehyde and acetaldehyde) in Beijing exceeded the value of 1E-06, and the hazard quotient (HQ) of non-cancer risk of exposure to formaldehyde exceeded unity.  相似文献   

13.
BTEX(苯、甲苯、乙苯、二甲苯等)是对空气质量和人体健康具有重要影响的挥发性有机物.为研究长沙市城市大气BTEX污染特征,选择2个典型城市站点(采样点S和W)于2017年8月进行了连续采样分析.结果显示:2个采样点BTEX平均浓度分别为(9.84±5.44),(6.35±4.68)μg/m3;其中间/对-二甲苯是占比...  相似文献   

14.
邯郸市黑碳气溶胶浓度变化及影响因素分析   总被引:2,自引:0,他引:2  
根据2013年3月—2017年2月邯郸市河北工程大学站点的黑碳气溶胶、PM2.5、大气污染物的小时浓度数据及常规气象数据,对邯郸市黑碳浓度的时间变化特征及影响因素进行分析.结果表明,4年来邯郸市黑碳浓度呈逐年下降的趋势:与2013年相比,2014—2016年黑碳气溶胶浓度分别下降了5%、16%、24%;邯郸市黑碳气溶胶浓度的季节变化趋势基本一致且季节变化特征明显,冬季黑碳气溶胶浓度最高,秋季次之,春夏两季最低,其中,冬季平均浓度分别是春、夏、秋季的2.07、2.77、1.49倍;其日变化呈单峰单谷状,且4个季节的日变化趋势相同,峰值均出现在6:00—8:00,谷值均出现在14:00—15:00.黑碳与PM2.5的相关系数r为0.860,相关性显著,说明黑碳气溶胶和PM2.5的来源大部分是一致的;风速和风向对黑碳气溶胶浓度也有影响,黑碳气溶胶浓度随风速增加而降低;4个季节高频风向为南-西南方向,且该风向下黑碳气溶胶浓度均较高,冬季南-西南风向下的黑碳浓度最高;应用后向轨迹对研究时段内4段重污染期间的气流轨迹进行模拟发现,邯郸市黑碳气溶胶浓度较高的主要原因是本地源排放和近距离传输,远距离传输贡献较小.  相似文献   

15.
有色可溶性有机物(CDOM)作为溶解性有机物的重要组分,影响着水体中污染物质的形态特征和迁移转化过程.本研究运用紫外-可见光谱技术(UV-vis)以及三维荧光光谱(EEMs)技术结合平行因子分析法(PARAFAC),对岗南水库自入库河口到坝前主库区四季演变过程中沉积物间隙水CDOM的分布、光谱特征以及来源进行解析.结果表明,岗南水库沉积物间隙水CDOM的相对浓度a_(254)、a_(260)、a_(280)和a_(355)存在显著的季节差异,并且相对浓度大小为夏季春季秋季冬季;沉积物间隙水CDOM的E2/E3、E3/E4、E4/E6以及S_R存在显著的季节差异,呈现冬季高夏季低的特征;秋冬季的E2/E3以及E3/E4明显高于春夏季,并且秋冬季的E3/E4大部分均大于3.5,表明秋冬季沉积物间隙水CDOM具有更小的分子量和更低的腐殖化程度;三维荧光光谱通过PARAFAC解析出3种组分,分别为类酪氨酸(C1)、短波类富里酸(C2)和降解的腐殖类物质(C3),并且3种荧光组分间具有显著的正相关性(P0.001);岗南水库沉积物间隙水的CDOM总荧光强度和各荧光组分荧光强度呈现显著的季节差异,总荧光强度以及各组分的荧光强度呈现春季的最高、秋冬季次之、夏季最低的分布特征;秋冬季各个荧光组分占比不存在显著差异,春夏季各个荧光组分占比不存在显著差异,秋冬季与春夏季各个荧光组分占比存在显著差异;秋冬季沉积物间隙水CDOM生物源指数(BIX)和荧光指数(FI)均高于春夏季,表明秋冬季CDOM的自生源强于春夏季,与腐殖程度指标(HIX)的结果相吻合;PCA结合Adonis分析显示沉积物间隙水CDOM的光谱特征呈现显著的季节差异(P0.001);并且组分C1、C2、C3以及水质参数[氨氮、硝氮、亚硝氮、溶解性总氮以及溶解性总磷]均有很好的线性回归方程.综上,通过对岗南水库沉积物间隙水CDOM光谱特征进行研究,可以为分析岗南水库有机物污染特征和水质管理提供技术支持.  相似文献   

