首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
污泥结构的改变有利于污泥资源化利用,采用硅酸盐改性污泥研究颇多,然而水化硅酸盐改变污泥孔隙结构的微观分析较少。用硅酸盐基高钙石改性剂S1(富硫型),S2(贫硫型)、常规硅酸盐水泥、石灰,在不同养护环境下改性脱水污泥,考虑改性剂水化生成物对污泥含水率、污泥孔隙率和孔隙结构特征的影响。结果表明,不同改性剂在污泥环境水化产物差别大,水化早期,S1可在污泥中快速大量产生完整针棒状结构钙矾石/铁钙矾石(长3μm左右),S2主要生成六面体型铝酸钙、铁铝酸钙产物(直径3μm左右),水泥早期产物钙矾石生长受到抑制、形态残缺短小(长13μm左右),石灰主要生成片状氢氧钙石(直径10μm左右)。针棒状钙矾石有利于污泥孔隙均匀分散、结构破坏。当投加20%(占污泥总量比例)S1改性污泥,在有氧条件下养护7 d,污泥孔隙率由32.64%增加至49.14%,含水率降到30%以下。研究表明高钙石改性剂可以有效改变污泥孔隙结构,利于污泥孔水分蒸发提高自然干化效率。  相似文献   

2.
石灰-石膏-粉煤灰水泥浆体的水化机理研究   总被引:1,自引:0,他引:1  
通过增钙法对粉煤灰水泥浆体的凝结时间、水化放热和力学性能的测定,以及采用差示热重分析、扫描电镜、X射线衍射,研究了在有石灰、石膏时不同掺量粉煤灰水泥浆体的水化机理。结果表明:早期水化性能弱,后期持久。随粉煤灰掺量增加,浆体的凝结时间延长,水化热减少,高掺超过40%时龄期强度下降明显;早期水化产物主要为:大量的水化硅酸钙凝胶(C-S-H),未水化的硅酸钙(C3S、 C2S),少量的钙矾石(AFt、 AFm)和氢氧化钙Ca(OH)2,后期在石灰石膏的活性效应和填充效应的激发下,水化产物主要为:Ca(OH)2、AFm。Ca(OH)2与AFm及少量的C-S-H填充在水泥孔隙中且相互交联,改善了粉煤灰水泥浆体强度。  相似文献   

3.
以磷石膏基材料代替水泥作为磷尾矿充填胶结材,研究了磷尾矿固结浆体和硬化体性能、浸出液污染特性和固结机理。结果表明,在同样条件下,磷石膏基材料固结磷尾矿浆体比水泥泌水量要小、浆体流动性能更优;磷石膏基材料胶结磷尾矿硬化体除3 d抗压强度略低外,其他龄期的强度是水泥的1.21~1.95倍。3 d之后,磷石膏基材料和水泥胶结尾矿硬化体浸出液总磷含量基本相近,但pH明显远低于水泥,总磷也低于污水综合排放标准限值,对环境危害低。硬化体SEM和XRD分析发现,磷石膏基材料水化生成的水化硅酸钙凝胶、针状钙矾石晶体和磷尾矿中白云石、含磷矿物生成的透钙磷石等,是整个磷尾矿固结硬化体具有较高强度、较低总磷含量和pH值主要原因。该研究表明,磷石膏基材料固化磷尾矿比水泥更有应用前景。  相似文献   

4.
为了探究尾矿胶凝活性,将生石灰、氢氧化钠、水玻璃和石膏等激发剂添加到湖南永州低品位氧化锰尾矿中,通过正交实验研究不同激发剂掺量对锰尾矿胶凝活性的激发效果。实验结果表明:当生石灰、氢氧化钠、水玻璃、石膏掺量分别为10%、2%、1.5%、6%时,锰尾矿基胶凝材料净浆试样的各个龄期抗压强度最大,28 d抗压强度可达到6.64 MPa,软化系数可达到0.81。SEM分析发现:低品位氧化锰尾矿基胶凝材料主要水化产物为钙矾石和水化硅酸钙凝胶,随着龄期延长,水化产物持续增加并相互交织搭接,内部缝隙减少,内部结构致密,提高了试样抗压强度和软化系数。  相似文献   

