首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
固定化细胞单级生物脱氮研究   总被引:18,自引:1,他引:17       下载免费PDF全文
利用硝化菌和反硝化菌混合固定的方法,研究了好氧条件下同时进行硝化和反硝化作用的单级生物脱氮技术.结果表明,反硝化菌被固定后,在好氧条件下仍具有反硝化功能.硝化菌和反硝化菌被混合固定后,可以在好氧条件下同时进行硝化和反硝化作用,并且其氨氧化速率约为硝化菌单独固定时的1.4倍.硝化菌和反硝化菌混合固定构成的单级生物脱氮系统其脱氮速率是分别固定构成的单级生物脱氮系统的2.6倍.  相似文献   

2.
对缺氧生物吸附活性污泥法(ABSAS)生物脱氮系统中的硝化作用进行了分析和讨论,研究结果表明,有机物氧化优先于硝化作用,有机物对硝化作用的影响主要表现在异养氧化菌对硝化菌的竞争性抑制。但生物脱氮工艺中的初级缺氧反应对硝化作用有一定的促进作用,而且初级缺氧段中的反硝化作用愈强,则由缺氧段进入好氧段后,硝化作用进行的愈强,此特性可用于生物脱氮工艺的设计中,以提高硝化作用能力。   相似文献   

3.
对缺氧生物吸附活性污泥法(ABSAS)生物脱氮系统中的硝化作用进行了分析和讨论,研究结果表明,有机物氧化优先于硝化作用,有机物对硝化作用的影响主要表现在异养氧化菌对硝化菌的竞争性抑制。但生物脱氮工艺中的初级缺氧反应对硝化作用有一定的促进作用,而且初级缺氧段中的反硝化作用愈强,则由缺氧段进入好氧段后,硝化作用进行的愈强,此特性可用于生物脱氮工艺的设计中,以提高硝化作用能力。  相似文献   

4.
取序批式活性污泥反应器(SBR)中未经驯化的污泥通过间歇实验测定含盐条件下的微生物活性,对比分析盐度对硝化菌和反硝化菌的影响.活性测定包括比氨氧化速率(SAOR:0~30gNaCl/L)、比亚硝酸盐氧化速率(SNIOR:0-15gNaCl/L)、比亚硝酸盐反硝化速率(SNIDR:0-35gNaCl/L)、比硝酸盐反硝化速率(SNADR:0-40gNaCl/L)、内源比亚硝酸盐反硝化速率(E-SNIDR:0-25gNaCl/L),内源比硝酸盐反硝化速率(E-SNADR:0-5gNaCl/L)、比耗氧速率(SOUR:0-30gNaCl/L)和脱氢酶活性(DHA:0-80gNaCl/L),结果表明,盐度为5gNaCl/L时,能够提高SNIDR和SOUR;15gNaCl/L时,SAOR和SNIOR的活性系数(AC)分别下降至46%和1%,亚硝酸盐氧化菌比氨氧化菌更容易受到盐度的影响;当盐度高于10gNaCl/L时(含10gNaCl/L),SNIDR和SNADR的AC比SAOR及SNIOR高,反硝化菌比硝化菌对盐度的耐受性更强;NaCl浓度高达80g/L时仍能检测出DHA,说明微生物仍具有催化氧化还原反应的能力.  相似文献   

