首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Fenuron sorption on homoionic natural and modified smectites   总被引:1,自引:0,他引:1  
The adsorption isotherms of fenuron (1,1-dimethyl-3-phenylurea) on three smectites (SWy and SAz montmorillonites and SH hectorite) differing in their layer charge (SH相似文献   

2.
Abstract

The adsorption isotherms of fenuron (l, l‐dimethyl‐3‐phenylurea) on three smectites (SWy and SAz montmorillonites and SH hectorite) differing in their layer charge (SH<SWy<SAz) and saturated with several inorganic and organic cations were determined. The isotherms and sorption parameters from Freundlich equation indicate low adsorptivity on inorganic clays, but medium sorption in organoclays (OCls). Fenuron adsorption on homoionic smectites increases with decreasing layer charge and hydratation power of the inorganic exchangeable cation (except Fe3+), indicating that fenuron adsorbs as neutral molecule on uncharged siloxane surface by hydrophobic bonding, with some contribution of polar bond (fenuron C=O group and water associated to exchangeable cation). In the case of Fe3+‐saturated smectite fenuron protonation, provided by the interlayer acidic environment, promotes further sorption of fenuron as cationic form. The sorption on organoclays is enhanced via hydrophobic interaction with organocations, which is favoured for high layer charge and basal spacing and organocation saturation close to CEC. Quaternary alkylamonium is more efficient in high layer charge smectite, whereas primary alkylammonium is more efficient in medium charge smectite. The low values of the maximum sorption obtained with homoionic inorganic and organic smectites (100 and 5000 μmol/Kg) represent one fenuron molecule for each 2000–200 exchange sites and indicate that fenuron sorption is mainly associated to the outer exchange sites. This low adsorptivity of fenuron, as consequence of its high water affinity (high water solubility) would suggest high mobility of fenuron in natural soil and water systems.  相似文献   

3.
Sequential sorption of lead and cadmium in three tropical soils   总被引:2,自引:0,他引:2  
It is important to examine mechanisms of Pb and Cd sorption in soils to understand their bioavailability. The ability of three tropical soils to retain Pb, Cd, and Ca was evaluated. The objectives of this study were to (1) determine the extent to which soil sorption sites are metal specific, (2) investigate the nature of reactions between metals and soil surfaces, and (3) identify how metals compete for sorption sites when they are introduced to soils sequentially or concurrently. Lead was shown to be much less exchangeable than Cd and inhibited Cd sorption. Cadmium had little effect on Pb sorption, though both Ca and Cd inhibited the adsorption of Pb at exchange sites. Lead appears to more readily undergo inner-sphere surface complexation with soil surface functional groups than either Cd or Ca. Thus, regardless of when Pb is introduced to a soil, it should be less labile than Cd.  相似文献   

4.
Pikaar I  Koelmans AA  van Noort PC 《Chemosphere》2006,65(11):2343-2351
Sorption to ‘hard carbon’ (black carbon, coal, kerogen) in soils and sediments is of major importance for risk assessment of organic pollutants. We argue that activated carbon (AC) may be considered a model sorbent for hard carbon. Here, we evaluate six sorption models on a literature dataset for sorption of 12 compounds onto 12 ACs and one charcoal, at different temperatures (79 isotherms in total). A statistical analysis, accounting for differences in the number of fitting parameters, demonstrates that the dual Langmuir equation is in general superior and/or preferable to the single and triple Langmuir equation, the Freundlich equation, a Polanyi–Dubinin–Manes equation, and the Toth equation. Consequently, the analysis suggests the presence of two types of adsorption sites: a high-energy (HE) type of site and a low-energy (LE) type of site. Maximum adsorption capacities for the HE domain decreased with temperature while those for the LE domain increased. Average Gibbs free energies for adsorption from the hypothetical pure liquid state at 298 K were fairly constant at −15 ± 4 and −5 ± 4 kJ mol−1 for the HE and LE domain, respectively.  相似文献   

