首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cross-ecosystem movements of material and energy, particularly reciprocal resource fluxes across the freshwater-land interface, have received major attention. Freshwater ecosystems may receive higher amounts of subsidies (i.e., resources produced outside the focal ecosystem) than terrestrial ecosystems, potentially leading to increased secondary production in freshwaters. Here we used a meta-analytic approach to quantify the magnitude and direction of subsidy inputs across the freshwater-land interface and to determine subsequent responses in recipient animals. Terrestrial and freshwater ecosystems differed in the magnitude of subsidies they received, with aquatic ecosystems generally receiving higher subsidies than terrestrial ecosystems. Surprisingly, and despite the large discrepancy in magnitude, the contribution of these subsidies to animal carbon inferred from stable isotope composition did not differ between freshwater and terrestrial ecosystems, likely due to the differences in subsidy quality. The contribution of allochthonous subsidies was highest to primary consumers and predators, suggesting that bottom-up and top-down effects may be affected considerably by the input of allochthonous resources. Future work on subsidies will profit from a food web dynamic approach including indirect trophic interactions and propagating effects.  相似文献   

2.
Periodical cicadas emerge from below ground every 13 or 17 years in North American forests, with individual broods representing the synchronous movement of trillions of individuals across geographic regions. Due to predator satiation, most individuals escape predation, die, and become deposited as detritus. Some of this emergent biomass falls into woodland aquatic habitats (small streams and woodland ponds) and serves as a high-quality allochthonous detritus pulse in early summer. We present results of a two-part study in which we (1) quantified deposition of Brood X periodical cicada detritus into woodland ponds and low-order streams in southwestern Ohio, and (2) conducted an outdoor mesocosm experiment in which we examined the effects of deposition of different amounts of cicada detritus on food webs characteristic of forest ponds. In the mesocosm experiment, we manipulated the amount of cicada detritus input to examine if food web dynamics and stability varied with the magnitude of this allochthonous resource subsidy, as predicted by numerous theoretical models. Deposition data indicate that, during years of periodical cicada emergence, cicada carcasses can represent a sizable pulse of allochthonous detritus to forest aquatic ecosystems. In the mesocosm experiment, cicada carcass deposition rapidly affected food webs, leading to substantial increases in nutrients and organism biomass, with the magnitude of increase dependent upon the amount of cicada detritus. Deposition of cicada detritus impacted the stability of organism functional groups and populations by affecting the temporal variability and biomass minima. However, contrary to theory, stability measures were not consistently related to the size of the allochthonous pulse (i.e., the amount of cicada detritus). Our study underscores the need for theory to further explore consequences of pulsed allochthonous subsidies for food web stability.  相似文献   

3.
Hoekman D  Dreyer J  Jackson RD  Townsend PA  Gratton C 《Ecology》2011,92(11):2063-2072
Aquatic insects are a common and important subsidy to terrestrial systems, yet little is known about how these inputs affect terrestrial food webs, especially around lakes. Myvatn, a lake in northern Iceland, has extraordinary midge (Chironomidae) emergences that result in large inputs of biomass and nutrients to terrestrial arthropod communities. We simulated this lake-to-land resource pulse by collecting midges from Myvatn and spreading their dried carcasses on 1-m2 plots at a nearby site that receives very little midge deposition. We hypothesized a positive bottom-up response of detritivores that would be transmitted to their predators and would persist into the following year. We sampled the arthropod community once per month for two consecutive summers. Midge addition resulted in significantly different arthropod communities and increased densities of some taxa in both years. Detritivores, specifically Diptera larvae, Collembola, and Acari increased in midge-addition plots, and so did some predators and parasitoids. Arthropod densities were still elevated a year after midge addition, and two years of midge addition further increased the density of higher-order consumers (e.g., Coleoptera and Hymenoptera). Midge addition increased arthropod biomass by 68% after one year and 108% after two years. By manipulating the nutrient pulse delivered by midges we were able to elucidate food web consequences of midge deposition and spatial and temporal dynamics that are difficult to determine based on comparative approaches alone. Resources cross ecosystem boundaries and are assimilated over time because of life-history strategies that connect aquatic and terrestrial food webs and these systems cannot be fully understood in isolation from each other.  相似文献   