5.
三氯生(TCS)对活性污泥中氮循环和微生物群落的长期影响尚不清楚.在长期运行185 d的序批式反应器(SBR)进水中添加100 g·L-1的TCS,探讨了TCS在活性污泥中的转化特性及其对活性污泥的生长、硝化反硝化性能及关键氮代谢功能基因和微生物群落结构的影响.添加TCS的反应器中硝酸盐浓度为3.80~9.11 mg·L-1,略低于不添加TCS的空白组(6.66~9.72 mg·L-1),说明其硝化作用被减弱.随着驯化时间的延长,硝化作用逐渐恢复. TCS在活性污泥迁移转化过程中总共检测出12种代谢中间产物,推导出4种迁移转化路径.添加TCS后,对TCS有潜在降解效能的细菌的相对丰度明显增加,如:Flavobacteriales和Myxococcales目,分别为2.95%~9.07%(第0~185 d)和2.01%~4.53%(第0~90 d).与硝化作用有关的菌属,如:Nitrosovibrio、Nitrosomonas(氨氧化菌,AOB)和Nitrospira(亚硝酸盐氧化菌,NOB)的相对丰度急剧减少,分别为0....  相似文献   

6.
丙酮酸盐对硝化微生物复合培养过程的影响   总被引:1,自引:0,他引:1  
《环境科学与技术》2021,44(6):58-66
硝化微生物制剂可以通过氨氧化和亚硝酸盐氧化过程将氨转化为亚硝酸盐,进而转化为硝酸盐,在水产养殖系统水体净化中有重要的应用价值。研究理化因子对其培养过程中氨氧化微生物和亚硝酸盐氧化菌菌群的影响,有助于提高菌剂活性和缩短培养周期。该文分析了丙酮酸盐对海水型和淡水型硝化微生物制剂的氨氧化和亚硝酸盐氧化过程的影响。结果表明,丙酮酸钠在0~1.0 g/L时明显提高海水型硝化微生物制剂的氨氧化活性,在1.5~2.5 g/L时则表现为抑制作用,1.0 g/L和2.5 g/L时48 h氨氮去除率分别是对照组的149%和50%;丙酮酸钠在0~1.5 g/L时明显提高淡水型硝化微生物制剂的氨氧化活性,2.0~2.5 g/L时表现为抑制作用,1.5 g/L和2.5 g/L时48 h氨氮去除率分别是对照组的216%和60%;丙酮酸钠在0~2.5 g/L时对海水型和淡水型硝化微生物制剂的亚硝酸盐氧化活性均表现为抑制作用且随浓度增加而增强。  相似文献   

7.
于濛雨  刘毅  田玉斌  石欢  徐富  杨宏 《环境科学》2017,38(7):2925-2930
为了提高包埋氨氧化细菌短程硝化的效率,富集培养氨氧化细菌(AOB)并固定化.富集培养阶段采用连续式运行方式,以游离氨(FA)为抑制亚硝酸盐氧化菌(NOB)生长的手段,并通过定时排泥方法使NOB逐渐从系统中淘洗出去.富集培养结束后以聚乙烯醇(PVA)为包埋材料,对筛选培养的氨氧化细菌进行固定化,反应器包埋填充率为8%.采用连续式运行方式,通过逐步增加氨氮负荷的方法提高氨氧化速率.最终在富集培养系统中实现了污泥比氨氧化速率(以NH_4~+-N/VSS计)2.028 g·(g·d)~(-1)的高表达和亚硝酸盐氮90%以上的高积累.通过对污泥富集培养前后细菌群落组成的高通量测序分析,结果表明,培养前原污泥多样性较大,具有硝化作用的Nitrosomonas仅有0.24%,Nitrospira有2.7%.富集培养后的活性污泥多样性明显变小,优势菌种为Nitrosomonas(18%),而Nitrospira仅剩0.02%;包埋固定化后,系统迅速实现了短程硝化,最终短程硝化的速率达到了50 mg·(L·h)~(-1),亚硝酸盐氮积累率稳定在90%以上.  相似文献   