5.
The sorption and desorption behavior of radium on bentonite and purified smectite was investigated as a function of pH, ionic strength and liquid to solid ratio by batch experiments. The distribution coefficients (Kd) were in the range of 10(2) to > 10(4) ml g-1 and depended on ionic strength and pH. Most of sorbed Ra was desorbed by 1 M KCl. The results for purified smectite indicated that Ra sorption is dominated by ion exchange at layer sites of smectite, and surface complexation at edge sites may increase Ra sorption at higher pH region. Reaction parameters between Ra and smectite were determined based on an interaction model between smectite and groundwater. The reaction parameters were then used to explain the results of bentonite by considering dissolution and precipitation of minerals and soluble impurities. The dependencies of experimental Kd values on pH, ionic strength and liquid to solid ratio were qualitatively explained by the model. The modeling result for bentonite indicated that sorption of Ra on bentonite is dominated by ion exchange with smectite. The observed pH dependency was caused by changes of Ca concentration arising from dissolution and precipitation of calcite. Diffusion behavior of Ra in bentonite was also investigated as a function of dry density and ionic strength. The apparent diffusion coefficients (Da) obtained in compacted bentonite were in the range of 1.1 x 10(-11) to 2.2 x 10(-12) m2 s-1 and decreased with increasing in dry density and ionic strength. The Kd values obtained by measured effective diffusion coefficient (De) and modeled De were consistent with those by the sorption model in a deviation within one order of magnitude.  相似文献   

6.
In situ stabilization of toxic elements in contaminated soils by the addition of amendments is being considered as an effective technique for remediation. In this paper, we performed both kinetics and equilibrium-based sorption experiments of three toxic elements (As, Cd and Tl) in soils amended with two by-products (phosphogypsum and sugar foam, rich in gypsum and calcium carbonate, respectively) to ascertain the feasibility of their application for improving the sorption capacity of As, Cd and Tl from the soil at 25, 35 and 50 °C. Kinetic studies indicated that the sorption follows a pseudo-second-order (PSO) kinetics and the sorption is a two-step diffusion process where both film and intraparticle diffusion played important roles in the sorption mechanisms of the elements. The Langmuir isotherms applied for sorption studies showed that the estimated maximum sorption capacity of the elements in control and amended soils decreased in the order of Cd > As > Tl. Using the thermodynamic equilibrium parameters obtained at different temperatures, the thermodynamic constants of sorption (ΔG, ΔH and ΔS) were also evaluated, indicating spontaneous and endothermic nature of the process, except Tl which was exothermic. An optimal scaling procedure was undertaken to determine the relationships between the kinetic and equilibrium sorption parameters. By means of statistical analysis it was seen that these inter-parametric relationships are dependent on the element nature.  相似文献   

7.
Study of sorption kinetics of some ionic liquids on different soil types   总被引:1,自引:0,他引:1  
In the present contribution sorption kinetics experiments under static conditions were utilized in three selected ionic liquids cations (1-ethyl-3-methylimidazolium, 1-butyl-3-methylimidazolium, 1-hexyl-3-methylimidazolium chlorides) study with five type of soil, differing in total organic carbon (TOC) content. The experimental results indicate the sorption capacity growth with increase in TOC content and hydrophobicity of ionic liquid cation. The obtained kinetic sorption parameters as well as distribution coefficients (Kd) were used to estimate the sorption properties of the soil types towards the ionic liquids in question. The Gibbs free energy values indicate that ionic liquid cations sorption on soils could be generally considered as a physical adsorption with exothermic effect. But the values of −dG for studied cations sorption on soil with very high of TOC content in soil (45%) may testify to nature of chemical adsorption. Sorption of the analyzed compounds occurs probably by means of hydrogen bonds, electrostatic and π  π interaction with the organic matter and the clay minerals of the soils.  相似文献   

