首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 739 毫秒
1.
There is interest in studying bioaccumulation in plants because they form the base of the food chain as well as their potential use in phytoextraction. From this viewpoint, our study deals with the seasonal variation, from January to July, of Cd and Zn bioaccumulation in three metallicolous populations of Arrhenatherum elatius, a perennial grass with a high biomass production. In heavily polluted soils, while Zn bioaccumulation is weak, A. elatius accumulates more Cd than reported gramineous plants, with concentration of up to 100 microg g(-1). Our results also showed seasonal variations of bioaccumulation, underlying the necessity for in situ studies to specify the date of sampling and also the phenology of the collected plant sample. In our experimental conditions, accumulation is lower in June, leading us to the hypothesis of restriction in heavy metals translocation from roots to aerial parts during seed production.  相似文献   

2.
Traditionally, regulatory approaches to the bioaccumulation of hydrophobic organic chemicals (HOCs) have emphasized the direct accumulation of these chemicals from solution across biological membranes, leading to the development of the bioconcentration factor as a measure of direct uptake of freely dissolved HOCs. However, an often larger fraction of the total amount of many HOCs in the water column is not freely dissolved, but is partitioned among suspended sediments and particulate matter in the water column. Partitioned HOCs are available for accumulation by organisms ingesting the contaminated particulate matter. The net accumulation of HOCs from water through consumption and direct uptake of dissolved HOC is termed bioaccumulation, quantified using a bioaccumulation factor. In order to develop recommendations designed to close the gap between current knowledge concerning bioaccumulation and regulations, the Institute of Evaluating Health Risks organized a working conference, 'The Bioaccumulation of Hydrophobic Organic Chemicals by Aquatic Organisms'. This paper reflects the view of workshop participants that the bioaccumulation paradigm can be used in a number of practical applications.  相似文献   

3.
4.
A technique is described that uses artificial resin beads with known surface properties to investigate the factors influencing the bioaccumulation of pollutants from sediments. One advantage of this technique is that it provides a standard procedure against which it is possible to calibrate natural sediments with their diverse properties. The method has been used on third instar larvae of the midge Chironomus riparius and the results are compared with previous studies on the worm Lumbriculus variegatus. The use of a standard test using resin beads as a substitute for natural sediment allows comparisons to be made between species and substrates. Thus, the bioaccumulation factors for the midge larvae are much smaller than those of the worm and this correlates with the ability of the insect larva to detoxify many pollutants. It is also possible to use the test to identify if ingestion of the sediment increases the bioaccumulation of contaminants and whether this involves the release of pollutants by digestive processes or not.  相似文献   

5.
Artificial particles, specifically a diverse selection of chromatographical resins, have been recommended and used as a useful experimental model to predict the bioavailability and bioaccumulation of sediment-bound organic chemicals. In this work the same experimental model was adopted to investigate the bioavailability and bioaccumulation of lead by the freshwater oligochaete Lumbriculus variegatus. Particle-water partition coefficients were also determined. Sand particles and the anionic exchange resin promoted a similar uptake and bioaccumulation of lead. Instead, in the presence of the cationic exchanger the metal was not detected in the animals. For neutral particles, the uptake and accumulation depended on the chemistry of the functional groups at the active sites. In addition, a significant negative correlation was found between bioaccumulation and the particle-water partition coefficients. These studies may help to develop alternative methods for chemical remediation of lead-contaminated aquatic systems.  相似文献   

6.
Fulvic acid (FA) was extracted and purified from natural soil and the effects of such FA on the bioaccumulation of rare earth elements (REEs, La3+, Gd3+ and Y3+) in wheat seedling were investigated. The results indicated that low concentration of FA (<0.4 mg C/l to root, <0.7 mg C/l to tops (stem and leaves)) could increase the bioaccumulation values of REEs in wheat, but when the concentration of FA was high (>0.4 mg C/l to root, >1.5 mg C/l to tops) the bioaccumulation values were decreased. Kinetic experimental results suggested that bioaccumulation values of REEs in roots for 30 days were correlated with the kinetic linear growth equation, and correlation coefficients were higher than 0.861. The kinetic bioaccumulation pattern of REEs in tops was different from that in root. The bioaccumulation values of REEs in wheat root were much higher than in wheat tops. Variations of glutamic oxaloacetic transaminase (GOT) enzyme activities in wheat root and tops were determined. A good correlation existed between the bioaccumulation values of REEs and GOT enzyme activities, and the correlation coefficients were higher than 0.922. GOT is an important parameter influencing the bioavailability of REEs.  相似文献   

