首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
How individuals assess, respond and subsequently learn from alarm cues is crucial to their survival and future fitness. Yet this information is not constant through time; many individuals are exposed to different predators throughout their life as they outgrow some predators or move to habitats containing different predators. To maximise overall fitness, individuals should discriminate between different cues and respond and learn from only those that are relevant to their current ontogenetic stage. We tested whether juvenile spiny chromis, Acanthochromis polyacanthus, could distinguish between chemical alarm cues from conspecific donors of different ontogenetic stages and whether the cue ontogenetic stage of the cue donor affected the efficacy of learning about predators. Juveniles displayed a significant antipredator response when conditioned with juvenile chemical alarm cues paired with predator odour but failed to respond when conditioned with predator odour paired with either adult alarm cues or with saltwater. Subsequently, individuals only recognised the predator odour alone as a threat when conditioned with juvenile alarm cues. This demonstrates that prey may be highly specific in how they use information from conspecific alarm cues, selectively responding to and learning from only those cues that are relevant to their developmental stage.  相似文献   

2.
Summary. Predation is a pervasive selective agent highly variable in space and time. Due to the costs associated with antipredator responses, prey would be at a selective advantage if they respond to predation threats with an intensitfy matching the threat posed by the predator. Many aquatic organisms have been shown to use chemical alarm cues present in the water to assess the level of risk in their environment. This includes mosquito larvae which show antipredator responses to conspecific alarm cues. In this study, we investigated the nature of the responses of larval mosquitoes Culex restuans to those cues. In our initial observations, we showed pond/population differences in the response intensity of C. restuans to alarm cues. In experiment 1, we showed that the response intensity to alarm cues could be increased by increasing the background level of risk in the mosquitoes’ environment (by adding salamander predators) and once turned on, the response intensity to alarm cues was likely maintained for the remainder of the mosquitoes’ aquatic life. In experiments 2 and 3, we investigated if the increase in response intensity to alarm cues was directly correlated with the level of background risk in the mosquitoes’ environment. When given increasing levels of background risk, mosquito larvae subsequently showed a graded response to conspecific alarm cues. This series of experiments demonstrates that the response intensity of larval mosquitoes to a standard concentration of alarm cues is not fixed, but rather dependent on the background level of risk in the environment. An understanding of the background level of risk is particularly important for comparing antipredator responses of prey between habitats.  相似文献   

3.
The supposition that prey animals respond to a predator with an intensity that matches the risk posed by the predator is known as the threat-sensitive predator avoidance hypothesis. Many studies have provided support for this hypothesis; yet, few studies have attempted to determine how such abilities are acquired by prey species. In this study, we investigated whether fathead minnows (Pimephales promelas) could learn to recognize an unknown predator (northern pike, Esox lucius) in such a way that they could match the intensity of their antipredator response with the threat posed by the predator. We exposed pike-naïve minnows to conspecific alarm cues paired with either a high or low concentration of pike odor. The following day, both groups were tested for a response to either high or low concentration of pike odor alone. We found that minnows conditioned with alarm cues paired with a given concentration of pike odor subsequently responded with a higher intensity to higher concentrations of pike odor, and with a lower intensity to lower concentrations of pike odor. These results demonstrate that during a single conditioning trial, minnows learn the identity of the predator in a threat-sensitive manner. Minnows use predator odor concentrations that they experience in subsequent interactions to adjust the intensity of their antipredator behavior.  相似文献   

