首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The European Union's Natura 2000 (N2000) is among the largest international networks of protected areas. One of its aims is to secure the status of a predetermined set of (targeted) bird and butterfly species. However, nontarget species may also benefit from N2000. We evaluated how the terrestrial component of this network affects the abundance of nontargeted, more common bird and butterfly species based on data from long-term volunteer-based monitoring programs in 9602 sites for birds and 2001 sites for butterflies. In almost half of the 155 bird species assessed, and particularly among woodland specialists, abundance increased (slope estimates ranged from 0.101 [SD 0.042] to 3.51 [SD 1.30]) as the proportion of landscape covered by N2000 sites increased. This positive relationship existed for 27 of the 104 butterfly species (estimates ranged from 0.382 [SD 0.163] to 4.28 [SD 0.768]), although most butterflies were generalists. For most species, when land-cover covariates were accounted for these positive relationships were not evident, meaning land cover may be a determinant of positive effects of the N2000 network. The increase in abundance as N2000 coverage increased correlated with the specialization index for birds, but not for butterflies. Although the N2000 network supports high abundance of a large spectrum of species, the low number of specialist butterflies with a positive association with the N2000 network shows the need to improve the habitat quality of N2000 sites that could harbor open-land butterfly specialists. For a better understanding of the processes involved, we advocate for standardized collection of data at N2000 sites.  相似文献   

2.
Citizen science may be especially effective in urban landscapes due to the large pool of potential volunteers. However, there have been few evaluations of the contributions of citizen scientists to knowledge of biological communities in and around cities. To assess the effectiveness of citizen scientists' monitoring of species in urban areas, we compared butterfly data collected over 10 years in Chicago, Illinois (U.S.A.), and New York City, New York (U.S.A.). The dates, locations, and methods of data collection in Chicago were standardized, whereas data from New York were collected at any location at any time. For each city, we evaluated whether the number of observers, observation days (days on which observations were reported), and sampling locations were associated with the reported proportion of the estimated regional pool of butterfly species. We also compared the number of volunteers, duration of volunteer involvement, and consistency of sampling efforts at individual locations within each city over time. From 2001 to 2010, there were 73 volunteers in Chicago and 89 in New York. During this period, volunteers observed 86% and 89% of the estimated number of butterfly species present in Chicago and New York, respectively. Volunteers in New York reported a greater proportion of the estimated pool of butterfly species per year. In addition, more species were observed per volunteer and observation day in New York, largely due to the unrestricted sampling season in New York. Chicago volunteers were active for more years and monitored individual locations more consistently over time than volunteers in New York. Differences in monitoring protocol--especially length of sampling season and selection protocol for monitoring locations--influenced the relationship between species accrual and sampling effort, which suggests these factors are important in volunteer-based species-monitoring programs.  相似文献   

3.
Line transect sampling is an effective survey method for estimating butterfly densities because it provides unbiased estimates of site-density (provided key assumptions are met), and estimates are comparable among sites. For monitoring Karner blue butterflies in Wisconsin, USA, comparable estimates are required because each year a different selection of sites will be monitored. Annual state-wide indices of species abundance can be derived from the site-surveys and compared to previous year's indices to monitor trends. We advocate that line transect sampling is preferable to Pollard-Yates transects as a survey technique for monitoring Karner blue butter- flies. The Pollard-Yates surveys do not adjust for diferences in site detectability. As a consequence, estimates of among-site from Pollard-Yates surveys can be biased. © Rapid Science 1998  相似文献   