7.
Contemporary environmental challenges have emphasized the need to critically assess the use of bivalve mollusks in chemical monitoring (identification and quantification of pollutants) and biomonitoring (estimation of environmental quality). Many authors, however, have considered these approaches within a single context, i.e., as a means of chemical (e.g. metal) monitoring. Bivalves are able to accumulate substantial amounts of metals from ambient water, but evidence for the drastic effects of accumulated metals (e.g. as a TBT-induced shell deformation and imposex) on the health of bivalves has not been documented. Metal bioaccumulation is a key tool in biomonitoring; bioavailability, bioaccumulation, and toxicity of various metals in relation to bivalves are described in some detail including the development of biodynamic metal bioaccumulation model. Measuring metal in the whole-body or the tissue of bivalves themselves does not accurately represent true contamination levels in the environment; these data are critical for our understanding of contaminant trends at sampling sites. Only rarely has metal bioaccumulation been considered in combination with data on metal concentrations in parts of the ecosystem, observation of biomarkers and environmental parameters. Sclerochemistry is in its infancy and cannot be reliably used to provide insights into the pollution history recorded in shells. Alteration processes and mineral crystallization on the inner shell surface are presented here as a perspective tool for environmental studies.  相似文献   

8.
Appropriateness of Aufwuchs as a monitor of bioaccumulation   总被引:1,自引:0,他引:1  
Aufwuchs, procedurally defined as material accumulating on submerged surfaces, is being used increasingly to monitor trace element bioaccumulation in aquatic biota. Procedurally-defined aufwuchs is a complex mixture of biotic and abiotic components. Both biotic and abiotic components can be avid concentrators of trace elements. Consequently, bioaccumulation data generated from poorly-characterized, procedurally-defined aufwuchs may not accurately reflect accumulation by biota. Further, total concentrations of trace elements in procedurally-defined aufwuchs may not be indicative fo the amount of contaminant available for trophic transfer. Methods of minimizing abiotic component contribution to trace element accumulation and means of assessing the bioavailability of associated trace elements are discussed in this review.  相似文献   

9.
We examined habitat-specific bioaccumulation of methylmercury (MeHg) in aquatic food webs by comparing concentrations in pelagic zooplankton to those in littoral macroinvertebrates from 52 mid-latitude lakes in North America. Invertebrate MeHg concentrations were primarily correlated with water pH, and after controlling for this influence, pelagic zooplankton had significantly higher MeHg concentrations than littoral primary consumers but lower MeHg than littoral secondary consumers. Littoral primary consumers and pelagic zooplankton are two dominant prey for fish, and greater MeHg in zooplankton is likely sufficient to increase bioaccumulation in pelagic feeders. Intensive sampling of 8 lakes indicated that habitat-specific bioaccumulation in invertebrates (of similar trophic level) may result from spatial variation in aqueous MeHg concentration or from more efficient uptake of aqueous MeHg into the pelagic food web. Our findings demonstrate that littoral-pelagic differences in MeHg bioaccumulation are widespread in small mid-latitude lakes.  相似文献   

10.
Concentrations of organochlorine pesticides and stable isotope ratios of nitrogen and carbon were measured in a tropical freshwater ecosystem to evaluate the contamination level of biota and examine the bioaccumulation patterns of pollutants through the food web. Chemical analyses showed a general and heavy contamination of the entire food web. They revealed the strong accumulation of pollutants by juveniles of diadromous fishes and shrimps, as they re-enter the river. The role of ecological factors in the bioaccumulation of pesticides was evaluated. Whereas the most persistent pollutants (chlordecone and monohydro-chlordecone) were related to the organisms diet and habitat, bioaccumulation of β-HCH was only influenced by animal lipid content. The biomagnification potential of chlordecone through the food chain has been demonstrated. It highlighted the importance of trophic transfer in this compound bioaccumulation process. In contrast, bioconcentration by passive diffusion from water seemed to be the main exposure route of biota to β-HCH.  相似文献   

11.