4.
Amphibians are able to learn to recognize their future predators during their embryonic development (the ghost of predation future). Here, we investigate whether amphibian embryos can also acquire additional information about their future predators, such as the level of threat associated with them and the time of day at which they would be the most dangerous. We exposed woodfrog embryos (Rana sylvatica) to different concentrations of injured tadpole cues paired with the odor of a tiger salamander (Ambystoma tigrinum) between 1500 and 1700 hours for five consecutive days and raised them for 9 days after hatching. First, we showed that embryos exposed to predator odor paired with increasing concentrations of injured cues during their embryonic development subsequently display stronger antipredator responses to the salamander as tadpoles, thereby demonstrating threat-sensitive learning by embryonic amphibians. Second, we showed that the learned responses of tadpoles were stronger when the tadpoles were exposed to salamander odor between 1500 and 1700 hours, the time at which the embryos were exposed to the salamander, than during earlier (1100–1300 hours) or later (1900–2100 hours) periods. Our results highlight the amazing sophistication of learned predator recognition by prey and emphasize the importance of temporal considerations in experiments examining risk assessment by prey.  相似文献   

5.
Prey animals often have to face a dynamic tradeoff between the costs of antipredator behavior and the benefits of other fitness-related activities such as foraging and reproduction. According to the threat-sensitive predator avoidance hypothesis, prey animals should match the intensity of their antipredator behavior to the degree of immediate threat posed by the predator. Moreover, longer-term temporal variability in predation risk (over days to weeks) can shape the intensity of antipredator behavior. According to the risk allocation hypothesis, changing the background level of risk for several days is often enough to change the response intensity of the prey to a given stimulus. As the background level of risk increases, the response intensity of the prey decreases. In this study, we tested for possible interactions between immediate threat-sensitive responses to varying levels of current perceived risk and temporal variability in background risk experienced over the past 3 days. Juvenile convict cichlids were preexposed to either low or high frequencies of predation risk (using conspecific chemical alarm cues) for 3 days and were then tested for a response to one of five concentrations (100, 50, 25, 12.5%, or a distilled water control). According to the threat-sensitive predator avoidance hypothesis, we found greater intensity responses to greater concentrations of alarm cues. Moreover, in accordance with the risk allocation hypothesis, we found that cichlids previously exposed to the high background level of risk exhibited a lower overall intensity response to each alarm cue concentration than those exposed to the low background level of risk. It is interesting to note that we found that the background level of risk over the past 3 days influenced the threshold level of response to varying concentrations of alarm cues. Indeed, the minimum stimulus concentration that evoked a behavioral response was lower for fish exposed to high background levels of predation than those exposed to low background levels of predation. These results illustrate a remarkable interplay between immediate (current) risk and background risk in shaping the intensity of antipredator responses.  相似文献   

6.
Following disturbance, some aquatic prey species release chemicals that act as a warning cue and increase vigilance in nearby conspecifics. Such disturbance cues evoke consistent low intensity anti-predator responses. In contrast, alarm cues from injured conspecifics often evoke stronger intensity responses in prey animals. In this study, we test the sensory complement hypothesis, which suggests that multiple cues act in an additive or synergistic fashion to provide additional information for risk assessment by prey. In the first experiment, we showed that juvenile rainbow trout pre-exposed to disturbance cues respond to a given concentration of damage-released alarm cues with a higher intensity of response than the trout that were pre-exposed to cues from undisturbed conspecifics. The two cues acted in an additive fashion. In the second experiment, we demonstrated that disturbance cues alone were not enough to elicit a conditioned response to the odour of a novel predator. We also showed that while disturbance cues elicit an increase in the response of trout to alarm cues, this increase does not translate into a stronger learned response to the predator when the predator odour is paired with alarm cues. Future studies should take into account sensory complementation to avoid underestimating the responses of prey to predators.  相似文献   

7.
The antipredator behaviour of prey organisms is shaped by a series of threat-sensitive trade-offs between the benefits associated with successful predator avoidance and a suite of other fitness-related behaviours such as foraging, mating and territorial defence. Recent research has shown that the overall intensity of antipredator response and the pattern of threat-sensitive trade-offs are influenced by current conditions, including variability in predation risk over a period of days to weeks. In this study, we tested the hypothesis that long-term predation pressure will likewise have shaped the nature of the threat-sensitive antipredator behaviour of wild-caught Trinidadian guppies (Poecilia reticulata). Female guppies were collected from two populations that have evolved under high- and low-predation pressure, respectively, in the Aripo River, Northern Mountain Range, Trinidad. Under laboratory conditions, we exposed shoals of three guppies to varying concentrations of conspecific damage-released chemical alarm cues. Lower Aripo (high-predation) guppies exhibited the strongest antipredator response when exposed to the highest alarm cue concentration and a graded decline in response intensity with decreasing concentrations of alarm cue. Upper Aripo (low-predation) guppies, however, exhibited a nongraded (hypersensitive) response pattern. Our results suggest that long-term predation pressure shapes not only the overall intensity of antipredator responses of Trinidadian guppies but also their threat-sensitive behavioural response patterns.  相似文献   

