首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Alkylphenol ethoxylates are widely used as detergents, emulsifiers, solubilizers, wetting agents and dispersants. Octylphenol (OP) ethoxylates, one of alkylphenol ethoxylates, represent 15–20% of the market, and their metabolic residues may be discharged to surface waters, sediments and soils as a persistent and ubiquitous pollutant. We tested the response of Arabidopsis thaliana to different concentrations of OP. OP affected the germination percentage and mean germination period. 10 d treatment with OP, especially high concentration (10 and 50 mg L−1), decreased shoot and root biomass and root length of 30 d-old A. thaliana. Content of chlorophyll was decreased but that of proline was increased in leaves with OP treatment. OP caused oxidative stress in leaves; malondialdehyde content was increased, and the activities of ascorbate peroxidase, catalase and superoxide dismutase were induced. OP affects the physiologic and morphologic features of A. thaliana during growth. Because plants might be exposed to OP for a long time in the surroundings, more attention needs to be paid to the effect of OP on plants.  相似文献   

4.
5.
We used Caenorhabditis elegans to investigate whether acute exposure to TiO2-NPs at the concentration of 20 μg L−1 reflecting predicted environmental relevant concentration and 25 mg L−1 reflecting concentration in food can cause toxicity on nematodes with mutations of susceptible genes. Among examined mutants associated with oxidative stress and stress response, we found that genes of sod-2, sod-3, mtl-2, and hsp-16.48 might be susceptible for TiO2-NPs toxicity. Mutations of these genes altered functions of both possible primary and secondary targeted organs in nematodes exposed to 25 mg L−1 of TiO2-NPs for 24-h. Mutations of these genes caused similar expression patterns of genes required for oxidative stress in TiO2-NPs exposed mutant nematodes, implying their similar mechanisms to form the susceptible property. Nevertheless, acute exposure to 20 μg L−1 of TiO2-NPs for 24-h and 25 mg L−1 of TiO2-NPs for 0.48-h or 5.71-h did not influence functions of both possible primary and secondary targeted organs in sod-2, sod-3, mtl-2, and hsp-16.48 mutants. Therefore, our results suggest the relatively safe property of acute exposure to TiO2-NPs with certain durations at predicted environmental relevant concentrations or concentrations comparable to those in food in nematodes with mutations of some susceptible genes.  相似文献   

6.
Mechora S  Cuderman P  Stibilj V  Germ M 《Chemosphere》2011,84(11):1636-1641
The uptake of Se (VI) by two aquatic plants, Myriophyllum spicatum L. and Ceratophyllum demersum L., and its effects on their physiological characteristics have been studied. Plants were cultivated outdoors under semi-controlled conditions and in two concentrations of Na selenate solution (20 μg Se L−1 and 10 mg Se L−1). The higher dose of Se reduced the photochemical efficiency of PSII in both species, while the lower dose had no effect on PSII. Addition of Se had no effect on the amounts of chlorophyll a and b. The concentration of Se in plants grown in 10 mg Se L−1, averaged 212 ± 12 μg Se g−1 DM in M. spicatum (grown from 8-13 d), and 492 ± 85 μg Se g−1 DM in C. demersum (grown for 31 d). Both species could take up a large amount of Se. The amount of soluble Se compounds in enzyme extracts ranged from 16% to 26% in control, and in high Se solution from 48% to 36% in M. spicatum and C. demersum, respectively. Se-species were determined using HPLC-ICP-MS. The main soluble species in both plants was selenate (∼37%), while SeMet and SeMeSeCys were detected at trace levels.  相似文献   

7.
Jeong S  Moon HS  Nam K  Kim JY  Kim TS 《Chemosphere》2012,88(2):204-210
In this study, phosphate-solubilizing bacteria (PSB), Bacillus megaterium, were used to enhance Cd bioavailability and phytoextractability of Cd from contaminated soils. This strain showed a potential for directly solubilizing phosphorous from soils more than 10 folds greater than the control without inoculation. The results of pot experiments revealed that inoculation with B. megaterium significantly increased the extent of Cd accumulation in Brassica juncea and Abutilon theophrasti by two folds relative to the uninoculated control. The maximum Cd concentrations due to inoculation were 1.6 and 1.8 mg Cd g−1 plant for B. juncea and A. theophrasti after 10 wk, respectively. The total biomass of A. theophrasti was not significantly promoted by the inoculation treatment, yet the total biomass of B. juncea increased from 0.087 to 0.448 g. It is also worth to mention that B. juncea predominantly accumulates Cd in its stems (39%) whereas A. theophrasti accumulates it in its leaves (68%) after 10 wk. The change of the Cd speciation indicated that inoculation of B. megaterium as PSB increased the bioavailabilty of Cd and consequently enhanced its uptake by plants. The present study may provide a new insight for improving phytoremediation using PSB in the Cd-contaminated soils.  相似文献   