8.
Sorption isotherms have been widely used to assess the heavy metal retention characteristics of soil particles. Desorption behavior of the retained metals, however, usually differ from that of sorption, leading to a lack of coincidence in the experimentally obtained sorption and desorption isotherms. In this study, we examine the nonsingularity of cadmium (Cd) sorption–desorption isotherms, to check the possible hysteresis and reversibility phenomena, in aqueous palygorskite, sepiolite and calcite systems. Sorption of Cd was carried out using a 24-h batch equilibration experiment with eight different Cd solution concentrations, equivalent to 20–100% of maximum sorption capacity of each mineral. Immediately after sorption, desorption took place using successive dilution method with five consecutive desorption steps. Both Cd sorption and desorption data were adequately described by Freundlich equation (0.81 < r2 < 0.99). The sorption and desorption reactions, however, did not provide the same isotherms, indicating that hysteresis occurred in Cd sorption–desorption processes. The extent of hysteresis was quantified based on the differences obtained from sorption and desorption isotherms regarding the amount of Cd sorbed, the Freundlich exponent, and the Cd distribution coefficient. The results revealed that, sepiolite possessed the most hysteretic behavior among the minerals studied. Calcite showed much smaller hysteresis compared to the other two silicate clays at low Cd surface load, but its hysteresis indices significantly increased, and exceeded that of palygorskite, as the amount of Cd in the systems increased. The average amount of Cd released after five desorption steps, was 13.8%, 2.2% and 3.6% for the palygorskite, sepiolite and calcite, respectively, indicating that a large portion of Cd was irreversibly retained by the minerals.  相似文献   

9.
The sorption of Cd and Pb by extracellular polymeric substances (EPS) extracted from activated sludges originated from wastewater treatment plants (WWTPs) or Lab-scale bioreactors was investigated as a function of pH. The study was carried out using a polarographic method in the SMDE (stripping mercury dropping electrode) mode which is suited to determine labile metals in solution containing soluble ligands such as EPS. The results obtained provide evidence of the presence of a pH-sorption/desorption edge for Cd and Pb by EPS. The use of Kurbatov’s model gives information on the mechanisms involved through the determination of “relative complexation constants” (operationally defined) and the number of protons exchanged. The use of this model demonstrates that proton exchange with metals is not the only mechanism involved in metal biosorption by EPS. Other mechanisms such as cation exchange with Ca or Mg, global electric field surrounding the ligand or micro-precipitation of metals could be involved in metal sorption by EPS. The position of the pH-sorption edge curves and the “relative complexation constants” show that Pb displays a greater affinity for EPS than Cd. The studied EPS have large differences regarding binding strength of Cd and Pb. These differences are not correlated with the organic parameters measured to characterize the EPS, however the mineral fraction of the EPS could be involved to a large extent in the sorption of metal.  相似文献   

10.
Widespread use of tributyltin (TBT) poses a serious environmental problem. Adsorption by black carbon (BC) may strongly affect its behavior. The adsorption of TBT to well characterized soot and two charcoals with specific surface area in the range of 62-111 m2 g−1 have been investigated with main focus on pH effects. The charcoals but not soot possess acidic functional groups. TBT adsorption reaches maximum at pH 6-7 for charcoals, and at pH > 6 for soot. Soot has between 1.5 and 15 times higher adsorption density (0.09-1.77 μmol m−2) than charcoals, but charcoals show up to 17 times higher sorption affinities than soot. TBT adsorption is successfully described by a new pH-dependent dual Langmuir model considering electrostatic and hydrophobic adsorption, and pH effects on TBT speciation and BC surface charge. It is inferred that strong sorption of the TBTOH species to BC may affect TBT toxicity.  相似文献   

