共查询到18条相似文献,搜索用时 62 毫秒
1.
2.
冬季黄东海颗粒有机碳的时空分布特征 总被引:1,自引:0,他引:1
根据2007年1~2月对黄东海大面调查的资料,分析研究了黄东海颗粒有机碳(POC)的时空分布特征。结果表明,冬季黄东海POC的浓度范围是2.49~1 658.96μg/L,平均浓度为125.88μg/L。在垂直方向上,POC由上而下随着水深的增加浓度逐渐降低,到底层后浓度又升高。在平面分布上,POC整体上呈现西部近岸浓度较高、东部离岸浓度较低的特点;POC的高值区集中在浙江近岸海区,特别是浙江舟山群岛南部近海,POC浓度非常高,这是受陆源输入和沉积物再悬浮的共同作用。在周日变化上,受潮汐作用和海区生物活动的影响,东海陆架中部海域除底层以外,其它各层POC在午后、傍晚、凌晨出现浓度的高峰值,而西南海域,除了底层外,其它各层均表现出全日周期变化。 相似文献
3.
4.
有机碳是陆地水生生态系统碳循环重要组成部分,湿地在维持岩溶碳汇稳定性方面具有十分重要的作用,揭示岩溶湿地水体中的有机碳时空分布特征及来源有助于明晰岩溶流域碳循环过程。本文以贵州威宁草海岩溶湿地为研究对象,对其丰、枯水期湿地水中溶解有机碳(DOC)、颗粒有机碳(POC)含量以及颗粒有机质(POM)碳、氮同位素等指标的测定,分析草海湿地水中POC、DOC浓度时空分布特征,探讨了水体中有机碳的来源。结果表明:草海湿地水体有机碳总体上以DOC为主,丰水期DOC变化范围为4.25~12.58 mg/L,平均值为8.19±1.49 mg/L,枯水期变化范围为4.79~15.93 mg/L,平均值为8.78±3.01 mg/L,丰水期略低于枯水期,DOC来源较为复杂,不同水文期受到外源和内源不同程度的影响;DOC在空间上丰水期呈现西部偏低,东及东南部偏高的分布特征,枯水期呈现南及西南部偏低,北及东北部偏高的分布特征。草海湿地水体丰水期POC变化范围为0.35~3.39 mg/L,平均值为1.13±0.78 mg/L,枯水期变化范围为0.32~1.84 mg/L,平均值为0.79±0.35 mg/L,丰水期高于枯水期;POC在空间上两期都呈现出中西低、中东高的分布特征。丰水期颗粒有机质的δ13C、δ15N值变化范围分别为-30.13‰~-14.80‰和-9.69‰~4.72‰,平均值分别为(-22.54±2.78)‰和(-2.88±2.89)‰,该时期POC以陆源有机质贡献为主;枯水期颗粒有机质的δ13C、δ15N值变化范围分别为-29.13‰~-21.91‰和-0.14‰~9.15‰,平均值分别为(-25.12±2.04)‰和(3.23±1.78)‰,该时期POC主要来源于沉积物。 相似文献
5.
根据2012年2月(冬季)、5月(春季)对长江口2个航次的调查数据,分析了春、冬季长江口颗粒有机碳(POC)的时空分布及影响因素,并探讨其输运特征.结果表明:2012年春季长江口POC的浓度为0.23~31.61mg/L,均值为2.55mg/L;冬季POC的浓度为0.16~5.82mg/L,均值1.42mg/L.春、冬季POC空间分布整体呈现近岸高远岸低、表层低底层高的特征,最高值均出现在口门附近.POC与悬浮物(TSM)呈极显著线性正相关,而与叶绿素a(Chl a)的相关性均较差,表明陆源输入对长江口POC的分布影响很大;POC/Chl a比值测算表明有机碎屑是调查水域POC的主要来源和存在形式,定量估算结果表明浮游植物生物量对春、冬季长江口POC的贡献分别仅1.26%和0.9%,且浮游植物对POC的贡献分别在TSM小于110mg/L和100mg/L时才能表现出来.春、冬季长江口TSM分别在大于117mg/L和335mg/L时,有机碳入海以颗粒态为主,反之则以溶解态为主.长江输送至河口的悬浮物中POC的百分含量(POC%)在春、冬季分别为0.9%和0.4%.春、冬季长江口最大浑浊带对POC的过滤效率分别达89%和69%,大量POC随泥沙在最大浑浊带发生了沉降. 相似文献
6.
于2011年4月至2012年3月每个月调查了东湖总有机碳(TOC)的时空分布,并对TOC和主要环境因子进行相关性分析。结果表明,东湖TOC的浓度范围为0.493~9.962 mg/L,年平均值为2.671 mg/L,夏季(6-8月)、秋季(9-11月)、春季(3-5月)、冬季(12-2月)TOC浓度呈现由大变小的趋势。东湖5个湖区TOC值在空间上存在差异,庙湖和水果湖TOC浓度较高,汤菱湖TOC浓度适中,菱角湖和郭郑湖呈现季节性高浓度的TOC值。相关分析表明,TOC与总磷、溶解氧、电导率显著负相关,与叶绿素a负相关但不显著,与温度显著正相关,与pH相关性不显著。研究发现,东湖TOC主要来源有污水、含油废水的排放,降雨带来地表径流以及生物活动,而TOC浓度的时空分布与降雨、污水排放、施工、旅游活动、生物活动等因素有关。 相似文献
7.
8.