8.
Summary. Recent studies have demonstrated that under weakly acidic conditions (pH 6.0), many prey fishes, including juvenile rainbow trout (Onchorhynchus mykiss), do not exhibit overt antipredator responses to conspecific chemical alarm cues. In laboratory trials, we investigated the potential effects of reduced pH on the ability of hatchery reared, predator naïve juvenile rainbow trout to acquire the recognition of a novel predator (yellow perch, Perca flavenscens). Initially, we exposed trout to the odour of a predatory yellow perch, buffered to pH 6.0 (weakly acidic) or pH 7.0 (neutral) paired with conspecific skin extracts (also buffered to pH 6.0 or 7.0) or a distilled water control. Juvenile trout exhibited significant increase in antipredator behaviour when exposed to neutral skin extract (pH 7.0). When retested 48 hours later to perch odour alone (pH 7.0), only trout initially conditioned with neutral skin extracts (pairs with either neutral or acidic perch odour) exhibited a learned recognition of perch odour as a predator risk. Those initially exposed to weakly acidic skin extract or the distilled water control did not show a learned response to predator odour. These results demonstrate that the ability to acquire the recognition of novel predators is impaired under weakly acidic conditions, as would occur in natural waterways affected by acidic precipitation.  相似文献   

9.
Summary. Many aquatic prey are known to use chemical alarm cues to assess their risk of predation. In fishes, such alarm cues can be released either through damage of the epidermis during a predatory attack (capture-released) or through release from the predator feces (diet-released). In our study, we compared the importance of capture- versus diet-released alarm cues in risk assessment by fathead minnows (Pimephales promelas) that were na?ve to fish predators. We utilized two different fish predators: a specialized piscivore, the northern pike (Esox lucius) and a generalist predator, the brook trout (Salvelinus fontinalis). Handling time of pike consuming minnows was much shorter than for trout consuming minnows, likely resulting in less epidermal damage to the minnows during attacks by pike. In accordance with this, minnows showed a less intense antipredator response to capture-released cues from pike than capture-released cues from trout. This represents a paradox in risk assessment for the minnows as they respond to the specialized piscivore, the more dangerous predator, with a less intense antipredator response. In contrast, the minnows showed a stronger antipredator response to the specialized piscivore than to the generalist when given diet cues. This work highlights the need for researchers to carefully consider the nature of the information available to prey in risk assessment.  相似文献   

10.
Behavioural ecology is rife with examples of prey animals that are able to adjust the intensity of their anti-predator response to match background risk levels. Often, preys need experience with predators before they will invest in costly anti-predator responses. This means that prey animals often fail to respond to predators during their first encounter. Recently, we have shown that prey raised under high-risk conditions may exhibit avoidance of potential predation cues independent of experience (neophobia). Such phenotypically plastic neophobic predator responses may reduce the initial costs of learning ecologically relevant threats while maintaining sufficient behavioural plasticity to respond to variation in local conditions. Here, we test if induced neophobia results in threat-sensitive behavioural trade-offs in response to a novel chemosensory cue. Our first experiment shows that while juvenile convict cichlids (Amatitlania nigrofasciata) pre-exposed to high (but not low) risk conditions exhibited predator avoidance to a novel odour (rainbow trout, Oncorhynchus mykiss), the response intensity was not influenced by the concentration of trout odour detected. Our second experiment demonstrated that the intensity of anti-predator response towards a novel predator cue was dependent upon the level of background risk. Convict cichlids pre-exposed to high-risk conditions showed stronger responses than those pre-exposed to low-risk conditions, while cichlids pre-exposed to intermediate-risk conditions exhibited intermediate response intensities. Together, these data demonstrate that background levels of risk and not the concentration of novel cues detected shape the induced neophobic response pattern of juvenile convict cichlids.  相似文献   