11.
This study qualifies and quantifies the immobilization of Cd, Zn and Co, (used as models of bivalent metal ions due to their relevant toxicity) in filters of synthetic hydroxyapatite (HAP) [Ca5(PO4)3OH]. They were flushed with solutions containing Cd (1 x 10(-5)M), Zn and Co (1 x 10(-4)M) at constant pH (8.6) and ionic strength (0.01 M). The concentration of these metal ions in the outlet was measured by ICP-OEM spectroscopy. The software PHREEQC (version 2.4.2) was used to model sorption process and the potential effect of salinity (KCl), pH, alkalinity (NaHCO3) and hardness (CaCl2) over the efficiency of the treatment. Results showed an excellent retention capacity of HAP for Cd, Zn and Co. Sorption data were successfully described considering a mix model of surface complexation onto phosphate surface groups, ionic exchange in surface calcium sites and the precipitation of ZnO. Co exchange and surface complexation constants (Kex and Kc) were taken from previous experiments, while KexCd=0.32 and KcCd=0.63 were estimated from our modeling results. Predictive values of metal ion sorption show that: (a) an increase in hardness does not play a significant role in the retention capacity of these metals on HAP; (b) an increase in alkalinity promotes the precipitation of MeCO3 which could alter the hydrodynamic of the column; (c) a decrease in pH and an increase in salinity inhibit ZnO precipitation enhancing Zn and Cd adsorption and decreasing Co retention on HAP.  相似文献   

12.
Guibaud G  Tixier N  Bouju A  Baudu M 《Chemosphere》2003,52(10):1701-1710
Activated sludges originated from wastewater treatment plants (WWTPs) play an important role in heavy metal removal from effluents. Extracellular polymers (ECP) form a major part of the activated sludge and are heavily involved in biosorption of heavy metals. The complexation of three heavy metals (Cd, Cu and Pb) with ECP extracted from six activated sludges, originated from different WWTPs, was investigated at pH 7.

ECP in the study were shown to be mainly composed of proteins, humic acids, uronic acids and polysaccharides along with smaller amounts of lipids and nucleic acids. IR spectra confirmed the presence of the functional groups usually found in the ECP and the content in each fraction was determined using colorimetric methods. The determination of surface charge was carried out on each ECP sample and allowed two pKa values characteristic of two distinctive functional groups to be determined. At the pH used in the study, the value of these constants indicates that only one functional group is under protonated form.

A polarographic method was used to determine the complexation parameters (number of binding sites and complexation constant) of ECP solutions towards metals. The following orders were established for the number of binding sites: Cu > Pb  Cd and for the stability of the ECP–metal complex: Cd > Pb  Cu.

A matrix of correlation between the composition of the polymers and the complexation parameters showed that the number of binding sites and the complexation constant were strongly linked to proteins, polysaccharides and humic substances content.  相似文献   


13.
Iminodiacetic acid was immobilized on waste paper by chemical modification in order to develop a new type of adsorption gel for heavy metal ions. Adsorption behavior of the gel was investigated for a number of metal ions, specifically Cu(II), Pb(II), Fe(III), Ni(II), Cd(II), and Co(II) at acidic pH. From batch adsorption tests, the order of selectivity was found to be as follows: Cu(II)  Fe(III) > Pb(II) > Ni(II)  Co(II) > Cd(II). Column tests were carried out for pairs of metal ions to understand the separation and pre-concentration behavior of the gel. It was found that mutual separation of Ni(II) from Co(II) and that of Pb(II) from Cd(II) can be achieved at pH 3. Similarly, selective separation of Cu(II) from Cu(II)–Fe(III) and Cu(II)–Pb(II) mixtures at pH 1.5 and 2, respectively, was observed by using this new adsorption gel. In all cases, almost complete recovery of the adsorbed metal was confirmed by elution tests with HCl.  相似文献   

14.

Purpose

Biochar derived from waste biomass is now gaining much attention for its function as a biosorbent for environmental remediation. The objective of this study was to determine the effectiveness of biochar as a sorbent in removing Cd, Cu, and Zn from aqueous solutions.

Methods

Biochar was produced from dairy manure (DM) at two temperatures: 200°C and 350°C, referred to as DM200 and DM350, respectively. The obtained biochars were then equilibrated with 0–5 mM Cu, Zn or Cd in 0.01 M NaNO3 solution for 10 h. The changes in solution metal concentrations after sorption were evaluated for sorption capacity using isotherm modeling and chemical speciation Visual MINTEQ modeling, while the solid was collected for species characterization using infrared spectroscopy and X-ray elemental dot mapping techniques.