总有机碳是表示水体中有机物质总量的重要指标,能够全面反映水体受有机物污染的状况。在2014-2016年枯水期(11月),对山美水库总碳(TC)、总有机碳(TOC)、氮、磷等环境因子进行分析,研究TOC的时空分布特征,分析TOC与其他环境因子的相关关系。结果表明,山美水库的TC浓度均值9.04~5.70 mg/L、TOC的浓度均值2.05~1.47 mg/L,呈逐年下降趋势;在纵向分布上,TOC分布特征为:入库区>库心>出库区,但在垂向分布上的特征并不明显;水体中TOC与五日生化需氧量、高锰酸盐指数呈极显著正相关(α=0.01),与总氮、水温呈不显著正相关(α=0.05),与溶解氧、总磷和叶绿素a呈不显著负相关(α=0.05)。山美水库TOC时空分布受到外源性有机物、降雨、水库沉积物和浮游动植物的影响。 相似文献
9.
10.
11.
黄、东海溶解态无机砷的形态及其分布 总被引:2,自引:0,他引:2
利用氢化物发生原子荧光光谱法对2000年10月和2001年5月航次黄、东海的无机砷进行了测定.两个航次中黄、东海总溶解态无机砷(TDIA8)含量的变化范围分别为9.-21.和12.~23.nmoL,L,亚砷酸盐(As3 )含量的变化范围分别为0.2-2.4和0.1-9.2 nmoL/L,2000年秋季TDIAs和As3 的含量明显低于2001年春季.长江对黄、东海的影响非常显著,是主要的物质来源之一.黄海溶解态无机砷的平面分布表现为沿岸和东黄海交界处高,黄海中部冷水团区含量较低.东海自长江口向西南琉球群岛沿伸的PN断面中,TDIAs和As3 的分布存在明显的梯度,自长江口向中央海区递减,然后由于受到黑潮水入侵含量又开始升高.东海陆架区As3 的含量、分布受到浮游植物活动的影响,表现出与叶绿素含量存在相关关系. 相似文献
12.
黄海和东海海域溶解氧的分布特征 总被引:12,自引:2,他引:12
根据黄河和东海海区四个季度的调查资料,描述了溶解氧的时空分布和变化规律。黄、东海溶解氧分布的基本特征是北高南低,西高东低,随着水温的变化,不同季节这一差别有所不同。黄、东海溶解氧平均值分别为495.4和420.3μmol/L,测定范围分别为90.2-681.9和133-9-692.8μmol/L。以长江口以东H断面为例,描述了夏季溶解氧的断面分布特征,在20-30m水层出现一氧跃层,30m以下垂直分布比较均匀。文中还深入研究了东海陆架区黑潮水溶解氧的分布特征和变化规律。 相似文献
13.
14.
东海浮游多毛类的时空分布 总被引:3,自引:0,他引:3
根据1997~2000年东海23°30′~33°00′N、118°30′~128°00′E海域4个季节海洋调查资料,探讨了东海浮游多毛类数量变化、相应的动力学过程及与渔场的关系。结果表明:浮游多毛类秋季平均丰度为23.68×10-2/m3,夏季8.59×10-2/m3,冬季5.80×10-2/m3,春季最低(1.20×10-2/m3);温度在多毛类丰度的季节变化中起主要作用,盐度次之。除了秋季,其他季节多毛类丰度平面分布较为均匀。多毛类的数量波动,与东海暖流势力消长和沿岸水有密切的联系,也同暖流势力从夏季到秋季维持一段时间有密切关系。 相似文献
15.
结合大面调查,典型断面剖析及关键站位连续观测结果,研究了黄海和东海海域溶解铋的含量水平,时空分布特征及与生态环境的耦合关系,探讨其主要来源和影响因素.结果表明,表层海水溶解铋含量在0~0.029μg·L-1之间,平均值为0.008μg·L-1;底层海水浓度稍高,介于0.001~0.189μg·L-1之间,平均值为0.016μg·L-1.水平方向上,溶解铋低值分布与盐度所示长江冲淡水双支扩散特征吻合,表明其可示踪长江冲淡水路径;高值出现在黄海暖流和苏北沿岸流途经之处及长江冲淡水与沿浙闽沿岸水交汇之处,表明其分布受控于海流系统循环.垂直方向上,水体对流和涡动混合使近岸海水均匀混合,陆架区强潮混合锋面将近岸垂向混合区和离岸层化海水区分隔,阻挡了溶解铋向外输运,使锋区内溶解铋含量明显高于外海.周日内,溶解铋变化主要与潮汐、再悬浮作用和温盐跃层等海域特定水动力条件密切相关,与温度,盐度等环境因素波动尚未呈现明显关系.溶解铋与悬浮颗粒物显著正相关,表明其易从固相释放至水体,并确定由颗粒态转化为溶解态的最佳温度(22~27℃)、盐度(28~31)和pH(7.9~8.1). 相似文献
16.
于2011年12月—2012年1月对我国东海、黄海表层及不同深度海水中c(DMSOd)(DMSOd为溶解态二甲亚砜)和c(DMSOp)(DMSOp为颗粒态二甲亚砜)的分布进行了研究,并探讨了其来源及影响因素. 结果表明:表层海水中c(DMSOd)和c(DMSOp)分别为(10.10±7.54)和(8.72±7.80) nmol/L,其水平分布明显受调查海域中浮游植物组成和丰度的影响;垂直分布上,c(DMSOd)和c(DMSOp)的最大值均出现在浅水层(3~20 m). 相关分析表明,c(DMSOd)与c(DMS)(DMS为二甲基硫)之间没有相关性,但与c(DMSOp)显著相关(R=0.442, n=41, P<0.006),说明冬季表层海水中DMSOd主要来源于浮游植物细胞内DMSO的释放,而不是DMS的氧化(光化学氧化和微生物氧化). 另外,c(DMSOp)/ρ(Chla)与盐度呈正相关(R=0.532, n=46, P<0.004),说明盐度的改变会影响浮游植物组成的变化,进而影响c(DMSOp). 相似文献
17.