4.
Species phenology is increasingly being used to explore the effects of climate change and other environmental stressors. Long-term monitoring data sets are essential for understanding both patterns manifest by individual species and more complex patterns evident at the community level. This study used records of 78 butterfly species observed on 626 days across 27 years at a site in northern California, USA, to build quadratic logistic regression models of the observation probability of each species for each day of the year. Daily species probabilities were summed to develop a potential aggregate species richness (PASR) model, indicating expected daily species richness. Daily positive and negative contributions to PASR were calculated, which can be used to target optimum sampling time frames. Residuals to PASR indicate a rate of decline of 0.12 species per year over the course of the study. When PASR was calculated for wet and dry years, wet years were found to delay group phenology by up to 17 days and reduce the maximum annual expected species from 32.36 to 30. Three tests to determine how well the PASR model reflected the butterfly fauna dynamics were all positive: We correlated probabilities developed with species presence/absence data to observed abundance by species, tested species' predicted phenological patterns against known biological characteristics, and compared the PASR curve to a spline-fitted curve calculated from the original species richness observations. Modeling individual species' flight windows was possible from presence/absence data, an approach that could be used on other similar records for butterfly communities with seasonal phenologies, and for common species with far fewer dates than used here. It also provided a method to assess sample frequency guidelines for other butterfly monitoring programs.  相似文献   

5.
Nitrogen (N) deposition from agriculture and combustion of fossil fuels is a major threat to plant diversity, but its effects on organisms at higher trophic levels are unclear. We investigated how N deposition may affect species richness and abundance (number of individuals per species) in butterflies. We reviewed the peer-reviewed literature on variables used to explain spatial variation in butterfly species richness and found that vegetation variables appeared to be as important as climate and habitat variables in explaining butterfly species richness. It thus seemed likely that increased N deposition could indirectly affect butterfly communities via its influence on plant communities. To test this prediction, we analyzed data from the Swiss biodiversity monitoring program for vascular plants and butterflies in 383 study sites of 1 km2 that are evenly distributed throughout Switzerland. The area has a modeled N deposition gradient of 2–44 kg N ha−1 year−1. We used traditional linear models and structural equation models to infer the drivers of the spatial variation in butterfly species richness across Switzerland. High N deposition was consistently linked to low butterfly diversity, suggesting a net loss of butterfly diversity through increased N deposition. We hypothesize that at low elevations, N deposition may contribute to a reduction in butterfly species richness via microclimatic cooling due to increased plant biomass. At higher elevations, negative effects of N deposition on butterfly species richness may also be mediated by reduced plant species richness. In most butterfly species, abundance was negatively related to N deposition, but the strongest negative effects were found for species of conservation concern. We conclude that in addition to factors such as intensified agriculture, habitat fragmentation, and climate change, N deposition is likely to play a key role in negatively affecting butterfly diversity and abundance.  相似文献   

6.
Citizen scientists are increasingly engaged in gathering biodiversity information, but trade‐offs are often required between public engagement goals and reliable data collection. We compared population estimates for 18 widespread butterfly species derived from the first 4 years (2011–2014) of a short‐duration citizen science project (Big Butterfly Count [BBC]) with those from long‐running, standardized monitoring data collected by experienced observers (U.K. Butterfly Monitoring Scheme [UKBMS]). BBC data are gathered during an annual 3‐week period, whereas UKBMS sampling takes place over 6 months each year. An initial comparison with UKBMS data restricted to the 3‐week BBC period revealed that species population changes were significantly correlated between the 2 sources. The short‐duration sampling season rendered BBC counts susceptible to bias caused by interannual phenological variation in the timing of species’ flight periods. The BBC counts were positively related to butterfly phenology and sampling effort. Annual estimates of species abundance and population trends predicted from models including BBC data and weather covariates as a proxy for phenology correlated significantly with those derived from UKBMS data. Overall, citizen science data obtained using a simple sampling protocol produced comparable estimates of butterfly species abundance to data collected through standardized monitoring methods. Although caution is urged in extrapolating from this U.K. study of a small number of common, conspicuous insects, we found that mass‐participation citizen science can simultaneously contribute to public engagement and biodiversity monitoring. Mass‐participation citizen science is not an adequate replacement for standardized biodiversity monitoring but may extend and complement it (e.g., through sampling different land‐use types), as well as serving to reconnect an increasingly urban human population with nature.  相似文献   