8.
Wang C  Zhang S  Wang P  Hou J  Qian J  Ao Y  Lu J  Li L 《Chemosphere》2011,84(1):136-142
In this study, the alterations in nutrient elements content, reactive oxygen species level and antioxidant response were studied in leaves of Vallisneria natans (Lour.) Hara exposed to salicylic acid (SA, 10 or 100 μM), or Pb (50 μM) or their combinations for 4 d. No significant alterations in Mn and Ca content were observed but content of Cu, Zn, Fe and P decreased in plants exposed to SA alone. SA application inhibited the uptake of Pb and partially reversed Pb-induced the alterations in Mn, Ca and Fe content in leaves of V. natans exposed to 50 μM Pb. The decreased chlorophyll (a + b) and increased malondialdehyde and O2− and H2O2 content were detected in plants exposed to 100 μM SA, 50 μM Pb, 10 μM SA + 50 μM Pb or 100 μM SA + 50 μM Pb. Application SA partially inhibited Pb-induced the increase of malondialdehyde, O2− and H2O2 content. 100 μM SA decreased the activity of NADH oxidase and the content of non-protein thiols, carotenoids and ascorbic acid and increased the content of dehydroascorbate in plants treated with or without Pb. SA alone decreased the ascorbate peroxidase activity and increased the catalase and peroxidase activity, while SA application increased catalase activity but had no significant effect on ascorbate peroxidase and peroxidase activity in V. natans exposed to Pb. The results indicate that SA involves in the regulation of Pb uptake, nutrient balance and oxidative stress.  相似文献   

9.
Sesuvium portulacastrum (L.) L., a facultative halophyte, is considered a suitable candidate for the phytoremediation of metals. An investigation of As accumulation and tolerance was conducted in Sesuvium plants upon exposure to As(V) (100-1000 μM) for 30 d. Plants demonstrated a good growth even after prolonged exposure (30 d) to high As(V) concentrations (1000 μM) and a significant As accumulation (155 μg g−1 dry weight) with a bioaccumulation factor of more than ten at each concentration. The results of shoot and root dry weight, malondialdehyde accumulation, photosynthetic pigments, and total soluble proteins demonstrated that plants did not experience significant toxicity even at 1000 μM As(V) after 30 d. However, metabolites (total non-protein thiols and cysteine) and enzymes (serine acetyltransferase, cysteine synthase and γ-glutamylcysteine synthetase) of thiol metabolism, in general, remained either unaffected or showed slight decline. Hence, plants tolerated high As(V) concentrations without an involvement of thiol metabolism as a major component. Taken together, the results indicate that plants are potential As accumulator and may find application in the re-vegetation of As contaminated sites.  相似文献   

10.
Four microbial species (Kocuria rhizophila, Microbacterium resistens, Staphylococcus equorum and Staphylococcus cohnii subspecies urealyticus) were isolated from the rhizospheric zone of selected plants growing in a lindane contaminated environment and acclimatized in lindane spiked media (5-100 μg mL−1). The isolated species were inoculated with soil containing 5, 50 and 100 mg kg−1 of lindane and incubated at room temperature. Soil samples were collected periodically to evaluate the microbial dissipation kinetics, dissipation rate, residual lindane concentration and microbial biomass carbon (MBC). There was a marked difference (p < 0.05) in the MBC content and lindane dissipation rate of microbial isolates cultured in three different lindane concentrations. Further, the dissipation rate tended to decrease with increasing lindane concentrations. After 45 d, the residual lindane concentrations in three different spiked soils were reduced to 0%, 41% and 33%, respectively. Among the four species, S. cohnii subspecies urealyticus exhibited maximum dissipation (41.65 mg kg−1) and can be exploited for the in situ remediation of low to medium level lindane contaminated soils.  相似文献   