Background, aim and scope  

The European Heavy Metals in Mosses Surveys (UNECE-ICP Vegetation) is a programme performed every 5 years since 1990 in at least 21 European countries. The moss surveys aim at uncovering the spatiotemporal patterns of metal and nitrogen bioaccumulation in mosses. In France, the moss survey was conducted for the third time in 2006. Five hundred thirty-six monitoring sites were sampled across the whole French territory. The aim of the presented study is to give an integrative picture of the metal bioaccumulation for the entire French territory without geographical gaps. Furthermore, confounding factors of the metal bioaccumulation in mosses should be investigated.  相似文献   

12.
This paper presents the results of investigations on the suitability of lugworms (Arenicola marina) to study the bioaccumulation potential of Hg, PCB and PAH compounds from dredged sediments upon laboratory exposure. The results of tissue concentrations for several sediments from Spanish ports showed that it is possible to identify increased levels of contaminants in lugworms just after 10 days of exposure although different bioaccumulation trends were shown amongst compounds and sediments. Total and organic Hg compounds were accumulated following a non-linear trend, with a sharp increase of tissue concentrations in lugworms exposed to levels of contamination associated to a significant increase in mortality. Interestingly organic Hg compounds accounted for an average of 40% of the total Hg in lugworms exposed to sediments presenting sublethal concentrations while, when exposed to sediments presenting lethal concentrations, organic Hg compounds only accounted for 4% of the total Hg accumulated in lugworms. While lugworms seem to readily accumulate Hg and PCB compounds, with some variability explained by the organic matter content in sediments or other factor for which it accounts for, the results for PAHs suggest a more complex process of bioaccumulation as no relationship was observed between the measured concentrations in sediments and in lugworms, not even after correcting the results for this factor. Besides, the differences in the calculated BSAFs for each compound and for each sediment supported the use of bioassays for evaluating the bioaccumulation potential of sediment-bound contaminants as part of the assessment framework required in pre-dredging investigations, as they still offer unique information about the bioavailability of sediment-bound contaminants.  相似文献   

13.
The influence of different porewater salinities (up to 12 g/L) on the toxicity and bioaccumulation of copper, zinc and lead from metal-spiked sediments was assessed using the midge, Chironomus maddeni. Survival of the larvae was significantly reduced at a porewater salinity of 12 g/L, but no effects were observed at 4 or 8 g/L. Both growth and survival of C. maddeni were reduced after exposure to salt/metal spiked sediments as compared to those exposed to sediments spiked with metals or salt alone. Increased salinity resulted in increased bioaccumulation of copper and zinc, but decreased bioaccumulation of lead. The observed patterns of bioaccumulation were not entirely explained by the modelled free ion activities of the metals, indicating that factors such as osmotic stress, consumption of metal-contaminated sediments or metal interactions may have been important as well. These results highlight the need to consider the influence of existing or potential salinization when undertaking hazard assessments of freshwater systems impacted by contaminants such as trace metals.  相似文献   

14.
The present study investigated the contribution of environmental factors to the accumulation of As, Cd, Cu, Pb and Zn in earthworms, beetles and woodlice, and framed within an exposure assessment of the European hedgehog. Soil and invertebrate samples were collected in three distinct habitat types. Results showed habitat-specific differences in soil and invertebrate metal concentrations and bioaccumulation factors when normalized to soil metal concentration. Further multiple regression analysis showed residual variability (habitat differences) in bioaccumulation that could not be fully explained by differences in soil metal contamination, pH or organic carbon (OC). Therefore, the study demonstrated that in bioaccumulation studies involving terrestrial invertebrates or in risk assessment of metals, it is not sufficient to differentiate habitat types on general soil characteristics such as pH and/or OC alone. Furthermore, simple generic soil risk assessments for Cd and Cu showed that risk characterization was more accurate when performed in a habitat-specific way.  相似文献   

