首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An Open-Top Chambers experiment on Fagus sylvatica and Quercus robur seedlings was conducted in order to compare the performance of an exposure-based (AOT40) and a flux-based approaches in predicting the appearance of ozone visible injuries on leaves. Three different ozone treatments (charcoal-filtered; non-filtered; and open plots) and two soil moisture treatments (watered and non-watered plots) were performed. A Jarvisian stomatal conductance model was drawn up and parameterised for both species and typical South Alpine environmental conditions, thus allowing the calculation of ozone stomatal fluxes for every treatment. A critical ozone flux level for the onset of leaf visible injury in beech was clearly identified between 32.6 and 33.6 mmolO3 m(-2). In contrast, it was not possible to identify an exposure critical level using the AOT40 index. Water stress delayed the onset of the leaf visible injuries, but the flux-based approach was able to take it into account accurately.  相似文献   

2.
We investigated the additive and interactive effects of simulated acid rain and elevated ozone on C and N contents, and the C:N ratio of one-year-old and current-year foliage of field-grown mature trees and their half-sib seedlings of a stress tolerant genotype of ponderosa pine. Acid rain levels (pH 5.1 and 3.0) were applied weekly to foliage only (no soil acidification or N addition), from January to April, 1992. Plants were exposed to two ozone levels (ambient and twice-ambient) during the day from September 1991 to November 1992. The sequential application of acid rain and elevated ozone mimicked the natural conditions. Twice-ambient ozone significantly decreased foliar N content (by 12-14%) and increased the C:N ratio of both one-year-old and current-year foliage of seedlings. Although similar ozone effects were also observed on one-year-old foliage of mature trees, the only statistically significant effect was an increased C:N ratio when twice-ambient ozone combined with pH 3.0 rain (acid rain by ozone interaction). Enhancing the effect of twice-ambient ozone in increasing the C:N ratio of one-year-old foliage of mature trees in June was the only significant effect of acid rain.  相似文献   

3.
Twenty-two week-old Pinus taeda L. (loblolly pine) seedlings of 30 open-pollinated and five full-sib families, representing a wide range in geographic origin, were grown in charcoal-filtered (CF) air or CF-air supplemented with 160 or 320 nl liter(-1) ozone for 8 h day(-1), 4 days week(-1), for 9 weeks. Visible foliar injury (banded chlorosis, tip burn and premature senescence) was apparent in many families after 3 weeks in 320 nl liter(-1) and 6 weeks in 160 nl liter(-1) ozone. Decreases in relative height and root collar diameter growth rates, total dry weight, root dry weight, shoot dry weight, and root/shoot ratios were evident after 9 weeks of treatment with both 160 and 320 nl liter(-1) ozone. For relative height growth rates, family differences in response to ozone were observed. By the study's end, net photosynthesis rates were 15% less for the 320 nl liter(-1) ozone treatment as compared to the CF-air treatment. Total soluble sugar and total starch content of roots were not changed after 9 weeks of ozone exposure.  相似文献   

4.
A three-year study was initiated in 1987 to evaluate the impact of O3, acidic precipitation, and soil Mg on ectomycorrhizal colonization of loblolly pine (Pinus taeda L.) seedlings. Thirty-six open-top chambers equipped with a rainfall exclusion/addition system were utilized to administer three levels of O3 (subambient, ambient, or twice ambient) and two precipitation acidity levels (pH 3.8 or 5.2) to seedlings growing in 24-liter plastic pots containing soil having either 35 or 15 mg kg(-1) of exchangeable Mg. Seedlings exposed to the twice ambient O3 treatment exhibited smaller percentages of total ectomycorrhizal short roots at the end of each year of the study, but trends were statistically significant in 1989 only. Changes in number of specific ectomycorrhizal morphotypes in response to O3 were not consistent from year to year. Acidic precipitation treatments had no effect on number or percent of mycorrhizal short roots, and responses of two morphotypes to soil Mg treatments were probably due to differences in the soil environment rather than a result of changes in aboveground processes. Temporal shifts in morphotype frequencies were observed for seedlings in all treatments and indicate that mycorrhizal succession occurred during the study period.  相似文献   