11.
Glyphosate use has increased over the last decades for the control of invasive plant species in wetland ecosystems. Although glyphosate has been considered ‘environmentally’ safe, its repeated use could increase the toxicological risk derived from diffuse pollution of surface and groundwater on non-target vegetation. A glasshouse study was designed to determine the effect produced by the addition of different sub-lethal doses of glyphosate herbicides (5–30 mg L−1) to the nutrient solution on the growth and photosynthetic apparatus of Bolboschoenus maritimus. Although B. maritimus plants were able to grow and survive after 20 d of exposure to glyphosate, the presence of this herbicide affected their growth, through a direct interaction with the root system. Particularly, at 30 mg L−1 glyphosate, B. maritimus showed ca. 30% of biomass decrease. The reduction in B. maritimus growth was due to a decrease in net photosynthetic rate (A), which ranged between values ca. 11.5 and 5.5 μmol m−2 s−1 CO2 for the control and the highest glyphosate treatment, respectively. The response of A to glyphosate could be largely accounted for by non-stomatal limitations, since stomatal conductance was similar in all glyphosate treatments. Thus, A decrease was prompted by the negative impact of herbicide on photochemical (PSII) apparatus, the reduction in the absorption of essential nutrients, the reduction of photosynthetic pigments and possibly the reduction in Rubisco carboxilation capacity. Moreover, glyphosate excess caused photoinhibitory damage. In conclusion, in this study we have shown that herbicide water pollution could be a source of indirect phytotoxicity for B. maritimus.  相似文献   

12.
A field survey and greenhouse experiments were conducted using Physalis alkekengi L. to investigate strategies of phytoremediation. In addition, ZnO nanoparticles were synthesized using P. alkekengi. P. alkekengi plants grew healthily at Zn levels from 50 to 5000 mg kg−1 in soils. The plants incorporated Zn into their aerial parts (with mean dry weight values of 235-10,980 mg kg−1) and accumulated biomass (with a mean dry weight of 25.7 g plant−1) during 12 weeks. The synthesized ZnO nanoparticles showed a polydisperse behavior and had a mean size of 72.5 nm. The results indicate that P. alkekengi could be used for the remediation of zinc-contaminated soils. Moreover, the synthetic method of synthesizing ZnO nanoparticles from Zn hyperaccumulator plants constitutes a new insight into the recycling of metals in plant sources.  相似文献   

13.
Zhou Q  Diao C  Sun Y  Zhou J 《Chemosphere》2012,86(10):994-1000
The growth, photosynthesis rate, and ultrastructure of Mirabilis jalapa L. as a newly-found remediation species under stress of nitrobenzene (NB) and its uptake and removal of NB by the plants were investigated. The results showed that M. jalapa plants could endure contaminated soils by lower than 10.0 mg NB kg−1 because there was no decrease in the total length of the plant roots, the maximum length of the hypocotyle, the length of the first seminal root, the height of the shoots and the dry biomass of the seedlings as well as the photosynthesis rate of the plants compared with those in the control. In particular, the growth of the plants could be significantly (< 0.01) enhanced by 0.1 mg NB kg−1 under unautoclaved and autoclaved soils. Ultrastructural observations on leaf cells of the plants found that these cells had smooth, clean and continuous cell membranes and cell walls, indicating that there was no obvious damage by NB in comparison with those in the control. Although the absorption of NB in shoots and roots of M. jalapa was weak, plant-promoted biodegradation of NB was considerable and the dominant contribution in the removal of NB from contaminated soils, suggesting the feasibility of M. jalapa applied to phytoremediation of NB contaminated soils.  相似文献   