8.
罗晴  甄毓  彭宗波  贺惠 《环境科学》2020,41(8):3787-3796
氨氧化过程是硝化作用的限速步骤,氨氧化细菌(ammonia-oxidizing bacteria, AOB)和氨氧化古菌(ammonia-oxidizing archaea, AOA)是氨氧化作用的主要驱动者,其分布特征及其对硝化作用的相对贡献是氮素循环的研究热点.采用实时荧光定量PCR技术研究了三亚河红树林表层沉积物中好氧氨氧化微生物的分布特征,并通过测定潜在硝化速率分析了AOB和AOA对硝化作用的相对贡献率.结果表明,多数采样点中,AOA amoA基因丰度高于AOB amoA基因丰度; AOB丰度冬季较高,AOA丰度夏季较高,且冬季AOA和AOB丰度的比值较低;溶解氧、pH、总有机碳和硝态氮对AOB和AOA丰度影响较大; AOB和AOA在夏季的潜在硝化速率均高于冬季,冬季AOA对硝化作用的相对贡献率较高而夏季则是AOB在硝化作用中占主导地位,AOB和AOA的潜在硝化速率与amoA基因丰度均不存在显著相关性.  相似文献   

9.
有机碳源条件下厌氧氨氧化ASBR反应器中的主要反应   总被引:10,自引:3,他引:7  
朱静平  胡勇有  闫佳 《环境科学》2006,27(7):1353-1357
采用5个已稳定运行在厌氧氨氧化状态的ASBR反应器,通过COD、氨氮、亚硝酸盐氮、硝酸盐氮、pH等指标的监测和好氧硝化菌、异养反硝化菌的测定,研究了不同有机碳源条件下反应器中发生的主要反应.结果表明,反应器中存在好氧硝化菌、异养反硝化菌和厌氧氨氧化菌.在COD、氨氮、亚硝酸盐氮等存在条件下,可发生好氧硝化、厌氧氨氧化和异养反硝化反应,先是好氧硝化反应、厌氧氨氧化反应和异养反硝化反应共存,其后依次是异养反硝化反应和厌氧氨氧化反应占主导地位.当C/NO2--N在1.7~1.9范围内时,C/NH4+-N为1.7的1号反应器具有最佳的厌氧氨氧化效果,反应结束时其COD去除率、NH4+-N去除率、NO2--N去除率分别为100%、81.7%和74.4%.  相似文献   

10.
本研究采用具有氨氮富集分离特性的阳离子交换膜-超滤(CEM-UF)组合膜与硝化/反硝化结合处理低C/N废水,考察该系统不同流量比下低C/N废水的硝化、反硝化脱氮特性,并通过对硝化、反硝化活性污泥进行16Sr DNA高通量测序,分析功能微生物群落结构特征.结果表明,系统进水TN为60 mg·L-1,COD/TN为2.65下,各流量比下硝化均有较好效果,平均氨氮去除率为98.7%,流量比值由1∶2上升到1∶6过程中,反硝化m(COD)/m(NO-3-N)随之升高,1∶6时平均硝氮去除率达到最高,为86.28%,系统总氮去除率由22.56%上升到46.8%.Illumina高通量测序结果表明,硝化污泥中可以固氮的Proteobacteria菌门占30.9%,重要的亚硝酸盐氧化菌Nitrospirae菌门占3.06%,属水平上检测到氨氧化菌(AOB)Nitrosomonas和Nitrosospira,亚硝酸盐氧化菌(NOB)Nitrospira和Nitrobacter,AOB与NOB菌比例较高,与硝化反应器中较好的硝化效果相一致.反硝化污泥中Proteobacteria菌门占主导地位(53.13%),其次是Bacteroidetes菌门(10.93%),在属的水平上检测到Dechloromonas、Thauera、Castellaniella、Alicycliphilus、Azospira、Comamonas、Caldilinea和Saccharibacteria多种具有反硝化脱氮作用的相关菌属,反硝化菌所占比例为25.91%,反硝化污泥中具有反硝化功能的微生物丰富,反硝化效果良好.  相似文献   