5.
为研究低品位锰尾矿胶凝活性,将生石灰、氢氧化钠、水玻璃和石膏等激发剂添加到湖南永州低品位碳酸锰尾矿中,采用正交实验研究不同激发剂及掺量对锰尾矿基胶凝材料抗压强度和软化系数的影响,探究其潜在胶凝活性激发的最佳配方。实验结果表明,当生石灰、水玻璃、石膏掺量分别为10%、1.5%和4%时,胶凝材料净浆试体的各个龄期抗压强度最大,其中28 d抗压强度达到4.91 MPa,软化系数达到0.74。XRD、DTA和SEM微观实验发现:锰尾矿基胶凝材料主要水化产物为钙矾石和水化硅酸钙凝胶,随龄期持续增多并相互交织搭接,使试体内部结构逐渐致密,缝隙减少,提高了试体抗压强度和软化系数,因此,该激发剂可有效激发锰尾矿潜在胶凝活性。  相似文献   

6.
为探究工业废渣和膨润土协同处置市政污泥的应用效果,利用工业废渣(高炉矿渣和脱硫石膏)等量取代部分水泥,设计制备了低水泥掺量的工业废渣基复合固化剂(简称复合固化剂),开展了复合固化剂和膨润土协同固化污泥的无侧限抗压强度、浸出液重金属浓度及COD测试,评价了复合固化剂和膨润土对固化污泥力学特性和环境安全性能的影响。通过XRD、TG/DTG、BET、SEM等微观测试手段,明确了复合固化剂协同膨润土固化稳定污泥的微观结构特征。结果表明:采用高炉矿渣和脱硫石膏等量取代部分水泥可大幅度提升固化污泥的强度,复合固化剂的最优质量配合比为高炉矿渣∶脱硫石膏∶水泥=6∶1∶3;在复合固化剂固化污泥基础上,掺加膨润土可明显提升固化污泥的强度以及环境安全性,膨润土的最优掺量为10%;采用10%膨润土等量取代部分复合固化剂,固化污泥强度可提升17%~23%,浸出液中重金属离子浓度和COD值可降低40%~60%;相比水泥固化污泥体系,复合固化剂和膨润土协同固化污泥可生成更多的C-S-H凝胶、钙矾石晶体等水化产物,且膨润土具有较好的细化孔隙效应,二者协同作用共同提升了固化污泥的密实度和强度,而胶凝物质的物理包裹以及...  相似文献   

7.
为了提高危险废物电镀污泥的高值化利用程度,研究了掺加CaSO4对含磨细粉(由电镀污泥协同建筑渣土高温处理渣料磨细得到)水泥基材料力学性能、微观结构特征及重金属浸出的影响及机理。结果表明:CaSO4掺量(基于其在胶凝材料的质量占比)为0.6%时,其长期力学性能较优,含磨细粉水泥基材料养护60 d后抗压强度和抗折强度比未掺加CaSO4时分别提升20.1%和22.2%。适量的CaSO4可以补充含磨细粉水泥基材料基体中Ca2+含量,促进水泥和磨细粉中具有潜在水化活性的组分充分进行水化,同时使基体中生成更多的钙矾石填充孔隙,从而增强了基体结构密实度。研究还发现多余钙矾石的形成对重金属离子的固结起到了正向作用,适量的CaSO4掺加能明显降低含磨细粉水泥基材料基体中有害重金属离子的浸出浓度。当CaSO4掺量为0.6%时,含磨细粉水泥基材料养护28 d后,Cu、Ni、Zn的浸出率比未掺加CaSO4时分别降低了33.6、31.0、...  相似文献   