7.
Although most insects are vulnerable to predation by a variety of predators, including birds, there are few direct observational studies in the wild of avian predation on adult butterflies. We examined the predatory behavior of smooth-billed anis (Crotophaga ani) on butterflies, and the spacing behavior of the butterflies which were concentrated on a mineral-rich beach on the Cristalino River, in Mato Grosso, Brazil. We studied eight of the most regularly occurring butterfly species which came each morning to engage in "puddling." Most species of butterfly were closely associated with conspecifics, although nearest-neighbor distance varied among species. The pierids - "yellows" (Aphrissa statira, Phoebis trite), "oranges" (Phoebis argante), and sometimes "whites" (Daptoneura leucadia) - formed very dense groups (or clusters) of up to 1,000 individuals occasionally joined by a few kite swallowtails (Eurytides spp.). Most other butterfly species formed small groups (e.g., daggerwings, Marpesia spp.) or were dispersed individually and non-clumped over the beach (e.g., dingy purplewing, Eunica monima). Anis foraged using two strategies: rapid frontal attack on dense groups of butterflies (yellows, oranges, whites), and a stealthy approach to solitary butterflies (mainly purplewings) or those in small groups. For yellows, the most common butterfly caught by anis, the capture rate reached over 6 per 15 min per ani, and about 8% of those captured managed to escape. Capture rates were much lower for the other species. Time of day, age of the ani (adult or young-of-the-year), and total number of each butterfly species present accounted for variation in the number of each species captured by anis. The number of butterflies captured per 15 min increased as the number of butterflies present increased, but reached a threshold beyond which the capture rate did not increase. The capture rate per individual butterfly (individual risk) decreased with group size up to a group of 40 individuals and remained low with further increases. Thus a butterfly in a group of 100 was no less likely to be eaten than one in a group of 40. For individual ani forays into dense groups of pierids, an individual ani was unable to catch more than 16, regardless of group size. These data confirm the dilution effect of group size for butterflies; each individual yellow or orange was less at risk from ani predation when in a group.  相似文献   

8.
The potential of linear strips of vegetation to act as corridors to facilitate dispersal is examined for three taxa of insects in lowland rain forest in northeastern Australia. The taxa selected were ants, butterflies, and dung beetles, all of which are taxonomically well known and could be considered bioindicator groups. The sampling design encompassed four habitats, namely rain-forest interior, rain-forest edge, rain-forest linear strip (corridor), and arable land. Ants and dung beetles were sampled using baited pitfall traps, and visual surveys were used to census butterflies. Potential increase in dispersal was examined by first identifying those species that specialized on the rain-forest interior habitat and then determining whether these species were present in the linear strips as opposed to the surrounding arable land. Two species of butterfly and two species of dung beetle were identified as rain-forest interior specialists, and two of these species were found in the linear strips but not in the arable habitat. This result supports the concept that the presence of corridors can increase the potential for dispersal of these species. But the remaining rain-forest interior species did not occur in the linear strips, which suggests that corridors will not increase dispersal for these species.  相似文献   

9.
Insects that hibernate as adults have a life span of almost a whole year. Hence, they must have extraordinary adaptations for adult survival. In this paper, we study winter survival in two butterflies that hibernate as adults and have multimodal anti-predator defences—the peacock, Inachis io, which has intimidating eyespots that are effective against bird predation, and the small tortoiseshell, Aglais urticae, which does not have an effective secondary defence against birds. We assessed predation on wild butterflies hibernating in the attic of an unheated house, as well as survival of individually marked butterflies placed by hand on different sites in the attic. Our objectives were to assess (1) the number of butterflies that were killed during hibernation, (2) whether survival differed between butterfly species, and (3) how predation was related to hibernation site and the identity of the predator. There was a strong pulse of predation during the first 2 weeks of hibernation: 58% of A. urticae and 53% of I. io were killed during this period. Thereafter, predation decreased and butterfly survival equalled 98% during the final 16 weeks of hibernation. There was no difference in survival between the two butterfly species, but predation was site-specific and more pronounced under light conditions in locations accessible to a climbing rodent, such as the common yellow-necked mouse, Apodemus flavicollis. We contend that small rodents are likely important predators on overwintering butterflies, both because rodents are active throughout winter when butterflies are torpid and because they occur at similar sites.  相似文献   