16.
为了解典型煤矿城市居民区室内灰尘中汞(Hg)含量的季节差异及其健康风险,采集淮南市居民区室内灰尘样品116个(每个季节29个),利用AFS-820测定灰尘中Hg含量.结果显示,淮南市居民区不同季节室内灰尘中Hg平均含量均超出了土壤背景值,春、夏、秋、冬4个季节室内灰尘中Hg平均含量分别是背景值的21、5、6、27倍,冬季和春季室内灰尘中Hg含量显著高于夏季和秋季.淮南市居民区室内灰尘中Hg主要受燃煤影响,尤其冬季和春季.Hg富集水平和污染程度的季节差异规律均表现为:冬季春季秋季夏季,且4个季节室内灰尘中Hg的污染程度均超过了中度污染.Hg的4种暴露途径的暴露量和健康风险均呈现出:Hg蒸汽吸入手-口摄入皮肤接触呼吸吸入,Hg蒸汽吸入和手口摄入暴露途径的暴露量和非致癌风险要高于其他途径3~4个数量级,且儿童和成人4个季节的总非致癌风险总和达到了0.248和0.135,存在着一定潜在风险.  相似文献   

17.
广州地区SO42-、NO3-、NH4+与相关气体污染特征研究   总被引:7,自引:2,他引:5  
本文获得了2009年12月1日至2011年12月31日广州二次无机离子(SO2-4、NO-3、NH+4)及相关反应性气体(NOx/SO2/HNO2/HNO3等)的小时浓度数据,并分析了其污染特征.研究结果表明:PM2.5的浓度季节变化特征为冬秋春夏,SO2-4的浓度季节变化特征为秋冬春夏,NH+4的为冬秋春夏,NO-3则为冬春秋夏,SO2-4、NO-3和NH+4之和占PM2.5的比重大小为秋夏春冬;硫氧化率(SOR)均大于0.1,秋冬季节的值高于春夏季节,与SO2-4的浓度变化趋势一致;氮氧化率(NOR)日变化呈单峰形式,最大值出现在06时,最小值出现在14时,春冬季节的值高于夏秋季节,与NO-3的浓度变化趋势一致;广州地区NH3/NH+4除10—12月外,其月均值均大于1;在典型过程中,SO2-4、NO-3、NH+4、SOR、NOR和NH3/NH+4与能见度的变化都存在较好的对应关系,说明广州地区低能见度与二次离子(SO2-4、NO-3、NH+4)的生成有关.  相似文献   

18.
利用GC955在线气相色谱仪分别于2019年7月和2020年1月在天津市区开展苯系物(BTEX,包括苯、甲苯、乙苯、间/对-二甲苯和邻-二甲苯)实时在线观测,对典型污染过程中BTEX的浓度水平、组成及演化机制进行了研究,并运用特征物种比值法对BTEX的来源进行了定性分析,最后运用US EPA的人体暴露分析评价方法对BTEX健康风险进行评估.结果表明,臭氧和霾污染过程中BTEX体积分数平均值分别为1.32×10-9和4.83×10-9,其中苯的体积分数占比最大,其次是甲苯、乙苯和二甲苯占比最小.2020年1月BTEX体积分数很大程度上受到西南方向短距离传输的影响,而在2019年7月BTEX浓度受到本地排放的影响.BTEX浓度水平在2019年7月受到温度和相对湿度的共同影响,而在2020年1月当温度较低时BTEX浓度对相对湿度的变化更敏感.天津市区BTEX在霾污染过程中受生物质燃烧/化石燃料燃烧/燃煤排放的影响较大,而在臭氧污染过程中除了受到燃烧排放源影响,交通源排放在很大程度上也有影响.臭氧污染和霾污染过程中BTEX的HI分别为0.072和0.29,均处于EPA认定的安全范围内.苯的致癌风险在清洁天和污染过程中均高于EPA规定的安全阈值,需引起高度重视.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号