11.
利用SBR(序批式反应器)研究了不同ρ(NaCl)、曝气时间、ρ(CODCr)、进水ρ(NH4+-N)对AGS(好氧颗粒污泥)短程硝化反硝化的影响. 结果表明,在pH、温度和ρ(DO)为8.0、30 ℃和3 mg/L条件下,以及ρ(NaCl)、曝气时间、ρ(CODCr)和ρ(NH4+-N)为20 g/L、8 h、600 mg/L和70 mg/L时,ηA(NH4+-N去除率)和NAR(NO2--N积累率)达到最佳. 当进水ρ(NaCl)为10 g/L时,NOB(亚硝酸盐氧化菌)被完全抑制,AOB(氨氧化菌)能够保持正常活性. ρ(CODCr)较高时能够促进NAR的提高. 经过116 d的培养,AGS短程硝化反硝化的耐盐极限为50 g/L,此时ηA小于50%,AOB被严重抑制,AGS丧失硝化能力. AGS的同步硝化反硝化作用明显,SND(同步硝化反硝化率)平均值为24.2%,SNDV(同步硝化反硝化比速率)平均值为0.63 h-1,低ρ(DO)比高ρ(DO)下的SND同步硝化反硝化作用更为明显.   相似文献   

12.
何势  顾超超  魏欣  黄圣琳  刘振鸿  薛罡  高品 《环境科学》2016,37(4):1485-1491
以曝气生物滤池(BAF)作为研究对象,考察了低浓度环丙沙星(CIP)对其生物膜微生物硝化过程及其功能微生物的作用影响,采用荧光定量PCR方法定量检测分析了4种环丙沙星抗性基因(CIP-ARGs)在硝化作用过程中的丰度变化,并探讨了其与硝化微生物之间的相关关系.结果表明,CIP对生物膜氨氧化阶段影响较小,但对亚硝酸盐氧化阶段具有一定抑制作用.通过对氨氧化细菌(AOB)和亚硝酸盐氧化细菌(NOB,包括Nitrobacter和Nitrospira)的定量检测结果分析可知,CIP对生物膜亚硝酸盐氧化转化过程的抑制主要是通过对Nitrobacter和Nitrospira的抑制实现的.此外,CIP的加入对生物膜中aac和qepA抗性基因的变化影响较小,但对parC和oqxB的影响较大.通过相关性分析可知,Nitrobacter与parC之间具有显著相关性,Nitrospira与oqxB之间同样具有显著相关性,推测生物膜中不同硝化微生物的遗传因子中可能携带有CIP-ARGs.  相似文献   

13.
污泥水富集硝化菌的群落结构及动力学参数研究   总被引:1,自引:1,他引:0  
于莉芳  陈青青  杨晋  彭党聪 《环境科学》2009,30(7):2035-2039
采用序批式反应器处理富含高氨氮的污泥水并培养富含硝化菌的活性污泥,利用荧光原位杂交技术解析硝化菌的群落结构,并分别测定了氨氧化菌、亚硝酸盐氧化菌的基质半饱和常数、温度修正系数.结果表明,污泥中氨氧化菌的含量(AOB/DAPI)为15.7%±3.7%,优势菌属为Nitrosomonas europaea-Nitrosococcus mobilis;亚硝酸氧化菌的含量(NOB/DAPI)为12.9%±3.2%,优势菌属为Nitrobacter spp..氨氧化速率在10~40℃之间的温度修正系数τN为1.092,亚硝酸盐氧化速率在15~30℃之间的温度修正系数τN为1.061,氨氧化菌(以NH+4-N计)和亚硝酸盐氧化菌(以NO2-N计)在20℃的基质半饱和常数KN分别为(1.60±0.29) mg/L、(2.78±0.30) mg/L.  相似文献   