10.
Current Trends in Plant and Animal Population Monitoring   总被引:3,自引:0,他引:3  
Abstract:  Animal and plant population monitoring programs are critical for identifying species at risk, evaluating the effects of management or harvest, and tracking invasive and pest species. Nevertheless, monitoring activities are highly decentralized, which makes it difficult for researchers or conservation planners to get a good general picture of what real-world monitoring programs actually entail. We used a Web-based survey to collect information on population monitoring programs. The survey focused on basic questions about each program, including motivations for monitoring, types of data being collected, spatiotemporal design of the program, and reasons for choosing that design. We received responses from 311 people involved in monitoring of various species and used these responses to summarize ongoing monitoring efforts. We also used responses to determine whether monitoring strategies have changed over time and whether they differed among monitoring agencies. Most commonly, monitoring entailed collection of count data at multiple sites with the primary goal of detecting trends. But we also found that goals and strategies for monitoring appeared to be diversifying, that area-occupied and presence–absence approaches appeared to be gaining in popularity, and that several other promising approaches (monitoring to reduce parameter uncertainty, risk-based monitoring, and directly linking monitoring data to management decisions) have yet to become widely established. We suggest that improved communication between researchers studying monitoring designs and those who are charged with putting these designs into practice could further improve monitoring programs and better match sampling designs to the objectives of monitoring programs.  相似文献   

11.
Abstract: Determining population viability of rare insects depends on precise, unbiased estimates of population size and other demographic parameters. We used data on the endangered St. Francis' satyr butterfly (Neonympha mitchellii francisci) to evaluate 2 approaches (mark–recapture and transect counts) for population analysis of rare butterflies. Mark–recapture analysis provided by far the greatest amount of demographic information, including estimates (and standard errors) of population size, detection, survival, and recruitment probabilities. Mark–recapture analysis can also be used to estimate dispersal and temporal variation in rates, although we did not do this here. Models of seasonal flight phenologies derived from transect counts (Insect Count Analyzer) provided an index of population size and estimates of survival and statistical uncertainty. Pollard–Yates population indices derived from transect counts did not provide estimates of demographic parameters. This index may be highly biased if detection and survival probabilities vary spatially and temporally. In terms of statistical performance, mark–recapture and Pollard–Yates indices were least variable. Mark–recapture estimates were less likely to fail than Insect Count Analyzer, but mark–recapture estimates became less precise as sampling intensity decreased. In general, count‐based approaches are less costly and less likely to cause harm to rare insects than mark–recapture. The optimal monitoring approach must reconcile these trade‐offs. Thus, mark–recapture should be favored when demographic estimates are needed, when financial resources enable frequent sampling, and when marking does not harm the insect populations. The optimal sampling strategy may use 2 sampling methods together in 1 overall sampling plan: limited mark–recapture sampling to estimate survival and detection probabilities and frequent but less expensive transect counts.  相似文献   

12.
Ecological Correlates of Extinction Proneness in Tropical Butterflies   总被引:7,自引:0,他引:7  
Abstract:  Widespread and rapid losses of natural habitats and biodiversity have made the identification of extinction-prone species a major challenge in conservation biology. We assessed the relative importance of biologically relevant species traits (e.g., body size, ecological specialization) obtained from published records to determine the extinction probability of butterflies in a highly disturbed tropical landscape (i.e., Singapore). We also developed a taxon-specific model to estimate the extinction proneness of butterflies in Southeast Asia. Logistic regression analyses showed that adult habitat specialization, larval host plant specificity, geographical distribution, sexual dichromatism, and congenor density were significant and independent determinants of butterfly extinctions in Singapore. Among these traits, specificity of larval host plant and adult habitat specialization were the best correlates of extinction risks. We used this phenomenological extinction-regression model to estimate the relative extinction proneness of 416 butterfly species in Southeast Asia. Our results illustrate the utility of available taxon-specific data for a localized area in estimating the extinction proneness of closely related species on a regional scale. When intensive field studies are not forthcoming, especially in regions suffering from rapid biodiversity losses (e.g., Southeast Asia), similar approaches could be used to estimate extinction threats for other taxonomic groups.  相似文献   