15.
The bioaccumulation of inorganic mercury (HgI) and monomethylmercury (MMHg) by benthic organisms and subsequent trophic transfer couples the benthic and pelagic realms of aquatic systems and provides a mechanism for transfer of sedimentary contaminants to aquatic food chains. Experiments were performed to investigate the bioavailability and bioaccumulation of particle-associated HgI and MMHg by the estuarine amphipod Leptocheirus plumulosus to further understand the controls on bioaccumulation by benthic organisms. HgI and MMHg are particle reactive and have a strong affinity for organic matter, a potential food source for amphipods. Microcosm laboratory experiments were performed to determine the effects of organic matter on Hg bioaccumulation and to determine the major route of Hg uptake (i.e. sediment ingestion, uptake from water/porewater, or uptake from 'food'). Amphipods living in organic-rich sediment spiked with Hg accumulated less Hg than those living in sediments with a lower organic matter content. Feeding had a significant impact on the amount of HgI and MMHg accumulated. Similarly, amphipods living in water with little organic matter accumulated more Hg than those living in water with a greater percentage of organic matter. MMHg was more readily available for uptake than HgI. Experimental results, coupled with results from a bioaccumulation model, suggest that accumulation of HgI and MMHg from sediment cannot be accurately predicted based solely on the total Hg, or even the MMHg, concentration of the sediment, and sediment-based bioaccumulation factors. All routes of exposure need to be considered in determining the accumulation of HgI and MMHg from sediment to benthic invertebrates.  相似文献   

16.
Several cesium and strontium bioaccumulation models are used widely in national and international guidance for ecological and human health risk assessments for radiocesium (134Cs and 137Cs) and radiostrontium (90Sr), but have not been used to make predictions of radiological risk from nuclear accidents under variable environmental conditions on broad geographical scales. In this paper, we first present models for predicting the bioaccumulation of cesium and strontium by aquatic biota based on ambient concentrations of dissolved potassium and calcium, respectively, and then test these models using independent data from aquatic ecosystems at Canadian nuclear sites. Secondly, models yielding the best predictions across a wide range of input parameters were selected to estimate bioaccumulation factors (BAFs) for cesium and strontium in aquatic ecosystems across Canada, using trophic level of organisms and dissolved potassium for cesium and calcium concentrations for strontium as predictor variables, and presented as contour maps of radiological risk. The models show that risk from bioaccumulation of cesium and strontium can vary by several orders of magnitude depending on site-specific environmental conditions and trophic ecology. Overall, our results suggest that single-parameter approaches taken by regulatory standards may either over- or under-predict radiological risk at many locations, and are thus not readily suitable to inform siting decisions for new nuclear developments.  相似文献   

17.
Belden JB  Ownby DR  Lotufo GR  Lydy MJ 《Chemosphere》2005,58(9):1161-1168
The potential of TNT to accumulate in aquatic organisms was assessed by determining bioconcentration factors for TNT and TNT biotransformation products using two benthic invertebrates (Chironomus tentans and Lumbriculus variegatus), and by determining the bioaccumulation factor of TNT and TNT biotransformation products due to TNT exposure via feeding for channel catfish (Ictalurus punctatus). In all three species, TNT was rapidly biotransformed resulting in minimal accumulation. The bioconcentration factors for parent TNT ranged from 3 to 4 ml g(-1) for the invertebrates studied, while the TNT bioaccumulation factor for catfish via oral exposure of food pellets was 2.4x10(-5) g g(-1) based on the concentration of TNT in the food pellet. As indicated by this small bioaccumulation factor, TNT accumulation in channel catfish through trophic transfer would be negligible compared to aqueous exposure (previously reported BCF of 0.79 ml g(-1)). TNT extractable biotransformation products accumulated to a greater degree than parent TNT for all three species. In addition, a large fraction of the radioactivity within all three species resisted solvent extraction. The highest bioconcentration factors occurred in L. variegatus with extractable radioactivity measuring 76 ml g(-1) and total radioactivity measuring 216 ml g(-1). Because the bioaccumulation of TNT is very low compared to the bioaccumulation of its biotransformation products, further research including identifying and determining the relative toxicities of these biotransformation products is necessary to fully evaluate the environmental risk posed by exposure to TNT.  相似文献   