5.
The effect of free-air ozone fumigation and crown position on antioxidants were determined in old-growth spruce (Picea abies) trees in the seasonal course of two consecutive years (2003 and 2004). Levels of total ascorbate and its redox state in the apoplastic washing fluid (AWF) were increased under double ambient ozone concentrations (2xO3), whilst ascorbate concentrations in needle extracts were unchanged. Concentrations of apoplastic and symplastic ascorbate were significantly higher in 2003 compared to 2004 indicating a combined effect of the drought conditions in 2003 with enhanced ozone exposure. Elevated ozone had only weak effects on total glutathione levels in needle extracts, phloem exudates and xylem saps. Total and oxidised glutathione concentrations were higher in 2004 compared to 2003 and seemed to be more affected by enhanced ozone influx in the more humid year 2004 compared to the combined effect of elevated ozone and drought in 2003 as observed for ascorbate.  相似文献   

6.
White oak (Quercus alba L.) seedlings were exposed to charcoal-filtered air or to above-ambient ozone concentrations for 19-20 weeks during each of two growing seasons in continuously stirred tank reactors in greenhouses. Ozone treatments were 0.15 ppm (300 microg m(-3)) for 8 h day(-1), 3 days week(-1) in 1988, and continuous 15% above ambient in 1989. The seedlings were grown in forest soil watered twice weekly with simulated rain of pH 5.2. Responses of net photosynthesis to photosynthetically active radiation and intercellular CO(2) concentration were measured three times each year. There were no significant differences in light-saturated net photosynthesis or stomatal conductance, dark respiration, quantum or carboxylation efficiencies, and light or CO(2) compensation points on any date between control and ozone-exposed seedlings.  相似文献   

7.
A novel system for continuous and controlled free-air fumigation of mature tree canopies with ozone is described. Ozone generated from oxygen is diluted with air in a pressurized tank and conducted into the canopies by a system of 100 PTFE tubes hanging down from a grid fixed above the crowns. With 45 calibrated outlets per tube providing a constant flow of 0.3 l/min each, a total volume of about 10*10*15 m3 comprising 5 beech and 5 spruce canopies is fumigated. The spatial ozone distribution in the fumigated volume as well as surrounding reference tree canopies is controlled by continuous measuring instruments installed at 4 levels and a dense array of passive samplers. The system will later be used for CO2 fumigation as well. Results of the first year of continuous operation, with 2 * ambient ozone levels having been achieved, are reported.  相似文献   

8.
The effect of ozone (< 10, 200, or 400 microg m(-3)), on foliar nutrient concentrations of Picea abies were determined by fumigating potted grafts from mature trees (> 55 and 125 years), representing six clones, in open-top chambers at two locations in Norway. The concentration of nutrients in needles of grafted plants were significantly affected by clone and location. Generally, the concentrations of nutrients were not affected by ozone, but a significant increase in the concentrations of potassium and iron in two of the clones were found. These two clones were the only ones injured (yellow needles) by the fumigation.  相似文献   

9.
Ambient concentrations of ozone in Europe are high enough to cause negative effects on vegetation. Therefore, many efforts have been made to determine exposure indices and critical levels for protection of vegetation. In this context, the choice of a suitable attribute to determine the pollutant effect is of paramount importance. Until now, much of the work has been done with attributes such as biomass or growth. In the present work correlation factors have been established between biochemical parameters (peroxidase activity, ascorbate and sulfhydryl contents) of Pinus radiata trees and exposure indices of ozone. Our results show that peroxidase cannot be used as an indicator of effects of long-term exposure to ozone but still remains as an excellent indicator of short-term ozone fluctuations in the field. Ascorbate may act as an intermediate indicator responding to both short fluctuations and long-term exposures to ozone. Finally, sulfhydryl may be used as a long-term indicator in relation to the AOT (average over threshold) exposure index. Our results also point to the fact that Pinus radiata may be affected by ozone at AOT values lower than 10 ppm.h as already observed with other tree species.  相似文献   