13.
Summary This paper is the fourth in a series on cardenolide fingerprints of monarch butterflies (Danaus plexippus, Danainae) and their host-plant milkweeds (Asclepiadaceae) in the eastern United States. Cardenolide concentrations ofAsclepias humistrata plants from north central Florida ranged from 71 to 710 µg/0.1 g dry weight, with a mean of 417 µg/0.1 g. Monarchs reared individually on these plants contained cardenolide concentrations ranging from 243 to 575 µg/0.1 g dry weight, with a mean of 385 µg/0.1 g. Cardenolide uptake by butterflies was independent of plant concentration, suggesting that sequestration saturation occurs in monarchs fed cardenolide-rich host plants. Thinlayer chromatography resolved 19 cardenolides in the plants and 15 in the butterflies. In addition to humistratin,A. humistrata plants contained several relatively non-polar cardenolides of the calotropagenin series which are metabolized to more polar derivatives in the butterflies. These produced a butterfly cardenolide fingerprint clearly distinct from those previously established for monarchs reared on otherAsclepias species. In emetic assays with the blue jay,Cyanocitta cristata, the 50% emetic dose (ED50) per jay was 57.1 µg, and the average number of ED50 units per butterfly was 13.8, establishing that this important south eastern milkweed produces highly emetic, chemically defended monarchs. Our data provide further support for the use of cardenolide fingerprints of wild-caught monarchs to make ecological predictions concerning defence against natural enemies, seasonal movement and larval host-plant utilization by monarch butterflies during their annual cycle of migration, breeding and overwintering.  相似文献   

14.
Abstract:  Monitoring natural populations is often a necessary step to establish the conservation status of species and to help improve management decisions. Nevertheless, many monitoring programs do not effectively address primary sources of variability in monitoring data, which ultimately may limit the utility of monitoring in identifying declines and improving management. To illustrate the importance of taking into account detectability and spatial variation, we used a recently proposed estimator of abundance (superpopulation estimator) to estimate population size of and number of young produced by the Snail Kite ( Rostrhamus sociabilis plumbeus ) in Florida. During the last decade, primary recovery targets set by the U.S. Fish and Wildlife Service for the Snail Kite that were based on deficient monitoring programs (i.e., uncorrected counts) were close to being met (by simply increasing search effort during count surveys). During that same period, the Snail Kite population declined dramatically (by 55% from 1997 to 2005) and the number of young decreased by 70% between 1992–1998 and 1999–2005. Our results provide a strong practical case in favor of the argument that investing a sufficient amount of time and resources into designing and implementing monitoring programs that carefully address detectability and spatial variation is critical for the conservation of endangered species.  相似文献   

15.
Male butterflies compete over mating territories via aerial interactions. It has often been suggested that flight performance, and thus flight-related traits, would play an important role in butterflies’ contest resolution; however, most studies have not demonstrated a clear relationship between these traits and territory ownership in butterflies. Males of the satyrine butterfly Lethe diana compete over territories via linear chases, a behavior that is uncommon among butterflies: rather, contests of most butterfly species consist of circling flights. In the present study, some morphological and physiological traits of L. diana were compared between territory owners and intruders to search for traits correlated with resource holding power (RHP). Territory owners had higher flight-muscle ratio (FMR) and were heavier than intruders, indicating that flight performance plays a key role in their contest resolution. Contest duration was not affected by the owners’ FMR or body mass, and thus I obtained no evidence supporting the hypothesis that contestants assess their relative RHP before making a decision to retreat. I speculate that the fact that these traits had an effect on territorial status in L. diana was a result of the characteristics of the contest behavior of this butterfly. During their contests, males L. diana fly faster in their linear flights than males of most other butterflies, which engage in slower circling flights. Therefore, males of L. diana probably need higher flight performance capabilities in order to win their contests.  相似文献   