18.
A microbial consortia consisting of three bacteria isolated from tanning and textile wastewaters revealed high capacity to simultaneously bioaccumulate dye and Cr(VI). The identity of the bacteria were determined by 16S rRNA gene analysis to be closely related to Ochrobactrium sp., Salmonella enterica and Pseudomonas aeruginosa. Dependence of initial pH values and range of concentrations of the dye Reactive Black B (33.2-103.1 mg l(-1)) and Cr(VI) (19.9-127.6 mg l(-1)) were examined to find the effect of pH on the dye and Cr(VI) bioaccumulation. Optimal pH for growth of the consortia in media containing 35 mg l(-1) dye and 50 mg l(-1) Cr(VI) was determined to be around 8. The Cr(VI) bioaccumulation by the consortia was rapid in media containing molasses with or without reactive dye with a maximum Cr(VI) bioaccumulation yield ranging from 90% to 99% within a 2-4d period. A slightly lower yield for the dye bioaccumulation was measured with a maximum dye bioaccumulation of 80% at 59.3 mg l(-1) dye and 69.8 mg l(-1) Cr(VI). The highest specific Cr uptake value was obtained as 76.7 mg g(-1) at 117.1 mg l(-1) Cr(VI) and 50.8 mg l(-1) dye concentration. This ability to bioaccumulate dye and Cr(VI) was more efficient than the enriched sludge from which they were isolated.  相似文献   

19.
Effects of environmental chemical pollution can be observed at all levels of biological organization. At the population level, genetic structure and diversity may be affected by exposure to metal contamination. This study was conducted in Huautla, Morelos, Mexico in a mining district where the main contaminants are lead and arsenic. Peromyscus melanophrys is a small mammal species that inhabits Huautla mine tailings and has been considered as a sentinel species. Metal bioaccumulation levels were examined by inductively coupled plasma mass spectrometry and genetic analyses were performed using eight microsatellite loci in 100 P. melanophrys individuals from 3 mine tailings and 2 control sites. The effect of metal bioaccumulation levels on genetic parameters (population and individual genetic diversity, genetic structure) was analyzed. We found a tissue concentration gradient for each metal and for the bioaccumulation index. The highest values of genetic differentiation (Fst and Rst) and the lowest number of migrants per generation (Nm) were registered among the exposed populations. Genetic distance analyses showed that the most polluted population was the most genetically distant among the five populations examined. Moreover, a negative and significant relationship was detected between genetic diversity (expected heterozygosity and internal relatedness) and each metal concentration and for the bioaccumulation index in P. melanophrys. This study highlights that metal stress is a major factor affecting the distribution and genetic diversity levels of P. melanophrys populations living inside mine tailings. We suggest the use of genetic population changes at micro-geographical scales as a population level biomarker.  相似文献   

20.
Zebra mussels (Dreissena polymorpha) were exposed to different types of water containing PGE salts (PtCl4, PdSO4, RhCl3) to investigate the influence of humic substances on the aqueous solubility, uptake and bioaccumulation of noble metals. The results showed a time dependent decrease of the aqueous PGE concentrations in tank water for all groups. This could mainly be related to non-biological processes. The aqueous solubility of Pd and Rh was higher in humic water compared with non-chlorinated tap water, whereas Pt showed opposing results. Highest metal uptake rates and highest bioaccumulation plateaus were found for Pd, followed by Pt and Rh. Pd uptake and bioaccumulation was significantly hampered by humic substances, whose presence appear to increase Pt uptake and bioaccumulation. No clear trend emerged for Rh. Differences in effects of humic matter among the PGE may be explained by formation of metal complexes with different fractions of humic substances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号