8.
污泥在污水厂厌氧消化和离心脱水后,一般含水率在80%~85%,为了后期有效的处理处置,需要进行深度脱水。实验采用化学干化法,投加不同比例的粉煤灰与生石灰复合调理剂,测定调理后污泥的含水率、脱水过滤速度和pH。实验结果表明,粉煤灰与生石灰复合调理剂可以有效改善污泥脱水性能,使泥饼含水率降低到60%以下,同时将污泥抽滤的脱水时长从20 min降至6 min内。此外,适当比例的复合调理剂可以大大降低污泥的pH,减小污泥后期处置带来的环境污染。  相似文献   

9.
为实现城市生活垃圾焚烧飞灰的安全处理,通过机械力化学法活化循环流化床燃煤固硫灰,探讨了球磨样品制备固化体的参数。并采用X射线衍射仪(XRD)和傅里叶变换红外光谱仪(FTIR)手段对垃圾焚烧飞灰中重金属的固化机制进行了研究。结果表明,当垃圾焚烧飞灰掺加比为60%,球磨转速为600 r·min~(-1),球磨时间为5 h,养护温度60℃时的固化体28 d和56 d抗压强度分别达到15.6 MPa和17.9 MPa,采用原子吸收光谱仪(AAS)测得固化体中Zn、Pb、Cu、Cd和Cr重金属浸出量均低于GB 5085.3-2007规定限值。XRD和FTIR表征结果表明,在水化过程中,该混合体系生成了水化硅酸钙(C—S—H)、斜方钙沸石和钙矾石(AFt)等水化产物,并且C—S—H凝胶可通过物理包裹的形式固化垃圾焚烧飞灰中重金属;斜方钙沸石和钙矾石以化学吸附的方式使垃圾焚烧飞灰中的重金属离子达到固化/稳定化效果,实现了垃圾焚烧飞灰中重金属的安全处理。  相似文献   

10.
对污水处理厂污泥采用垃圾焚烧底灰进行固化处理,分别测试不同掺量和不同养护龄期时固化体的岩土工程性质,通过测试发现,固化体重度基本位于11~13 kN/m3之间,与垃圾焚烧底灰的重度相近;固化体含水率随着垃圾焚烧底灰掺量的增大而急剧减小;抗剪强度指标和无侧限抗压强度随垃圾焚烧底灰的掺量增加和养护龄期的增长而增大,其内摩擦角位于10°~30°之间。建立的固化强度预测模型,可对不同掺量和龄期的固化污泥强度进行预测。  相似文献   

11.
Concentrations of different chlorinated compounds were measured in mussels incubated in two polluted watercourses, a river (the River Kymijoki) and a lake (Lake Vanaja) for four weeks in summer 1995. The sum concentrations of polychlorinated phenols (PCP) and biphenyls (PCB) were both about 1 μg/g lipid weight (lw) in Lake Vanaja mussels, while in the River Kymijoki mussels PCPs were non-detectable and PCBs were measured 120 ng/g lIw. The concentrations of toxic polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofuran (PCDF) congeners ranged between <17 and 370 pg/g Iw in Lake Vanaja mussels and between <38 and 11,000 pg/g lw in the River Kymijoki mussels. Polychlorinated diphenyl ethers (PCDE) were detected in the mussels incubated in the River Kymijoki (0.4–1.1 ng/g Iw), but not in those incubated in Lake Vanaja. Polychlorinated phenoxyanisoles (PCPA) were measured 33 ng/g lw and polychlorinated phenoxyphenols (PCPP) 300 ng/g lw in the mussels incubated in the River Kymijoki. PCPAs were also detected in reference samples, which were sediment and pike from the River Kymijoki and Baltic salmon, seal and white-tailed sea eagle.  相似文献   

12.
Book review     
The Pesticide Manual ‐ A World Compendium, 8th Edition, C.R. Worthing, Editor and S.B. Walker, Assistant Editor, British Crop Protection Council, BCPC Publications Sales, Bear Farm, Binfield, Bracknell, Berkshire RG12 5QE, England. 1987, 1100 pp., UK £50; Overseas £56. ISBN 0–948404–01–9.  相似文献   