16.
Butterfly populations are naturally patchy and undergo extinctions and recolonizations. Analyses based on more than 2 decades of data on California's Central Valley butterfly fauna show a net loss in species richness through time. We analyzed 22 years of phenological and faunistic data for butterflies to investigate patterns of species richness over time. We then used 18–22 years of data on changes in regional land use and 37 years of seasonal climate data to develop an explanatory model. The model related the effects of changes in land‐use patterns, from working landscapes (farm and ranchland) to urban and suburban landscapes, and of a changing climate on butterfly species richness. Additionally, we investigated local trends in land use and climate. A decline in the area of farmland and ranchland, an increase in minimum temperatures during the summer and maximum temperatures in the fall negatively affected net species richness, whereas increased minimum temperatures in the spring and greater precipitation in the previous summer positively affected species richness. According to the model, there was a threshold between 30% and 40% working‐landscape area below which further loss of working‐landscape area had a proportionally greater effect on butterfly richness. Some of the isolated effects of a warming climate acted in opposition to affect butterfly richness. Three of the 4 climate variables that most affected richness showed systematic trends (spring and summer mean minimum and fall mean maximum temperatures). Higher spring minimum temperatures were associated with greater species richness, whereas higher summer temperatures in the previous year and lower rainfall were linked to lower richness. Patterns of land use contributed to declines in species richness (although the pattern was not linear), but the net effect of a changing climate on butterfly richness was more difficult to discern. Contribución de la Expansión Urbana y un Clima Cambiante a la Declinación de la Fauna de Mariposas  相似文献   

17.
Quantifying the manner in which ecological communities respond during a time of decreasing precipitation is a first step in understanding how they will respond to longer-term climate change. Here we coupled analysis of interannual variability in remotely sensed data with analyses of bird and butterfly community changes in montane meadow communities of the Greater Yellowstone Ecosystem. Landsat satellite imagery was used to classify these meadows into six types along a hydrological gradient. The northern portion of the ecosystem, or Gallatin region, has smaller mean patch sizes separated by ridges of mountains, whereas the southern portion of the ecosystem, or Teton region, has much larger patches within the Jackson Hole valley. Both support a similar suite of butterfly and bird species. The Gallatin region showed more overall among-year variation in the normalized difference vegetation index (NDVI) when meadow types were pooled within regions, perhaps because the patch sizes are smaller on average. Bird and butterfly communities showed significant relationships relative to meadow type and NDVI. We identified several key species that are tightly associated with specific meadow types along the hydrological gradient. Comparing taxonomic groups, fewer birds showed specific habitat affinities than butterflies, perhaps because birds are responding to differences in habitat structure among meadow types and using the landscape at a coarser scale than the butterflies. Comparing regions, the Teton region showed higher predictability of community assemblages as compared to the Gallatin region. The Gallatin region exhibited more significant temporal trends with respect to butterflies. Butterfly communities in wet meadows showed a distinctive shift along the hydrological gradient during a drought period (1997-2000). These results imply that the larger Teton meadows will show more predictable (i.e., static) species-habitat associations over the long term, but that the smaller Gallatin meadows may be an area that will exhibit the effects of global climate change faster.  相似文献   