11.
Understanding prey response to predators and their utilization of sensory cues to assess local predation risk is crucial in determining how predator avoidance strategies affect population demographics. This study examined the antipredator behaviors of two ecologically similar species of Caribbean coral reef fish, Coryphopterus glaucofraenum and Gnatholepis thompsoni, and characterized their responses to different reef predators. In laboratory assays, the two species of gobies were exposed to predator visual cues (native Nassau grouper predator vs. invasive lionfish predator), damage-released chemical cues from gobies, and combinations of these, along with appropriate controls. Behavioral responses indicate that the two prey species differ in their utilization of visual and chemical cues. Visual cues from predators were decisive for both species’ responses, demonstrating their relative importance in the sensory hierarchy, whereas damage-released cues were a source of information only for C. glaucofraenum. Both prey species could distinguish between native and invasive predators and subsequently altered their antipredator responses.  相似文献   

12.
In aquatic environments, many prey rely on chemosensory information from injured (alarm cues) or stressed conspecifics (disturbance cues) to assess predation risk. Alarm cues are considered as a sign of higher risk than disturbance cues. These cues could be used by prey to learn potential new predators. In this study, we tested whether Iberian green frog tadpoles (Pelophylax perezi) exhibited antipredator responses to alarm and disturbance cues of conspecifics and whether tadpoles could associate new predators with alarm or disturbance cues. Tadpoles reduced their activity in the presence of disturbance cues, but only weakly when compared with their response to alarm cues. Also, tadpoles learned to recognize new predators from association with alarm or disturbance cues. However, the period of retention of the learned association was shorter for disturbance than alarm cues. Our results indicate that tadpoles are able to modify their antipredatory behavior according to (1) the degree of risk implied by the experimental cues (2) their previous experience of chemical cues of the predator.  相似文献   

13.
Summary. Many aquatic species use chemosensory information to assess predation risk. The cues used in such risk assessment can come either from the predator (predator odour) or from injured prey (alarm cues). The information conveyed through chemicals may, however, be inaccurate both spatially and temporally, as chemicals may persist in the environment long after the predator is gone. Thus, the level of accuracy of the cues for risk assessment may depend on the persistency of the chemicals in the habitat. Here, we investigated the persistency of alarm cues of a larval amphibian, the woodfrog (Rana sylvatica) in a ephemeral pond, their natural habitat. We introduced either alarm cues or control water in enclosed sleeves (~10 L) installed in the pond. The sleeve water was then sampled after 5 min and every two hours for eight hours. We used the behavioural response of woodfrog tadpoles to alarm cues as a bioassay to assess how long the alarm cues persisted in the environment. We found that tadpoles responded with an antipredator response to the pond water containing alarm cues 5 min after the injection of the cues in the sleeves but did not respond to that same pond water after two hours. Our results indicate that biodegradation and/or photodegradation of alarm cues in natural habitats might occur relatively quickly as the loss of a response to the cues in our experiment was independent of a dilution effect. This contrasts with previous laboratory results indicating that chemicals may be active after several hours.  相似文献   

14.
According to the threat-sensitive predator avoidance hypothesis, selection favors prey that accurately assess the degree of threat posed by a predator and adjust their anti-predator response to match the level of risk. Many species of animals rely on chemical cues to estimate predation risk; however, the information content conveyed in these chemical signatures is not well understood. We tested the threat-sensitive predator avoidance hypothesis by determining the specificity of the information conveyed to prey in the chemical signature of their predator. We found that fathead minnows (Pimephales promelas) could determine the degree of threat posed by northern pike (Esox lucius) based on the concentration of chemical cues used. The proportion of minnows that exhibited an anti-predator response when exposed to a predator cue increased as the concentration of the pike cue used increased. More surprisingly, the prey could also distinguish large pike from small pike based on their odor alone. The minnows responded more intensely to cues of small pike than to cues of large pike. In this predator–prey system small pike likely represent a greater threat than large pike.Communicated by A. Mathis  相似文献   