14.
Biodiesel fuel is gradually replacing petroleum-based diesel oil use. Despite the biodiesel being considered friendlier to the environment, little is known about its effects in aquatic organisms. In this work we evaluated whether biodiesel exposure can affect oxidative stress parameters and biotransformation enzymes in armored catfish (Pterygoplichthys anisitsi, Loricariidae), a South American endemic species. Thus, fish were exposed for 2 and 7 d to 0.01 mL L−1 and 0.1 mL L−1 of pure diesel, pure biodiesel (B100) and blends of diesel with 5% (B5) and 20% (B20) biodiesel. Lipid peroxidation (malondialdehyde) levels and the activities of the enzymes glutathione S-transferase, superoxide dismutase, catalase and glutathione peroxidase were measured in liver and gills. Also, DNA damage (8-oxo-7, 8-dihydro-2′-deoxyguanosine) levels in gills and 7-ethoxyresorufin-O-deethylase activity in liver were assessed. Pure diesel, B5 and B20 blends changed most of the enzymes tested and in some cases, B5 and B20 induced a higher enzyme activity than pure diesel. Antioxidant system activation in P. anisitsi was effective to counteract reactive oxygen species effects, since DNA damage and lipid peroxidation levels were maintained at basal levels after all treatments. However, fish gills exposed to B20 and B100 presented increased lipid peroxidation. Despite biodiesel being more biodegradable fuel that emits less greenhouse gases, the increased lipid peroxidation showed that biofuel and its blends also represent hazards to aquatic biota.  相似文献   

15.
Root and shoot lead concentrations and the impact of chelating agents on these were investigated in two populations of the novel metallophyte Matthiola flavida. Plants were exposed in hydroponics to Pb(NO3)2, supplied alone, or in combination with citric acid, or EDDS. When supplied at concentrations expected to bind about 95% of the Pb in a solution containing 1-μM Pb (1000 μM citrate or 3.1 μM EDDS, respectively), the root and shoot Pb concentrations were dramatically lowered, in comparison with a 1-μM free ionic Pb control exposure. A 1-mM EDDS + 1-μM Pb treatment decreased the plants’ Pb concentrations further, even to undetectable levels in one population. At 100 μM Pb in a 1-mM EDDS-amended solution the Pb concentration increased strongly in shoots, but barely in roots, in comparison with the 1-μM Pb + 1-mM EDDS treatment, without causing toxicity symptoms. Further increments of the Pb concentration in the 1-mM EDDS-amended solution, i.e. to 800 and 990 μM, caused Pb hyperaccumulation, both in roots and in shoots, associated with a complete arrest of root growth and foliar necrosis. M. flavida seemed to be devoid of constitutive mechanisms for uptake of Pb-citrate or Pb-EDDS complexes. Hyperaccumulation of Pb-EDDS occurred only at high exposure levels. Pb-EDDS was toxic, but is much less so than free Pb. Free EDDS did not seem to be toxic at the concentrations tested.  相似文献   

16.
Phytoremediation is a promising and cost-effective strategy to manage heavy metal polluted sites. In this experiment, we compared simultaneously phytoextraction and phytostabilisation techniques on a Cd and Zn contaminated soil, through monitoring of plant accumulation and leaching. Lolium perenne plants were cultivated for 2 months under controlled environmental conditions in a 27.6 dm3-pot experiment allowing the collect of leachates. The heavy metal phytoextraction was promoted by adding Na-EDTA (0.5 g kg−1 of soil) in watering solution. Phytostabilisation was assessed by mixing soil with steel shots (1%) before L. perenne sowing. Presence of plants exacerbated heavy metal leaching, by improving soil hydraulic conductivity. Use of EDTA for phytoextraction led to higher concentration of heavy metal in shoots. However, this higher heavy metal extraction was insufficient to satisfactory reduce the heavy metal content in soil, and led to important heavy metal leaching induced by EDTA. On the other hand, addition of steel shots efficiently decreased both Cd and Zn mobility, according to 0.01 M CaCl2 extraction, and leaching. However, improvement of growth conditions by steel shots led to higher heavy metal mass in shoot tissues. Therefore, soil heavy metal mobility and plant metal uptake are not systematically positively correlated.  相似文献   

17.
Abamectin is used as an acaricide and insecticide for fruits, vegetables and ornamental plants, as well as a parasiticide for animals. One of the major problems of applying pesticides to crops is the likelihood of contaminating aquatic ecosystems by drift or runoff. Therefore, toxicity tests in the laboratory are important tools to predict the effects of chemical substances in aquatic ecosystems. The aim of this study was to assess the potential hazards of abamectin to the freshwater biota and consequently the possible losses of ecological services in contaminated water bodies. For this purpose, we identified the toxicity of abamectin on daphnids, insects and fish. Abamectin was highly toxic, with an EC50 48 h for Daphnia similis of 5.1 ng L−1, LC50 96 h for Chironomus xanthus of 2.67 μg L−1 and LC50 48 h for Danio rerio of 33 μg L−1.  相似文献   