18.
Abstract:  BirdLife International's Important Bird Areas (IBA) program is the most developed global system for identifying sites of conservation priority. There have been few assessments, however, of the conservation value of IBAs for nonavian taxa. We combined past data with extensive new survey results for Uganda's IBAs in the most comprehensive assessment to date of the wider biodiversity value of a tropical country's IBA network. The combined data set included more than 35,000 site × species records for birds, butterflies, and woody plants at 86 Ugandan sites (23,400 km2), including 29 of the country's 30 IBAs, with data on additional taxa for many sites. Uganda's IBAs contained at least 70% of the country's butterfly and woody plant species, 86% of its dragonflies and 97% of its birds. They also included 21 of Uganda's 22 major vegetation types. For butterflies, dragonflies, and some families of plants assessed, species of high conservation concern were well represented (less so for the latter). The IBAs successfully represented wider biodiversity largely because many have distinctive avifaunas and, as shown by high cross-taxon congruence in complementarity, such sites tended to be distinctive for other groups too. Cross-taxon congruence in overall species richness was weaker and mainly associated with differences in site size. When compared with alternative sets of sites selected using complementarity-based, area-based, or random site-selection algorithms, the IBA network was efficient in terms of the number of sites required to represent species but inefficient in terms of total area. This was mainly because IBA selection considers factors other than area, however, which probably improves both the cost-effectiveness of the network and the persistence of represented species.  相似文献   

19.
Effects of Selective Logging on the Butterflies of a Bornean Rainforest   总被引:7,自引:0,他引:7  
Abstract: Selective logging has been the main cause of disturbance to tropical forests in Southeast Asia, so the extent to which biodiversity is maintained in selectively logged forest is of prime conservation importance. We compared the butterfly assemblages of Bornean primary rainforest to those of rainforest selectively logged 6 years previously. We sampled by means of replicated transects stratified into riverine and ridge forests and we included roads in the logged forest. There was a three-fold variation in species richness and abundance over the 8-month sampling period. More species and individuals were observed in the logged forest, although between-replicate variability was high. Rarefied species richness was positively correlated with canopy openness within the range of disturbance levels encountered at our forest sites. Within families, there was no significant difference in the number of species between primary and logged forest. There was a significant difference in the relative abundance of species, but this was due largely to the abundance of one or two species. Community ordination separated the sites along a gradient of disturbance and revealed strong differences between riverine and ridge-forest butterfly assemblages in primary forest that were obscured in logged forest. There was no evidence that logging has resulted in a change in the composition of the butterfly assemblages from species with a local distribution to more widespread species. We conclude that at a logged forest site in close proximity to primary forest, low intensities of logging do not necessarily reduce the species richness or abundance of butterflies, although assemblage composition is changed.  相似文献   

20.
Ovaskainen O  Rekola H  Meyke E  Arjas E 《Ecology》2008,89(2):542-554
Spatially referenced mark-recapture data are becoming increasingly available, but the analysis of such data has remained difficult for a variety of reasons. One of the fundamental problems is that it is difficult to disentangle inherent movement behavior from sampling artifacts. For example, in a typical study design, short distances are sampled more frequently than long distances. Here we present a modeling-based alternative that combines a diffusion-based process model with an observation model to infer the inherent movement behavior of the species from the data. The movement model is based on classifying the landscape into a number of habitat types, and assuming habitat-specific diffusion and mortality parameters, and habitat selection at edges between the habitat types. As the problem is computationally highly intensive, we provide software that implements adaptive Bayesian methods for effective sampling of the posterior distribution. We illustrate the modeling framework by analyzing individual mark-recapture data on the Glanville fritillary butterfly (Melitaea cinxia), and by comparing our results with earlier ones derived from the same data using a purely statistical approach. We use simulated data to perform an analysis of statistical power, examining how accuracy in parameter estimates depends on the amount of data and on the study design. Obtaining precise estimates for movement rates and habitat preferences turns out to be especially challenging, as these parameters can be highly correlated in the posterior density. We show that the parameter estimates can be considerably improved by alternative study designs, such as releasing some of the individuals into the unsuitable matrix, or spending part of the recapture effort in the matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号