15.
Prey often adopt antipredator strategies to reduce the likelihood of predation. In the presence of predators, prey may use antipredator strategies that are effective against a single predator (specific) or that are effective against several predators (nonspecific). Most studies have been confined to single predator environments although prey are often faced with multiple predators. When more than one predator is present, specific antipredator behaviours can conflict and avoidance of one predator may increase vulnerability to another. To test how prey cope with this dilemma, I recorded the behaviours of lizards responding to the nonlethal cues of a bird and snake presented singly and simultaneously. Lizards use specific and conflicting antipredator tactics when confronted with each predator, as evidenced by refuge use. However, when both predators were present, lizards refuge use was the same as in the predator-free environment, indicating that they abandoned refuge use as a primary mechanism for predator avoidance. In the presence of both predators, they reduced their overall movement and time spent thermoregulating. This shift in behaviour may represent a compromise to minimize overall risk, following a change in predator exposure. This provides evidence of plasticity in lizard antipredator behaviour and shows that prey responses to two predators cannot be accurately predicted from what is observed when only one predator is present.Communicated by W. Cooper  相似文献   

16.
Summary. In amphibians and fishes, evidence is increasing that chemical cues from injured conspecifics can play a role in the chemical labelling and learned recognition of unfamiliar predators. In this laboratory study, we tested the prediction that prior chemical exposure to a non-native predator feeding on conspecific tadpoles will subsequently allow tadpoles of the common toad (Bufo bufo) to recognize the chemical cues specifically released by this starved predator. Furthermore, we investigated the vulnerability of this chemically-mediated process to herbicide contamination. With these aims in view, groups of tadpoles were kept either unexposed or exposed for ten days to chemical cues from Turkish crayfish (Astacus leptodactylus) previously fed on tadpoles, both in uncontaminated water and in the presence of four sublethal concentrations of amitrole (0.01, 0.1, 1 and 10 mg.l−1). We then assessed the effects of the six conditioning treatments on general activity and behavioural response to chemical cues from starved crayfish. Larval treatments did not affect the general activity of the tadpoles. By contrast, the treatments had significant effects on the behavioural response to the test solution prepared form starved crayfish. The only tadpoles to show an antipredator behavioural response to the chemical stimulation from starved crayfish belonged to the groups derived from chemical exposure to tadpole-fed crayfish in uncontaminated water and in contaminated water with the lowest concentration of amitrole (0.01 mg.l−1). Conversely, this chemical stimulation produced no behavioural change in the control group or in the groups derived from exposure to tadpole-fed crayfish in contaminated water containing 0.1, 1 and 10 mg.l−1 of amitrole. This study demonstrates that chemical cues released during the predator’s feeding activity can subsequently be used by common toad tadpoles in the recognition of an unfamiliar predator. In addition, our results show that the presence of sublethal amitrole concentrations can impair this recognition process. Such a pesticide effect might be especially detrimental for amphibian populations threatened by invasive predators.  相似文献   