Results

The isotherms of Cu, Zn, and Cd sorption by DM200 were better fitted to Langmuir model, whereas Freundlich model well described the sorption of the three metals by DM350. The DM350 were more effective in sorbing all three metals than DM200 with both biochars had the highest affinity for Cu, followed by Zn and Cd. The maximum sorption capacities of Cu, Zn, and Cd by DM200 were 48.4, 31.6, and 31.9 mg g?1, respectively, and those of Cu, Zn, and Cd by DM350 were 54.4, 32.8, and 51.4 mg g?1, respectively. Sorption of the metals by the biochar was mainly attributed to their precipitation with PO 4 3? or CO 3 2? originating in biochar, with less to the surface complexation through –OH groups or delocalized π electrons. At the initial metal concentration of 5 mM, 80–100 % of Cu, Zn, and Cd retention by DM200 resulted from the precipitation, with less than 20 % from surface adsorption through phenonic –OH complexation. Among the precipitation, 20–30 % of the precipitation occurred as metal phosphate and 70–80 % as metal carbonate. For DM350, 75–100 % of Cu, Zn, and Cd retention were due to the precipitation, with less than 25 % to surface adsorption through complexation of heavy metal by phenonic –OH site or delocalized π electrons. Among the precipitation, only less than 10 % of the precipitation was present as metal phosphate and more than 90 % as metal carbonate.

Conclusions

Results indicated that dairy manure waste can be converted into value-added biochar as a sorbent for sorption of heavy metals, and the mineral components originated in the biochar play an important role in the biochar's high sorption capacity.  相似文献   

15.
Complexation of the antibiotic tetracycline with humic acid   总被引:10,自引:0,他引:10  
The effect of solution chemistry and sorbate-to-sorbent ratio on the interaction of the antibiotic tetracycline with Elliott soil humic acid (ESHA) was investigated using equilibrium dialysis and FITEQL modeling. Tetracycline speciation strongly influenced its sorption to ESHA. Sorption was strongly pH-dependent with a maximum around pH 4.3, and competition with H+ and electrolyte cation (Na+) was evident. The pH-dependent trend was consistent with complexation between the cationic/zwitterionic tetracycline species and deprotonated sites in ESHA (mainly carboxylic functional groups). Modification of ESHA by Ca2+ addition increased tetracycline sorption suggesting that ternary complex formation (ESHA-metal-tetracycline) may be important at higher concentrations of multivalent metal cations. The macroscopic data (pH-envelope and sorption isotherms) were successfully modeled using a discrete logK function with the FITEQL 4.0 chemical equilibrium program indicating that ESHA-tetracycline interaction could be reasonably represented as complex formation of a monoacid with discrete sites in humic acid. Sorption-desorption hysteresis was observed; both sorption and desorption isotherms were well described by the Freundlich equation.  相似文献   

16.
Tahir SS  Rauf N 《Chemosphere》2006,63(11):1842-1848
The ability of bentonite to remove malachite green from aqueous solutions has been studied for different adsorbate concentrations by varying the amount of adsorbent, temperature, pH and shaking time. Maximum adsorption of the dye, i.e. >90% has been achieved in aqueous solutions using 0.05 g of bentonite at a pH of 9. Thermodynamic parameters such as Δ, Δ and Δ were calculated from the slope and intercept of the linear plots of ln KD against 1/T. Analysis of adsorption results obtained at 298, 308, 318 and 328 K showed that the adsorption pattern on bentonite seems to follow the Langmuir, Freundlih and D–R isotherms. The temperature increase reduces adsorption capacity by bentonite, due to the enhancement of the desorption step in the mechanism. The numerical values of sorption free energy (Ea) of 1.00–1.12 kJ mol−1 indicated physical adsorption. The kinetic data indicated an intraparticle diffusion process with sorption being first order. The rate constant k was 0.526 min−1. The concentration of malachite green oxalate was measured before and after adsorption by using UV–Vis spectrophotometer.  相似文献   