10.
Limitations and perspectives about scaling ozone impacts in trees.   总被引:7,自引:0,他引:7  
We review the need for scaling effects of ozone (O3) from juvenile to mature forest trees, identify the knowledge presently available, and discuss limitations in scaling efforts. Recent findings on O3/soil nutrient and O3/CO2 interactions from controlled experiments suggest consistent scaling patterns for physiological responses of individual leaves to whole-plant growth, carbon allocation, and water use efficiency of juvenile trees. These findings on juvenile trees are used to develop hypotheses that are relevant to scaling O3 effects to mature trees, and these hypotheses are examined with respect to existing research on differences in response to O3 between juvenile and mature trees. Scaling patterns of leaf-level physiological response to O3 have not been consistent in previous comparisons between juvenile and mature trees. We review and synthesize current understanding of factors that may cause such inconsistent scaling patterns, including tree-size related changes in environment, stomatal conductance, O3 uptake and exposure. carbon allocation to defense, repair, and compensation mechanisms, and leaf production phenology. These factors should be considered in efforts to scale O3 responses during tree ontogeny. Free-air O3 fumigation experiments of forest canopies allow direct assessments of O3 impacts on physiological processes of mature trees, and provide the opportunity to test current hypotheses about ontogenetic variation in O3 sensitivity by comparing O3 responses across tree-internal scales and ontogeny.  相似文献   

11.
Patterns of ozone uptake were related to physiological, morphological, and phenological characteristics of different-sized black cherry trees (Prunus serotina Ehrh.) at a site in central Pennsylvania. Calculated ozone uptake differed among open-grown seedlings, forest gap saplings, and canopy trees and between leaves in the upper and lower crown of saplings and canopy trees. On an instantaneous basis, seedling leaves had the greatest ozone uptake rates of all tree size classes due to greater stomatal conductance and higher concentrations of ozone in their local environment. A pattern of higher stomatal conductance of seedlings was consistent with higher incident photosynthetically-active radiation, stomatal density, and predawn xylem water potentials for seedlings relative to larger trees. However, seedlings displayed an indeterminate pattern of shoot growth, with the majority of their leaves produced after shoot growth had ceased for canopy and sapling trees. Full leaf expansion occurred by mid-June for sapling and canopy trees. Because many of their leaves were exposed to ozone for only part of the growing season, seedlings had a lower relative exposure over the course of the growing season, and subsequently lower cumulative uptake, of ozone than canopy trees and a level of uptake similar to upper canopy leaves of saplings. Visible injury symptoms were not always correlated with patterns in ozone uptake. Visible symptoms were more apparent on seedling leaves in concurrence with their high instantaneous uptake rates. However, visible injury was more prevalent on leaves in the lower versus upper crown of canopy trees and saplings, even though lower crown leaves had less ozone uptake. Lower crown leaves may be more sensitive to ozone per unit uptake than upper crown leaves because of their morphology. In addition, the lower net carbon uptake of lower crown leaves may limit repair and anti-oxidant defense processes.  相似文献   

12.
Seedlings from ten half-sib families of loblolly pine (Pinus taeda) were exposed in open-top chambers to carbon-filtered air (CF), non-filtered air (NF), or air amended with ozone to 1.7 or 2.5 times ambient. After 105 days of exposure, half the seedlings within each family were wounded but not inoculated and half were wounded and inoculated with the pitch canker fungus, Fusarium subglutinans, to which five families were relatively resistant. After an additional 50 days of ozone treatment, seedling growth and canker development were recorded. Cankers were significantly (sigma < or = 0.05) smaller among resistant compared to susceptible families, and were significantly larger among seedlings receiving the highest (2.5) compared to the ambient (NF) ozone treatment. The wound scars of non-inoculated seedlings were also significantly larger among seedlings receiving the 2.5 compared to the NF treatment, but these dimensions did not differ significantly with seedling family or resistance. The weights of needles and large roots were significantly smaller at the 2.5 compared to the 1.7 ozone treatment for inoculated but not for non-inoculated seedlings; this resulted in a significant interaction for ozone and inoculation effects. Among resistant families, root weights were significantly smaller for inoculated seedlings. Diameter growth and dry weights of needles were significantly smaller among inoculated compared to non-inoculated seedlings, but did not differ between NF and 2.5 ozone treatments.  相似文献   