14.
采用Miseq高通量测序技术研究氨氮进水负荷对ABR-MBR组合工艺MBR池中微生物种群的丰度及优势菌群的影响.结果表明,温度为28~32℃、pH值为7.1~7.4、DO为0.5~1mg/L并逐步提高氨氮进水负荷的条件下,可以使氨氧化菌(AOB)大量富集,并抑制亚硝酸盐氧化菌(NOB)的活性,从而实现短程硝化的稳定运行.在氨氮进水负荷为0.94kg/(m3·d)时,平均亚硝酸盐积累率达到60%以上,氨氮去除率稳定在90%.在系统运行过程中,变形菌门是系统中的优势菌门,Nitrosomonas的相对丰度由4.97%升至22.56%,硝化螺菌属的相对丰度为0.06%~2.12%.因此,ABR-MBR组合工艺短程硝化过程中亚硝酸盐积累率与AOB的活性、相对丰度密切相关,即AOB的大量富集可以有效实现短程硝化,而NOB的小幅度增长不会影响短程硝化的实现.系统中微生物种群的多样性和功能微生物的结构稳定性保证了ABR-MBR工艺具有稳定和较好的处理效果.  相似文献   

15.
在缺氧环境下,应用附着生长反应器,通过降低水力停留时间增加进水底物负荷,对废水中硫化物、硝酸盐、亚硝酸盐和有机物等污染物质的降解情况进行了研究.结果表明,进水硫化物、硝酸盐氮、亚硝酸盐氮和有机物浓度分别为200、52.5、20和20 mg/L,去除率分别达到99%、99%、95.5%和80%,实现了兼养脱硫反硝化氮、硫、碳的同步去除.随着底物负荷的增大,硝酸盐和亚硝酸盐对冲击负荷的适应性逐渐变小;硝酸盐降解对进水负荷冲击的适应性强于亚硝酸盐;与增加进水负荷对反应器带来的冲击相比,缺氧环境的破坏对硝酸盐和亚硝酸盐的降解影响大;去除硫化物的60%被生物氧化为单质硫;缺氧反应器中发生了自养反硝化和异养反硝化作用,自养反硝化占主导地位,异养反硝化的发生力度为21.76%.  相似文献   

16.
缺氧附着生长反应器同步脱氮除硫除碳运行效果探讨   总被引:1,自引:1,他引:0  
李巍  赵庆良  刘颢 《环境科学》2008,29(7):1855-1859
在缺氧环境下,应用附着生长反应器,通过降低水力停留时间增加进水底物负荷,对废水中硫化物,硝酸盐、亚硝酸盐和有机物等污染物质的降解情况进行了研究.结果表明,进水硫化物、硝酸盐氮、亚硝酸盐氮和有机物浓度分别为200、52.5、20和20mg/L,去除率分别达到99%、99%、95.5%和80%,实现了兼养脱硫反硝化氮、硫、碳的同步去除.随着底物负荷的增大,硝酸盐和亚硝酸盐对冲击负荷的适应性逐渐变小;硝酸盐降解对进水负荷冲击的适应性强于亚硝酸盐;与增加进水负荷对反应器带来的冲击相比,缺氧环境的破坏对硝酸盐和亚硝酸盐的降解影响大;去除硫化物的60%被生物氧化为单质硫;缺氧反应器中发生了自养反硝化和异养反硝化作用,自养反硝化占主导地位,异养反硝化的发生力度为21.76%.  相似文献   

17.
生物紊动床内短程硝化过程研究   总被引:1,自引:1,他引:0  
采用生物紊动床反应器(BTBR),分别研究了氨氮浓度、溶解氧浓度和有机物浓度对硝化过程的影响,以及不同条件下短程硝化的实现方法及特点。试验结果表明,通过高浓度游离氨对硝化菌选择性抑制所获得的亚硝酸盐积累是不稳定的;在0.5 ̄1.0mg/L溶解氧下,DO成为增殖的限制基质,可实现亚硝酸盐稳定的积累;当进水NH+4-N为300mg/L时,出水硝态氮中亚硝酸盐氮比例稳定在80%以上。在DO浓度为2 ̄3mg/L的条件下,有机物浓度为200m gTOC/L时对硝化作用影响不大;DO浓度为0.5 ̄1.0mg/L、TOC为100mg/L时硝化系统即受到破坏。  相似文献   