4.
Coastal zones, which connect terrestrial and aquatic ecosystems, are among the most resource-rich regions globally and home to nearly 40% of the global human population. Because human land-based activities can alter natural processes in ways that affect adjacent aquatic ecosystems, land-sea interactions are increasingly recognized as critical to coastal conservation planning and governance. However, the complex socioeconomic dynamics inherent in coastal and marine socioecological systems (SESs) have received little consideration. Drawing on knowledge generalized from long-term studies in Caribbean Nicaragua, we devised a conceptual framework that clarifies the multiple ways socioeconomically driven behavior can link the land and sea. In addition to other ecosystem effects, the framework illustrates how feedbacks resulting from changes to aquatic resources can influence terrestrial resource management decisions and land uses. We assessed the framework by applying it to empirical studies from a variety of coastal SESs. The results suggest its broad applicability and highlighted the paucity of research that explicitly investigates the effects of human behavior on coastal SES dynamics. We encourage researchers and policy makers to consider direct, indirect, and bidirectional cross-ecosystem links that move beyond traditionally recognized land-to-sea processes.  相似文献   

5.
As invasion rates of exotic species increase, an ecosystem level understanding of their impacts is imperative for predicting future spread and consequences. We have previously shown that network analyses are powerful tools for understanding the effects of exotic species perturbation on ecosystems. We now use the network analysis approach to compare how the same perturbation affects another ecosystem of similar trophic status. We compared food web characteristics of the Bay of Quinte, Lake Ontario (Canada), to previous research on Oneida Lake, New York (USA) before and after zebra mussel (Dreissena polymorpha) invasion. We used ecological network analysis (ENA) to rigorously quantify ecosystem function through an analysis of direct and indirect food web transfers. We used a social network analysis method, cohesion analysis (CA), to assess ecosystem structure by organizing food web members into subgroups of strongly interacting predators and prey. Together, ENA and CA allowed us to understand how food web structure and function respond simultaneously to perturbation. In general, zebra mussel effects on the Bay of Quinte, when compared to Oneida Lake, were similar in direction, but greater in magnitude. Both systems underwent functional changes involving focused flow through a small number of taxa and increased use of benthic sources of production; additionally, both systems structurally changed with subgroup membership changing considerably (33% in Oneida Lake) or being disrupted entirely (in the Bay of Quinte). However, the response of total ecosystem activity (as measured by carbon flow) differed between both systems, with increasing activity in the Bay of Quinte, and decreasing activity in Oneida Lake. Thus, these analyses revealed parallel effects of zebra mussel invasion in ecosystems of similar trophic status, yet they also suggested that important differences may exist. As exotic species continue to disrupt the structure and function of our native ecosystems, food web network analyses will be useful for understanding their far-reaching effects.  相似文献   

6.
Reliably predicting the consequences of short- or long-term changes in the environment is important as anthropogenic pressures are increasingly stressing the world's ecosystems. One approach is to examine the manner in which biota respond to changes in the environment ("response traits") and how biota, in turn, affect ecosystem processes ("effect traits"). I compared the response and effect traits of four submersed aquatic macrophytes to understand how water level management may affect wetland plant populations and ecosystem processes. I measured resource properties (nutrients in sediment and water), non-resource properties (pH, alkalinity, sediment temperature, oxygen production), and biotic properties (periphyton biomass) in replicated outdoor monocultures of Stuckenia pectinata, Potamogeton nodosus, P. crispus, and Zannichellia palustris. After seven weeks, three of eight replicates of each species treatment were subjected to a temporary water draw-down that desiccated aboveground plant parts. The four species differed in their effects on ecosystem properties associated with nutrient uptake and photosynthetic activity. Shoot growth rate was negatively correlated with light transmittance to the sediment surface whereas root growth rate and root:shoot ratio were correlated with a species' ability to deplete nutrients in sediment interstitial water. Occupation of space in the water column was correlated with water alkalinity and pH and with sediment temperature. Root growth rate was related simultaneously to species effects on sediment nutrient dynamics and recovery of ecosystem properties after water draw-down. This suggests that this morphological trait may be used to predict the effects of environmental change on ecosystem functioning within the context of water level management. Expanding these analyses to more species, different environmental stressors, and across aquatic and terrestrial ecosystems should enhance predictions of the complex effects of global environmental change on ecosystem functioning.  相似文献   