17.
Burns PE  Hyun S  Lee LS  Murarka I 《Chemosphere》2006,63(11):1879-1891
Leachate derived from unlined coal ash disposal facilities is a potential anthropogenic source of arsenic to the environment. To establish a theoretical framework for predicting attenuation of arsenic by soils subject to ash landfill leachate, which is typically enriched in calcium and sulfate, the adsorption of As(V) and As(III) was characterized from 1 mM CaSO4 for 18 soils obtained down-gradient from three ash landfill sites and representing a wide range in soil properties. As(V) consistently exhibited an order of magnitude greater adsorption than As(III). As(V) adsorption was best described by coupling pH with 15 s DCB-Fe (R2 = 0.851,  = 0.001), although pH coupled to clay, DCB-Fe, or DCB-Al also generated strong correlations. For As(III), pH coupled to Ox–Fe (R2 = 0.725,  = 0.001) or Ox–Fe/Al (R2 = 0.771,  = 0.001) provided the best predictive relationships. Ca2+ induced increases in As(V) adsorption whereas sulfate suppressed both As(V) and As(III) adsorption. Attenuation of arsenic from ash leachate agreed well with adsorption measured from 1 mM CaSO4 suggesting that the use of 1 mM CaSO4 in laboratory adsorption tests is a reasonable approach for estimating arsenic behavior in soils surrounding ash landfills. We also showed that the impact of leachate-induced changes in soil pH over time may not be significant for As(V) adsorption at pH < 7; however, As(III) adsorption may be impacted over a wider pH range especially if phyllosilicate clays contribute significantly to adsorption. The benefits and limitations of predicting arsenic mobility using linearized adsorption coefficients estimated from nonlinear adsorption isotherms or from the relationships generated in this study are also discussed.  相似文献   

18.
Hashimoto Y  Sato T 《Chemosphere》2007,69(11):1775-1782
The use of a phosphorus amendment in altering Pb to a chemically less mobile phase is a promising strategy based on minimizing ecotoxicological risk and improving time and cost efficiency. This study evaluated crystalline and poorly-crystalline hydroxyapatite sorbents on removal of aqueous Pb in response to reaction time, solution pH, and Pb concentration. Batch experiments were conducted using a commercially-available crystalline hydroxyapatite (HA), and two poorly-crystalline hydroxyapatites synthesized from gypsum waste (CHA) and incinerated ash of poultry waste (MHA). Poorly-crystalline hydroxyapatites had greater capacity for Pb removal from a solution with a wider pH range as compared to a crystalline hydroxyapatite. The maximum sorption capacity of Pb determined by the Langmuir model was 500 mg g−1 for CHA, 277 mg g−1 for MHA and 145 mg g−1 for HA. Removal of aqueous Pb by CHA was not dependent on solution pH, with a 98.8% reduction throughout the solution pH range of 2–9, whereas aqueous Pb removal by HA and MHA was pH-dependent with less removal in the neutral solution pH. Poorly-crystalline hydroxyapatites may provide an effective alternative to existing remediation technologies for Pb-contaminated sites.  相似文献   

19.
20.
The current approach for modelling ion adsorption onto binary (hydr)oxides using homogeneous surface complexation models involves the assumption of either an ideal mixture of the two surfaces (i.e. two surface sites on one surface) or a patchwise surface (i.e. two surfaces with one surface site on each surface). As the physical truth should be between these two limiting cases, a model which assumes a patchwise surface constituted of three patches is proposed. Two patches represent the distinct (hydr)oxides, and the third one a mixture of these distinct (hydr)oxides. Using the diffuse layer model, the three approaches are applied to literature data for Cd adsorption onto binary mixtures of alumina-coated silica at total constant Cd concentration and varying amounts of alumina coatings. For Cd adsorption onto these binary (hydr)oxide systems, the new approach explains the observed potential effects. The proposed model, which contains two additional adjustable parameters in terms of site concentrations or one adjustable parameter in terms of specific surface area, is more successful than the two limiting cases. The new model is then validated by predicting Ca and Zn behaviour on the same binary (hydr)oxide system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号