18.
处理低污染水的复合人工湿地脱氮过程   总被引:7,自引:0,他引:7  
为了解人工湿地处理低污染水的脱氮过程,以洱海流域邓北桥湿地为例,采用水质分析、细菌数量分析与硝化/反硝化强度分析相结合的方法,研究了复合型人工湿地处理低污染河水过程中的氮转化过程及污染物去除效果. 结果表明:在氧化塘-表流湿地-潜流湿地-表流湿地的复合型人工湿地中,ρ(NH3-N)和ρ(TN)呈逐级降低的趋势,NH3-N和TN的平均去除率分别可达53.24%和48.21%. 氧化塘和表流湿地的硝化强度显著高于潜流湿地,二级表流湿地中硝酸菌数量和表层硝化强度均为各工艺单元中最高的,分别为93.00×105g-1和8.42×102mg/(m3·h);潜流湿地中ρ(DO)较低,其反硝化作用强度为各单元最高的,其中表层反硝化强度为32.70×102mg/(m3·h),深层反硝化强度为32.09×102mg/(m3·h). 该复合型人工湿地中反硝化的主要单元为潜流湿地.   相似文献   

19.
硝化动力学研究进展   总被引:1,自引:0,他引:1  
硝化反应包括NH4^+氧化为NO2^-和NO2^-氧化为NO3^-两步,其中NH4^+到NO2^-的氧化不是唯一的限制步骤;已发现叠氮化钠(NaN,)能有效的抑制亚硝酸盐氧化;丙烯基硫脲(ATU)抑制氨氧化反应。用呼吸仪的综合参数——细菌最大氧吸收速率(OUUmax/X)来描绘好氧氨氧化菌和亚硝酸盐氧化菌的比生长速率具有准确性和唯一性,并得到了较多学者一致认可。浓度较高的氨氮和亚硝态氮分别抑制氨氧化反应和亚硝酸盐氧化反应,用抑制性动力学方程来分别描述高浓度氨氮浓度和亚硝态氮浓度对氨氧化反应和亚硝酸盐氧化反应的影响;对比氨氧化动力学和亚硝酸盐氧化动力学参数值与一步硝化动力学参数值可以看出,参数值差异较大;因此,要准确地描述NH4^+氧化为NO3^-的动力学模型,必须将氨氧化与亚硝酸盐氧化反应独立出来,将NH4^+氧化为NO2^-和NO3^-氧化为NO3^-这两步综合在一个反应动力学公式里是错误的。  相似文献   

20.
DO/NH4+-N实现短程硝化过程中生物膜特性   总被引:1,自引:1,他引:0  
实验探究了短程硝化实现过程中生物膜特性的变化情况.采用比值控制(DO/NH+4-N)实现短程硝化,分别取亚硝酸盐积累率为10.27%、52.12%和93.54%时生物膜样品,利用荧光原位杂交(FISH)和激光共聚焦显微镜(CLSM)联用技术观察总菌、氨氧化菌(AOB)和亚硝酸盐氧化菌(NOB)数量和空间结构的变化,通过三维激发发射矩阵(EEM)观察胞外聚合物分泌和成分变化情况.比值控制成功富集AOB,并可在NOB未洗脱完全的情况下实现短程硝化.异养菌和硝化菌共存于生物膜内上,异养细菌在外层,硝化菌分布在生物膜表面6~25μm.短程硝化实现的过程中,AOB/NOB值逐步增长,稳定运行时期比值高达15.56.反应器运行过程中,EPS和微生物菌群变化息息相关.微生物活性下降,EPS分泌减少;短程硝化稳定运行时期,NOB等不耐高亚硝酸的菌群衰亡,芳香性蛋白质荧光强度降低.但三维荧光光谱显示,短程硝化实现过程中EPS化学成分变化不明显.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号