7.
Marcarelli AM  Baxter CV  Mineau MM  Hall RO 《Ecology》2011,92(6):1215-1225
Although the study of resource subsidies has emerged as a key topic in both ecosystem and food web ecology, the dialogue over their role has been limited by separate approaches that emphasize either subsidy quantity or quality. Considering quantity and quality together may provide a simple, but previously unexplored, framework for identifying the mechanisms that govern the importance of subsidies for recipient food webs and ecosystems. Using a literature review of > 90 studies of open-water metabolism in lakes and streams, we show that high-flux, low-quality subsidies can drive freshwater ecosystem dynamics. Because most of these ecosystems are net heterotrophic, allochthonous inputs must subsidize respiration. Second, using a literature review of subsidy quality and use, we demonstrate that animals select for high-quality food resources in proportions greater than would be predicted based on food quantity, and regardless of allochthonous or autochthonous origin. This finding suggests that low-flux, high-quality subsidies may be selected for by animals, and in turn may disproportionately affect food web and ecosystem processes (e.g., animal production, trophic energy or organic matter flow, trophic cascades). We then synthesize and review approaches that evaluate the role of subsidies and explicitly merge ecosystem and food web perspectives by placing food web measurements in the context of ecosystem budgets, by comparing trophic and ecosystem production and fluxes, and by constructing flow food webs. These tools can and should be used to address future questions about subsidies, such as the relative importance of subsidies to different trophic levels and how subsidies may maintain or disrupt ecosystem stability and food web interactions.  相似文献   

8.
Yang LH 《Ecology》2008,89(6):1497-1502
Resource pulses can have both direct bottom-up and indirect top-down effects on their consumers, but comparatively few studies have investigated the top-down effects of naturally occurring resource pulses on plants. This study describes two years of field experiments conducted to determine the indirect effects of 17-year periodical cicadas (Magicicada spp.) on herbivory in American bellflowers (Campanulastrum americanum). In 2004, the area of damaged leaves on cicada-supplemented plants was 78% greater than the area of damaged leaves on control plants. In 2005, cicada-supplemented plants were more likely to experience herbivory by mammalian herbivores than control plants. When large herbivores were excluded, similar patterns of leaf herbivory were observed, but these differences were not statistically significant. These results suggest that the pulsed input of dead periodical cicada bodies increased rates of herbivory on bellflowers, and that this effect was largely mediated by the selective foraging of large mammalian herbivores. More broadly, this study suggests that pulses of limiting resources can have both positive direct effects on plants and negative indirect effects due to selective herbivory, and that the net effects of pulsed resources on plants may depend on the composition and behavior of the surrounding herbivore community.  相似文献   

9.
Effective ecosystem‐based management requires understanding ecosystem responses to multiple human threats, rather than focusing on single threats. To understand ecosystem responses to anthropogenic threats holistically, it is necessary to know how threats affect different components within ecosystems and ultimately alter ecosystem functioning. We used a case study of a Mediterranean seagrass (Posidonia oceanica) food web and expert knowledge elicitation in an application of the initial steps of a framework for assessment of cumulative human impacts on food webs. We produced a conceptual seagrass food web model, determined the main trophic relationships, identified the main threats to the food web components, and assessed the components’ vulnerability to those threats. Some threats had high (e.g., coastal infrastructure) or low impacts (e.g., agricultural runoff) on all food web components, whereas others (e.g., introduced carnivores) had very different impacts on each component. Partitioning the ecosystem into its components enabled us to identify threats previously overlooked and to reevaluate the importance of threats commonly perceived as major. By incorporating this understanding of system vulnerability with data on changes in the state of each threat (e.g., decreasing domestic pollution and increasing fishing) into a food web model, managers may be better able to estimate and predict cumulative human impacts on ecosystems and to prioritize conservation actions.  相似文献   