13.
Abstract

The pH‐disappearance rate profiles were determined at ca. 25°C for 24 insecticides at 4 or 5 pH values over the range 4.5 to 8.0 in sterile phosphate buffers prepared in water‐ethanol (99: 1 v/v). Half‐lives measured at pH 8 were generally smaller than at lower pH values. Changes in half lives between pH 8.0 and 4.5 were largest (>1000x) for the aryl carbamates, carbofuran and carbaryl, the oxime carbamate, oxamyl, and the organophosphorus insecticide, trichlorfon. In contrast, half lives of phorate, terbufos, heptachlor, fensulfothion and aldicarb were affected only slightly by pH changes. Under the experimental conditions described half lives at pH8 varied from 1–2 days for trichlorfon and oxamyl to >1 year for fensulfothion and cyper‐methrin. Insecticide persistence on alumina (acid, neutral and basic), mineral soils amended with aluminum sulfate or calcium hydroxide to different pH values and four natural soils of different pH was examined. No correlation was observed between the measured pH of these solids and the rate of disappearance of selected insecticides applied to them. These observations demonstrate the difficulty of extrapolating the pH dependent disappearance behaviour observed in homogeneous solution to partially solid heterogeneous systems such as soil.  相似文献   

14.
Organochlorine compounds in a three-step terrestrial food chain   总被引:1,自引:0,他引:1  
The concentrations of 15 organochlorine chemicals (PCBs and pesticides) were studied in a Central European oak wood food chain system: Great tit (Parus major), caterpillars (Tortrix viridana, Operophtera brumata, Erannis defoliaria), and oak-leaves (Quercus robur). Juvenile tits receive organochlorines from the mother via egg transfer and, eventually to a greater extent, from the caterpillar food source during nestling period. The concentrations of PCB 153 (2,2′,4,4′,5,5′-hexachlorobiphenyl, the most abundant in this study) was found in leaf material at ca. 1 ng/g, in caterpillars 10 ng/g, and in bird eggs 170 ng/g on an average and on a dry mass basis.  相似文献   

15.
Abstract

The active ingredients in commercial formulations of malathion, oxamyl, carbaryl, diazinon, and chlorpyrifos diluted to “spray tank”; concentrations with buffered distilled or natural water of pH 4–9 were stable for at least 24 hr. Formulations of trichlorfon were not stable at pH 7 or above but disappearance rates were slower than for the pure chemical in homogeneous solution. Cupric ion was observed to be an effective catalyst for the hydrolysis of a variety of pure organophosphorus insecticides but did not catalyze hydrolysis of the active ingredients of the formulations examined. Increasing the dilution of the formulation increased the susceptibility of malathion, oxamyl, and carbaryl to hydrolysis.  相似文献   

16.
The ability of two biodegradable surfactants, polyoxyethylene (20) sorbitan monooleate (Tween 80) and sodium dihexyl sulfosuccinate (Aerosol MA), to recover a representative dense non-aqueous-phase liquid (DNAPL), trichloroethene (TCE), from heterogeneous porous media was evaluated through a combination of batch and aquifer cell experiments. An aqueous solution containing 3.3% Aerosol MA, 8% 2-propanol and 6 g/l CaCl(2) yielded a weight solubilization ratio (WSR) of 1.21 g TCE/g surfactant, with a corresponding liquid-liquid interfacial tension (IFT) of 0.19 dyn/cm. Flushing of aquifer cells containing a TCE-DNAPL source zone with approximately two pore volumes of the AMA formulation resulted in substantial (>30%) mobilization of TCE-DNAPL. However, a TCE mass recovery of 81% was achieved when the aqueous-phase flow rate was sufficient to displace the mobile TCE-DNAPL toward the effluent well. Aqueous solutions of Tween 80 exhibited a greater capacity to solubilize TCE (WSR=1.74 g TCE/g surfactant) and exerted markedly less reduction in IFT (10.4 dyn/cm). These data contradict an accepted empirical correlation used to estimate IFT values from solubilization capacity, and indicate a unique capacity of T80 to form concentrated TCE emulsions. Flushing of aquifer cells with less than 2.5 pore volumes of a 4% T80 solution achieved TCE mass recoveries ranging from 66 to 85%, with only slight TCE-DNAPL mobilization (<5%) occurring when the total trapping number exceeded 2 x 10(-5). These findings demonstrate the ability of Tween 80 and Aerosol MA solutions to efficiently recover TCE from a heterogeneous DNAPL source zone, and the utility of the total trapping number as a design parameter for a priori prediction of DNAPL mobilization and bank angle formation when flushing with low-IFT solutions. Given their potential to stimulate microbial reductive dechlorination at low concentrations, these surfactants are well-suited for remedial action plans that couple aggressive mass removal followed by enhanced bioremediation to treat chlorinated solvent source zones.  相似文献   