18.
The present study evaluates the tolerance and accumulation potential of Vitis vinifera ssp. sylvestris under moderate and high external Cu levels. A greenhouse experiment was conducted in order to investigate the effects of a range of external Cu concentrations (0–23 mmol L−1) on growth and photosynthetic performance by measuring gas exchange, chlorophyll fluorescence parameters and photosynthetic pigments. We also measured the total copper, nitrogen, phosphorus, sulphur, calcium, magnesium, iron, potassium and sodium concentrations in the plant tissues. All the experimental plants survived even with external Cu concentrations as high as 23 mmol L−1 (1500 mg Cu L−1), although the excess of metal resulted in a biomass reduction of 35%. The effects of Cu on growth were linked to a reduction in net photosynthesis, which may be related to the effect of the high concentration of the metal on photosynthetic electron transport. V. vinifera ssp. sylvestris survived with leaf Cu concentrations as high as 80 mg kg−1 DW and growth parameters were unaffected by leaf tissue concentrations of 35 mg Cu kg−1 DW. The results of our study indicate that plants of V. vinifera ssp. sylvestris from the studied population are more tolerant to Cu than the commercial varieties of grapevine that have been studied in the literature, and could constitute a basis for the genetic improvement of Cu tolerance in grapevine.  相似文献   

19.
Xia K  Zhao H  Wu M  Wang H 《Chemosphere》2012,87(11):1395-1402
This study examined the effects of copper exposure on embryonic development of Chinese toad, Bufo gargarizans. Firstly, the LC50 values from 24 to 96 h of exposure were 3.61 × 10−6 M, by means of a 4 d toxicity test with B. gargarizans embryos. Secondly, Chinese toad embryos were exposed to 10−9-10−6 M copper from mid gastrula stage to operculum completion stage. Measurements included mortality, tadpole weight, tadpole total length, growth retardation, duration of different embryo stages and malformation. Embryonic survival was not affected by copper. Relative to control tadpoles, significantly decreased weight and total length were found at 10-9-10-6 M reduced percentage of the embryos in right operculum stage after 10 d exposure to copper and reduced percentage of embryos in operculum completion stage after 12 d exposure to copper were also observed. Moreover, the duration of embryonic development increased at neural, circulation and operculum development stage in copper-treated groups. For the scanning microscope and histological observation, the abnormalities were malformation of wavy dorsal fin, flexural tail, curvature body axis, yolk sac oedema and reduced pigmentation in the yolk sac. Histopathological changes in olfactory, retinal epithelium and skin were also observed. DNA strand breaks exposed to the copper were analyzed by DNA ladder. In conclusion, copper induced toxic effects on B. gargarizans embryos. The present study indicated chronic toxicity tests may provide more accurate way in formulating the “safe levels” of heavy metals to amphibian.  相似文献   

20.
A greenhouse pot experiment was conducted to compare the phytoextraction efficiencies of Cd by hyper-accumulating Alfred stonecrop (Sedum alfredii Hance) and fast-growing perennial ryegrass (Lolium perenne L.) from a Cd-contaminated (1.6 mg kg−1) acidic soil, and their responses to the inoculations of two arbuscular mycorrhizal (AM) fungal strains, Glomus caledonium 90036 (Gc) and Glomus mosseae M47V (Gm). Ryegrass and stonecrop were harvested after growing for 9 and 27 wk, respectively. Without AM fungal inoculation, the weekly Cd extraction by stonecrop (8.0 μg pot−1) was 4.3 times higher than that by ryegrass (1.5 μg pot−1). Both Gc and Gm significantly increased (P < 0.05) root mycorrhizal colonization rates, soil acid phosphatase activities, and available P concentrations, and thereby plant P absorptions (except for Gm-inoculated ryegrass), shoot biomasses, and Cd absorptions (except for Gm-inoculated stonecrop), while only Gc-inoculated stonecrop significantly accelerated (P < 0.05) the phytoextraction efficiency of Cd by 78%. In addition, both Gc and Gm significantly decreased (P < 0.05) phytoavailable Cd concentrations by 21–38% via elevating soil pH. The results suggested the potential application of hyper-accumulating Alfred stonecrop associated with AM fungi (notably Gc) for both extraction and stabilization of Cd in the in situ treatment of Cd-contaminated acidic soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号