10.
Lennon JT  Cottingham KL 《Ecology》2008,89(4):1001-1014
The rate, timing, and quality of resource supply exert strong controls on a wide range of ecological processes. In particular, resource-mediated changes in microbial activity have the potential to alter ecosystem processes, including the production and respiration of organic matter. In this study, we used field experiments and simulation modeling to explore how aquatic heterotrophic bacteria respond to variation in resource quality (low vs. high) and resource schedule (pulse vs. press). Field experiments revealed that one-time pulse additions of resources in the form of dissolved organic carbon (DOC) caused short-lived (< or =48 h) peaks in bacterial productivity (BP), which translated into large differences across treatments: cumulative BP was twice as high in the pulse vs. press treatment under low resource quality, and five times as high under high resource quality. To gain a more mechanistic understanding of microbial productivity in variable resource environments, we constructed a mathematical model to explore the attributes of bacterial physiology and DOC supply that might explain the patterns observed in our field experiments. Model results suggest that the mobilization rate of refractory to labile carbon, an index of resource quality, was critical in determining cumulative differences in BP between pulse and press resource environments (BPPu:Pr ratios). Moreover, BPPu:Pr ratios were substantially larger when our model allowed for realistic changes in bacterial growth efficiency as a function of bacterial carbon consumption. Together, our field and modeling results imply that resource schedule is important in determining the flow of material and energy from microbes to higher trophic levels in aquatic food webs, and that the effects of resource quality are conditional upon resource schedule. An improved understanding of the effects of resource variability on microorganisms is therefore critical for predicting potential changes in ecosystem functioning in response to environmental change, such as altered DOC fluxes from terrestrial to aquatic ecosystems.  相似文献   

11.
Ecosystem change often affects the structure of aquatic communities thereby regulating how much and by what pathways energy and critical nutrients flow through food webs. The availability of energy and essential nutrients to top predators such as seabirds that rely on resources near the water's surface will be affected by changes in pelagic prey abundance. Here, we present results from analysis of a 25-year data set documenting dietary change in a predatory seabird from the Laurentian Great Lakes. We reveal significant declines in trophic position and alterations in energy and nutrient flow over time. Temporal changes in seabird diet tracked decreases in pelagic prey fish abundance. As pelagic prey abundance declined, birds consumed less aquatic prey and more terrestrial food. This pattern was consistent across all five large lake ecosystems. Declines in prey fish abundance may have primarily been the result of predation by stocked piscivorous fishes, but other lake-specific factors were likely also important. Natural resource management activities can have unintended consequences for nontarget ecosystem components. Reductions in pelagic prey abundance have reduced the capacity of the Great Lakes to support the energetic requirements of surface-feeding seabirds. In an environment characterized by increasingly limited pelagic fish resources, they are being offered a Hobsonian choice: switch to less nutritious terrestrial prey or go hungry.  相似文献   

12.
Ecosystem models play an important role in supporting ecosystem approaches to management. To improve the representation of how ecosystems work, ecosystem models should be able to represent mediating effects (e.g., habitat provision) that species provide to each other as well as species (re)introductions, both common situations that can strongly influence ecosystem dynamics. We examine how such processes can be incorporated into Ecopath with Ecosim (EwE), a widely used tool for represent aquatic ecosystems with the potential to support ecosystem-based management. We used the reintroduction of sea otters (Enhydralutris) to the west coast of Vancouver Island, British Columbia, Canada as a case study. The model demonstrates how to account for benefits provided by kelp forests by contributing to primary production, increased feeding areas and food availability through prey retention. It also demonstrates how the reintroduction and range expansion of sea otters can be represented in Ecospace, and the implications of these options.  相似文献   

13.
An important goal in ecology is developing general theory on how the species composition of ecosystems is related to ecosystem properties and functions. Progress on this front is limited partly because of the need to identify mechanisms controlling functions that are common to a wide range of ecosystem types. We propose that one general mechanism, rooted in the evolutionary ecology of all species, is adaptive foraging behavior in response to predation risk. To support our claim, we present two kinds of empirical evidence from plant-based and detritus-based food chains of terrestrial and aquatic ecosystems. The first kind comes from experiments that explicitly trace how adaptive foraging influences ecosystem properties and functions. The second kind comes from a synthesis of studies that individually examine complementary components of particular ecosystems that together provide an integrated perspective on the link between adaptive foraging and ecosystem function. We show that the indirect effects of predators on plant diversity, plant productivity, nutrient cycling, trophic transfer efficiencies, and energy flux caused by consumer foraging shifts in response to risk are qualitatively different from effects caused by reductions in prey density due to direct predation. We argue that a perspective of ecosystem function that considers effects of consumer behavior in response to predation risk will broaden our capacity to explain the range of outcomes and contingencies in trophic control of ecosystems. This perspective also provides an operational way to integrate evolutionary and ecosystem ecology, which is an important challenge in ecology.  相似文献   