17.
Abstract

One of the dominant tree species growing within and around the eastern portion of Los Alamos National Laboratory (LANL), Los Alamos, NM, lands is the pinon pine (Pinus edulis). Pinon pine is used for firewood, fence posts, and building materials and is a source of nuts for food—the seeds are consumed by a wide variety of animals and are also gathered by people in the area and eaten raw or roasted. This study investigated the (1) concentration of 3H, 137Cs, 90Sr, totU, 238Pu, 239, 240Pu, and241 Am in soils (0‐ to 12‐in. [31 cm] depth underneath the tree), pinon pine shoots (PPS), and pinon pine nuts (PPN) collected from LANL lands and regional background (BG) locations, (2) committed effective dose equivalent (CEDE) from the ingestion of nuts, and (3) soil to PPS to PPN concentration ratios (CRs). Most radionuclides, with the exception of 3H in soils, were not significantly higher (p < 0.10) in soils, PPS, and PPN collected from LANL as compared to BG locations, and concentrations of most radionuclides in PPN from LANL have decreased over time. The maximum net CEDE (the CEDE plus two sigma minus BG) at the most conservative ingestion rate (10 lb [4.5 kg]) was 0.0018 mrem (0.018 μSv); this is far below the International Commission on Radiological Protection (all pathway) permissible dose limit of 100 mrem (1000 μSv). Soil‐to‐nut CRs for most radionuclides were within the range of default values in the literature for common fruits and vegetables.  相似文献   

18.
Degradation and sorption/desorption are important processes affecting the leaching of pesticides through soil. This research characterized the degradation and sorption of imidacloprid (1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine) in Drummer (silty clay loam) and Exeter (sandy loam) surface soils and their corresponding subsurface soils using sequential extraction methods over 400 days. By the end of the incubation, approximately 55% of imidacloprid applied at a rate of 1.0 mg kg?1 degraded in the Exeter sandy loam surface and subsurface soils, compared to 40% of applied imidacloprid within 300 days in Drummer surface and subsurface soils. At the 0.1 mg kg?1 application rate, dissipation was slower for all four soils. Water-extractable imidacloprid in Exeter surface soil decreased from 98% of applied at day 1 to > 70% of the imidacloprid remaining after 400 d, as compared to 55% in the Drummer surface soil at day 1 and 12% at day 400. These data suggest that imidacloprid was bioavailable to degrading soil microorganisms and sorption/desorption was not the limiting factor for biodegradation. In subsurface soils > 40% of 14C-benzoic acid was mineralized over 21 days, demonstrating an active microbial community. In contrast, cumulative 14CO2 was less than 1.5% of applied 14C-imidacloprid in all soils over 400 d. Qualitative differences in the microbial communities appear to limit the degradation of imidacloprid in the subsurface soils.  相似文献   

19.
Abstract

Five organophosphorous insecticides: Leptophos, EPN, Cyano‐fenphos, trichloronate and salithion proved to cause irreversible ataxia not only to chicken but also to mice and sheep. TOCP was included as a reference. Cyanofenphos blocked the catecholamine B‐receptor binding activity with 3H‐norepinephrine at a level similar to that of the specific inhibitor propranolol in the mouse heart preparation. In the lamb heart preparation, the B‐receptor was more sensitive to Leptophos, salithion and TOCP than to propranolol. The six compounds and their oxons were screened for their in‐vitro inhibition to monamine oxidase (MAO), acetyl cholinesterase (AChE) and neurotoxic esterase (NTE) in the brain of either mouse, lamb or chicken. It is believed that their AChE inhibition stands for their acute toxicity, while NTE inhibition is responsible for their paralytic ataxia.  相似文献   