13.
The metabolic activity of the roots was very sensitive to the changes induced in the leaves by O3. Respiratory activity began to decrease well before visible injury appeared on the leaves, and the per cent reduction of respiration was much greater than the per cent leaf injury. The triphenyl tetrazolium chloride (TTC) staining technique revealed changes in root tips very quickly, was generally more sensitive to changes in respiratory activity and was a convenient technique for handling large numbers of samples. Reducing foliar injury from O3 with low levels of SO2 reduced the effects on the roots indicating the effect of O3 is on processes in the leaf.  相似文献   

14.
Sardans J  Peñuelas J 《Chemosphere》2005,60(9):1293-1307
We studied trace element accumulation in the moss Hypnum cupressiforme and the widely distributed Mediterranean trees Quercus ilex and Pinus halepensis located at increasing distances from the Barcelona Metropolitan Area. Hypnum cupressiforme, Quercus ilex and, to a somewhat lesser extent, Pinus halepensis, have proved to be adequate as possible accumulative monitoring species in relation to trace elements pollution. No significant effects of crown orientation were found. One-year old leaves generally accumulated more trace elements than current-year leaves. All the studied trace elements showed greatest concentrations in the Barcelona Metropolitan Area, with lead, cadmium and arsenic concentrations being especially high. In general, trace element concentrations in biomass were similar or higher than the values reported from other Mediterranean urban areas of Europe. The top soil-layer concentrations were also higher in the Barcelona Metropolitan Area indicating the existence of mechanisms of atmospheric deposition and/or concentration in the soil. The lower values of Pb of airborne origin relative to other elements such as Cd, Cu, Zn and Sb suggest that traffic exhausts are not the only important focus of pollutants in this area. The results of biomass concentrations and of enrichment factor of biomasses respect to bedrock and soils show that atmospheric inputs account for the higher trace element concentrations in the Barcelona Metropolitan Area.  相似文献   

15.
Seedlings from three open-pollinated loblolly pine (Pinus taeda L.) families grown in a mixture of commercial peat moss and grade 3 vermiculite (1:3 by volume) or a mixture of mineral soil and peat (1:1 by volume) were exposed to 0, 160 or 320 ppb ozone (O3) for 6h/day, 4 days/week for 8 weeks beginning 12 weeks after transplanting. Before exposures began, seedlings grown in the vermiculite-peat substrate were taller but smaller in diameter than those grown in the mineral soil-peat substrate. After 8 weeks of exposure, seedlings grown in the mineral soil-peat substrate were significantly larger in diameter and total biomass than those grown in the vermiculite-peat substrate. Primary needle and secondary needle injury increased with increasing O3 concentrations. Suppression of diameter growth, shoot weight and root weight was linear as O3 concentration increased. The effect of O3 on height or diameter growth or shoot biomass was not influenced by substrate type; but the suppression of root biomass due to O3 was dependent on substrate, with greater suppression in biomass occurring in the vermiculite-peat substrate. Foliar injury due to O3 was slightly greater in family 8-103, but growth suppression due to O3 was not significantly different among the families. Based on root biomass, response of seedlings to O3 was substrate-dependent.  相似文献   

16.
Loblolly pine (Pinus taeda) seedlings from three full-sib families were exposed to 0, 50, 100 or 150 ppb ozone (O(3)) (5 h/d, 5 d/week for 6 or 12 weeks). Soil water potential was maintained near pot capacity (-0.03 MPa) or soil was allowed to dry to approximately -1.0 MPa and resaturated. Chlorotic mottling and flecking of needles due to O(3) injury were observed for seedlings from all pine families. Soil water deficit lessened the intensity of O(3) symptoms, possibly due to stomatal closure. Exposure to O(3) and soil water deficit each resulted in less seedling volume growth and dry weight, and changed the nonstructural carbohydrate content of seedlings compared with controls. Increasing O(3) concentrations resulted in a linear reduction in foliar starch content but did and affect hexose or sucrose content. Soil water deficit resulted in less starch and soluble sugar contents in above- and below-ground plant parts compared with controls. Soil water deficit did not affect numbers or percentages of roots that formed ectomycorrhizal tips. A linear dose-response relationship between O(3) and ectomycorrhizae was observed. The number of ectomycorrhizal tips/cm long root and the percentage of feeder roots that formed ectomycorrhizae were lower as O(3) concentration increased. Overall, each stress alone caused less seedling growth and carbohydrate content compared with controls, but only O(3) was responsible for suppression of ectomycorrhizae.  相似文献   