17.
Numerous studies have examined how predator diets influence prey responses to predation risk, but the role predator diet plays in modulating prey responses remains equivocal. We reviewed 405 predator–prey studies in 109 published articles that investigated changes in prey responses when predators consumed different prey items. In 54 % of reviewed studies, prey responses were influenced by predator diet. The value of responding based on a predator’s recent diet increased when predators specialized more strongly on particular prey species, which may create patterns in diet cue use among prey depending upon whether they are preyed upon by generalist or specialist predators. Further, prey can alleviate costs or accrue greater benefits using diet cues as secondary sources of information to fine tune responses to predators and to learn novel risk cues from exotic predators or alarm cues from sympatric prey species. However, the ability to draw broad conclusions regarding use of predator diet cues by prey was limited by a lack of research identifying molecular structures of the chemicals that mediate these interactions. Conclusions are also limited by a narrow research focus. Seventy percent of reviewed studies were performed in freshwater systems, with a limited range of model predator–prey systems, and 98 % of reviewed studies were performed in laboratory settings. Besides identifying the molecules prey use to detect predators, future studies should strive to manipulate different aspects of prey responses to predator diet across a broader range of predator–prey species, particularly in marine and terrestrial systems, and to expand studies into the field.  相似文献   

18.
Under conditions of spatial and/or temporal variability in predation risk, prey organisms often rely on acquired predator recognition to balance the trade-offs between energy intake and risk avoidance. The question of ‘for how long’ should prey retain this learned information is poorly understood. Here, we test the hypothesis that the growth rate experienced by prey should influence the length of the ‘memory window’. In a series of laboratory experiments, we manipulated growth rate of juvenile rainbow trout and conditioned them to recognize a novel predator cue. We subsequently tested for learned recognition either 24 h or 8 days post-conditioning. Our results suggest that trout with high versus low growth rates did not differ in their response to learned predator cues when tested 24 h post-conditioning. However, trout on a high growth rate exhibited no response to the predator cues after 8 days (i.e. did not retain the recognition of the predator odour), whereas trout on a lower growth rate retained a strong recognition of the predator. Trout that differed in their growth rate only after conditioning did not differ in their patterns of retention, demonstrating growth rate after learning does not influence retention. Trout of different initial sizes fed a similar diet (percent body mass per day) showed no difference in retention of the predator cue. Together, these data suggest that growth rate at the time of conditioning determines the ‘memory window’ of trout. The implications for threat-sensitive predator avoidance models are described.  相似文献   

19.
Predation exerts tremendous selection pressure on all organisms. In this study, we exposed embryos of convict cichlids (Amatitlania siquia) twice daily to one of the following: (1) chemical alarm cues of damaged conspecifics + odour of a novel predator (Polypterus endlicheri), (2) chemical alarm cues of damaged conspecifics + water or (3) blank water. No chemical cues were presented after the eggs hatched. When the larvae were 9 days old (mean total length?=?5.7 mm), they were exposed to either predator odour or water. Those larvae that had been conditioned as embryos on alarm cues + predator odour showed a significant reduction in activity (i.e. anti-predator behavioural response) to predator odour relative to the other treatments. This is the first demonstration of acquired predator recognition by fish embryos.  相似文献   

20.
Summary.  Several freshwater invertebrate and vertebrate prey species rely on chemosensory cues, including non-injury released disturbance cues, to assess and avoid local predation threats. The prevailing hypothesis is that a pulse of ammonia released by disturbed or stressed prey functions as the disturbance cue. Here, we test this hypothesis in two phylogenetically distant freshwater prey fishes, convict cichlids and rainbow trout. In our first experiment, we measured NH4 + concentration in tanks containing shoals of cichlid or trout before and after exposure to a realistic model predator (or left undisturbed). We failed to find an increase in ambient NH4 + concentration for either cichlids or trout. In our second experiment, we exposed cichlids or trout to NH4 + at 0.1 or 0.5 mg L−1 (or a distilled water control) and measured the change in antipredator behaviour (time moving, foraging rate and area use). We found no consistent increase in antipredator behaviour in response to NH4 +. In our third study, we exposed cichlids and trout to the disturbance cues of cichlids or trout (versus the odour of undisturbed donors). We found significant increases in antipredator behaviour, regardless of donor species, for both cichlids and trout. Thus, the results of our first two experiments do not support the hypothesis that ammonium functions as a disturbance cue in prey fishes. However, the results of our final experiment do confirm the use of disturbance cues in convict cichlids and rainbow trout and support that hypothesis that the disturbance cue is indeed some generalized metabolic byproduct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号