20.
Background, Aims and Scope The global problem concerning contamination of the environment as a consequence of human activities is increasing. Most of the environmental contaminants are chemical by-products and heavy metals such as lead (Pb). Lead released into the environment makes its way into the air, soil and water. Lead contributes to a variety of health effects such as decline in mental, cognitive and physical health of the individual. An alternative way of reducing Pb concentration from the soil is through phytoremediation. Phytoremediation is an alternative method that uses plants to clean up a contaminated area. The objectives of this study were: (1) to determine the survival rate and vegetative characteristics of three grass species such as vetivergrass, cogongrass and carabaograss grown in soils with different Pb levels; and (2) to determine and compare the ability of the three grass species as potential phytoremediators in terms of Pb accumulation by plants. Methods The three test plants: vetivergrass (Vetiveria zizanioides L.); cogongrass (Imperata cylindrica L.); and carabaograss (Paspalum conjugatum L.) were grown in individual plastic bags containing soils with 75 mg kg−1 (37.5 kg ha−1) and 150 mg kg−1 (75 kg ha−1) of Pb, respectively. The Pb contents of the test plants and the soil were analyzed before and after experimental treatments using an atomic absorption spectrophotometer. This study was laid out following a 3 × 2 factorial experiment in a completely randomized design. Results On the vegetative characteristics of the test plants, vetivergrass registered the highest whole plant dry matter weight (33.85–39.39 Mg ha−1). Carabaograss had the lowest herbage mass production of 4.12 Mg ha−1 and 5.72 Mg ha−1 from soils added with 75 and 150 mg Pb kg−1, respectively. Vetivergrass also had the highest percent plant survival which meant it best tolerated the Pb contamination in soils. Vetivergrass registered the highest rate of Pb absorption (10.16 ± 2.81 mg kg−1). This was followed by cogongrass (2.34 ± 0.52 mg kg−1) and carabaograss with a mean Pb level of 0.49 ± 0.56 mg kg−1. Levels of Pb among the three grasses (shoots + roots) did not vary significantly with the amount of Pb added (75 and 150 mg kg−1) to the soil. Discussion Vetivergrass yielded the highest biomass; it also has the greatest amount of Pb absorbed (roots + shoots). This can be attributed to the highly extensive root system of vetivergrass with the presence of an enormous amount of root hairs. Extensive root system denotes more contact to nutrients in soils, therefore more likelihood of nutrient absorption and Pb uptake. The efficiency of plants as phytoremediators could be correlated with the plants’ total biomass. This implies that the higher the biomass, the greater the Pb uptake. Plants characteristically exhibit remarkable capacity to absorb what they need and exclude what they do not need. Some plants utilize exclusion mechanisms, where there is a reduced uptake by the roots or a restricted transport of the metals from root to shoots. Combination of high metal accumulation and high biomass production results in the most metal removal from the soil. Conclusions The present study indicated that vetivergrass possessed many beneficial characteristics to uptake Pb from contaminated soil. It was the most tolerant and could grow in soil contaminated with high Pb concentration. Cogongrass and carabaograss are also potential phytoremediators since they can absorb small amount of Pb in soils, although cogongrass is more tolerant to Pb-contaminated soil compared with carabaograss. The important implication of our findings is that vetivergrass can be used for phytoextraction on sites contaminated with high levels of heavy metals; particularly Pb. Recommendations and Perspectives High levels of Pb in localized areas are still a concern especially in urban areas with high levels of traffic, near Pb smelters, battery plants, or industrial facilities that burn fuel ending up in water and soils. The grasses used in the study, and particularly vetivergrass, can be used to phytoremediate urban soil with various contaminations by planting these grasses in lawns and public parks. ESS-Submission Editor: Dr. Willie Peijnenburg (wjgm.peijnenburg@rivm.nl)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号