17.
Considerable progress has been made during the past decade in the development of mechanistic models that allow complex chemical, physical, and biological processes to be evaluated in the global change context. However, quantitative predictions of the response of individual trees, stands, and forest ecosystems to pollutants and climatic variables require extrapolation of existing data sets, derived largely from seedling studies, to increasing levels of complexity with little or no understanding of the uncertainties associated with these extrapolations. Consequently, a project designed to address concerns associated with scaling from seedling to mature tree responses was initiated. During the 1990 and 1991 growing seasons, mature northern red oak (Quercus rubra L.) trees and seedlings were exposed to subambient, ambient, and twice ambient ozone (O(3)) concentrations. The initial focus of the study was to identify possible trends and obvious differences between mature trees and seedlings, both in terms of growth and physiology and in response to O(3). Generally, mature trees exhibited a greater decrease in photosynthesis rates over the growing season than did the seedlings. Ozone treatments had no consistent effect on gas exchange rates of seedlings, but the twice ambient O(3) treatment resulted in reduced photosynthesis rates in the mature tree. Despite no effect of O(3) on seedling gas exchange rates, total seedling biomass was significantly less at the end of the 1991 growing season for those seedlings exposed to twice ambient O(3) levels. Disproportionate reductions in root biomass also resulted in reduced root to shoot ratios at elevated O(3) concentrations.  相似文献   

18.
Plants of one evergreen oak (Quercus ilex) and three deciduous oaks (Q. faginea, with small leaves; Q. pyrenaica and Q. robur, with large leaves) were exposed both to filtered air and to enhanced ozone levels in Open-Top Chambers. Q. faginea and Q. pyrenaica were studied for the first time. Based on visible injury, gas exchange, chlorophyll content and biomass responses, Q. pyrenaica was the most sensitive species, and Q. ilex was the most tolerant, followed by Q. faginea. Functional leaf traits of the species were related to differences in sensitivity, while accumulated ozone flux via stomata (POD1.6) partly contributed to the observed differences. For risk assessment of Mediterranean vegetation, the diversity of responses detected in this study should be taken into account, applying appropriate critical levels.  相似文献   

19.
The objective of this study was to establish whether EU and UN-ECE/ICP-Forests monitoring data (i) provide the variables necessary to apply the flux-based modeling methods and (ii) meet the quality criteria necessary to apply the flux-based critical level concept. Application of this model has been possible using environmental data collected from the EU and UN-ECE/ICP-Forests monitoring network in Switzerland and Italy for 2000-2002. The test for data completeness and plausibility resulted in 6 out of a possible total of 20 Fagus sylvatica L. plots being identified as suitable from Switzerland, Italy, Spain, and France. The results show that the collected data allow the identification of different spatial and temporal areas and periods as having higher risk to ozone than those identified using the AOT40 approach. However, it was also apparent that the quality and completeness of the available data may severely limit a complete risk assessment across Europe.  相似文献   

20.
We examined the short-term separate and combined effects of simulated nitrogen (N) deposition (fertilization) and ozone (O(3)) exposure on California black oak seedlings (Quercus kelloggii Newb.), an ecologically important tree of the San Bernardino Mountains downwind of Los Angeles. Realistic concentrations of O(3) were found to cause statistically and biologically significant negative effects on plant health, including lowered photosynthetic ability, lowered water use efficiency, and increased leaf chlorosis and necrosis. When subjected to abrupt changes in light levels, O(3)-exposed plants showed both a slower and smaller response than O(3)-free plants. Fertilized plants exhibited a significantly greater pre- to post-treatment decline in A at saturated [CO(2)] and a significantly lower level of post-treatment chlorosis than unfertilized plants. Fertilization tended to reduce plant sensitivity to O(3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号