14.
Ecological Costs of Livestock Grazing in Western North America   总被引:24,自引:0,他引:24  
Livestock grazing is the most widespread land management practice in western North America. Seventy percent of the western United States is grazed, including wilderness areas, wildlife refuges, national forests, and even some national parks. The ecological costs of this nearly ubiquitous form of land use can be dramatic. Examples of such costs include loss of biodiversity; lowering of population densities for a wide variety of taxa; disruption of ecosystem functions, including nutrient cycling and succession; change in community organization; and change in the physical characteristics of both terrestrial and aquatic habitats. Because livestock congregate in riparian ecosystems, which are among the biologically richest habitats in arid and semiarid regions, the ecological costs of grazing are magnified in these sites. Range science has traditionally been laden with economic assumptions favoring resource use. Conservation biologists are encouraged to contribute to the ongoing social and scientific dialogue on grazing issues.  相似文献   

15.
EcoTroph (ET) is a model articulated around the idea that the functioning of aquatic ecosystems may be viewed as a biomass flow moving from lower to higher trophic levels, due to predation and ontogenetic processes. Thus, we show that the ecosystem biomass present at a given trophic level may be estimated from two simple equations, one describing biomass flow, the other their kinetics (which quantifies the velocity of biomass transfers towards top predators). The flow kinetic of prey partly depends on the abundance of their predators, and a top-down equation expressing this is included in the model. Based on these relationships, we simulated the impact on a virtual ecosystem of various exploitation patterns. Specifically, we show that the EcoTroph approach is able to mimic the effects of increased fishing effort on ecosystem biomass expected from theory. Particularly, the model exhibits complex patterns observed in field data, notably cascading effects and ‘fishing down the food web’. EcoTroph also provides diagnostic tools for examining the relationships between catch and fishing effort at the ecosystem scale and the effects of strong top-down controls and fast-flow kinetics on ecosystems resilience. Finally, a dynamic version of the model is derived from the steady-state version, thus allowing simulations of time series of ecosystem biomass and catches. Using this dynamic model, we explore the propagation of environmental variability in the food web, and illustrated how exploitation can induce a decrease of ecosystem stability. The potential for applying EcoTroph to specific ecosystems, based on field data, and similarities between EcoTroph and Ecopath with Ecosim (EwE) are finally discussed.  相似文献   

16.
It has been suggested that differences in body size between consumer and resource species may have important implications for interaction strengths, population dynamics, and eventually food web structure, function, and evolution. Still, the general distribution of consumer-'resource body-size ratios in real ecosystems, and whether they vary systematically among habitats or broad taxonomic groups, is poorly understood. Using a unique global database on consumer and resource body sizes, we show that the mean body-size ratios of aquatic herbivorous and detritivorous consumers are several orders of magnitude larger than those of carnivorous predators. Carnivorous predator-prey body-size ratios vary across different habitats and predator and prey types (invertebrates, ectotherm, and endotherm vertebrates). Predator-prey body-size ratios are on average significantly higher (1) in freshwater habitats than in marine or terrestrial habitats, (2) for vertebrate than for invertebrate predators, and (3) for invertebrate than for ectotherm vertebrate prey. If recent studies that relate body-size ratios to interaction strengths are general, our results suggest that mean consumer-resource interaction strengths may vary systematically across different habitat categories and consumer types.  相似文献   

17.
Individual-based and state variable-based adaptive agents (AA) are discussed regarding their relevance to different types of ecosystems. Individual-based AA proved applicable to a spatially explicit simulation of highly simplified terrestrial food webs. State variable-based AA with evolutionary computation (EC) embodied are suggested for the simulation of aquatic food webs and plankton species interactions. Embodiment of EC in AA can be achieved by evolving predictive rules (ER), differential equations (EDE) or artificial neural networks (ANN) derived from a diverse lake database. In order to provide ecosystem simulation with resilience to environmental change, agent banks can be created containing alternative agents for same species or functional groups from different lakes. State variable-based AA are currently tested for aquatic ecosytem simulation by means of a diverse lake database. It promises to overcome constraints by the rigidity of traditional lake ecosystem models.  相似文献   

18.
Indirect effects are powerful influences in ecosystems that may maintain species diversity and alter apparent relationships between species in surprising ways. Here, we applied network environ analysis to 50 empirically-based trophic ecosystem models to test the hypothesis that indirect flows dominate direct flows in ecosystem networks. Further, we used Monte Carlo based perturbations to investigate the robustness of these results to potential error in the underlying data. To explain our findings, we further investigated the importance of the microbial food web in recycling energy-matter using components of the Finn Cycling Index and analysis of environ centrality. We found that indirect flows dominate direct flows in 37/50 (74.0%) models. This increases to 31/35 (88.5%) models when we consider only models that have cycling structure and a representation of the microbial food web. The uncertainty analysis reveals that there is less error in the I/D values than the ±5% error introduced into the models, suggesting the results are robust to uncertainty. Our results show that the microbial food web mediates a substantial percentage of cycling in some systems (median = 30.2%), but its role is highly variable in these models, in agreement with the literature. Our results, combined with previous work, strongly suggest that indirect effects are dominant components of activity in ecosystems.  相似文献   

19.
Cross WF  Wallace JB  Rosemond AD 《Ecology》2007,88(10):2563-2575
Most aquatic and terrestrial ecosystems are experiencing increased nutrient availability, which is affecting their structure and function. By altering community composition and productivity of consumers, enrichment can indirectly cause changes in the pathways and magnitude of material flows in food webs. These changes, in turn, have major consequences for material storage and cycling in the ecosystem. Understanding mechanisms and predicting consequences of nutrient-induced changes in material flows requires a quantitative food web approach that combines information on consumer energetics and consumer-resource stoichiometry. We examined effects of a whole-system experimental nutrient enrichment on the trophic basis of production and the magnitude and pathways of carbon (C), nitrogen (N), and phosphorus (P) flows in a detritus-based stream food web. We compared the response of the treated stream to an adjacent reference stream throughout the study. Dietary composition and elemental flows varied considerably among invertebrate functional feeding groups. During nutrient enrichment, increased flows of leaf litter and amorphous detritus to shredders and gatherers accounted for most of the altered flows of C from basal resources to consumers. Nutrient enrichment had little effect on patterns of material flows but had large positive effects on the magnitude of C, N, and P flows to consumers (mean increase of 97% for all elements). Nutrient-specific food webs revealed similar flows of N and P to multiple functional groups despite an order of magnitude difference among groups in consumption of C. Secondary production was more strongly related to consumption of nutrients than C, and increased material flows were positively related to the degree of consumer-resource C:P and C:N imbalances. Nutrient enrichment resulted in an increased proportion of detrital C inputs consumed by primary consumers (from -15% to 35%) and a decreased proportion of invertebrate prey consumed by predators (from -80% to 55%). Our results demonstrate that nutrient enrichment of detritus-based systems may reduce stoichiometric constraints on material flows, increase the contribution of consumers to C, N, and P cycling, alter the proportion of C inputs metabolized by consumers, and potentially lead to reduced ecosystem-level storage of C.  相似文献   

20.
Effects of anthropogenic nitrogen (N) deposition and the ability of terrestrial ecosystems to store carbon (C) depend in part on the amount of N retained in the system and its partitioning among plant and soil pools. We conducted a meta-analysis of studies at 48 sites across four continents that used enriched 15N isotope tracers in order to synthesize information about total ecosystem N retention (i.e., total ecosystem 15N recovery in plant and soil pools) across natural systems and N partitioning among ecosystem pools. The greatest recoveries of ecosystem 15N tracer occurred in shrublands (mean, 89.5%) and wetlands (84.8%) followed by forests (74.9%) and grasslands (51.8%). In the short term (< 1 week after 15N tracer application), total ecosystem 15N recovery was negatively correlated with fine-root and soil 15N natural abundance, and organic soil C and N concentration but was positively correlated with mean annual temperature and mineral soil C:N. In the longer term (3-18 months after 15N tracer application), total ecosystem 15N retention was negatively correlated with foliar natural-abundance 15N but was positively correlated with mineral soil C and N concentration and C:N, showing that plant and soil natural-abundance 15N and soil C:N are good indicators of total ecosystem N retention. Foliar N concentration was not significantly related to ecosystem 15N tracer recovery, suggesting that plant N status is not a good predictor of total ecosystem N retention. Because the largest ecosystem sinks for 15N tracer were below ground in forests, shrublands, and grasslands, we conclude that growth enhancement and potential for increased C storage in aboveground biomass from atmospheric N deposition is likely to be modest in these ecosystems. Total ecosystem 15N recovery decreased with N fertilization, with an apparent threshold fertilization rate of 46 kg N x ha(-1) x yr(-1) above which most ecosystems showed net losses of applied 15N tracer in response to N fertilizer addition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号