首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
在相同接种配比(接种污泥占餐厨垃圾的质量分数为30%)条件下,研究了4种不同来源污泥(压滤污泥、厌氧污泥、曝气污泥和河底淤泥)添加或不添加缓冲剂时对餐厨垃圾厌氧发酵产氢效果的影响.结果发现,在不添加缓冲剂时.4种污泥接种餐厨垃圾厌氧发酵平均产氢量依次为厌氧污泥>河底淤泥>压滤污泥>曝气污泥,接种厌氧污泥的餐厨垃圾平均产氢量最高,达10.11mL(以每克挥发性固体(VS)计,下同);而添加缓冲剂时.4种污泥接种餐厨垃圾厌氧发酵平均产氢量依次为厌氧污泥>曝气污泥>压滤污泥>河底淤泥,接种厌氧污泥的餐厨垃圾平均产氢量也最高,为33.72 mL,且体系pH得以缓冲.  相似文献   

2.
分析了餐厨垃圾酸化过程中的pH、挥发性脂肪酸(VFA)产量及含水量等参数的变化,考察了酸化餐厨垃圾厌氧消化过程中的产氢情况,并探讨了调节初始pH对酸化餐厨垃圾产氢的影响.结果表明,餐厨垃圾的酸化是一个前期极为快速的过程,经过1d的酸化,新鲜餐厨垃圾的pH就从6.0左右下降到4.5左右,而后pH缓慢下降,经过5~6 d的酸化,pH下降到4.0以下;餐厨垃圾酸化过程中,产生的VFA主要是异戊酸,其浓度变化与VFA的浓度变化趋势较为一致;酸化时间为1、3、4、5、6d的餐厨垃圾体系产生的氢气的最高体积分数呈递减趋势,产氢量也呈现出相同的变化趋势;初始pH对酸化餐厨垃圾体系的产氢影响是很大的,调节到相同初始pH的不同体系,产氢的结果可以相近.因此,pH是酸化餐厨垃圾厌氧消化产氢过程中必须控制的关键因素之一.  相似文献   

3.
餐厨垃圾厌氧发酵系统长期运行时极易失衡,且失衡机制错综复杂;而且,目前缺乏对餐厨垃圾厌氧发酵消化性能的有效调控策略,这限制了餐厨垃圾厌氧消化技术的发展和应用。餐厨垃圾与其它基质进行厌氧共消化不仅能解决餐厨垃圾单一消化的性能限制问题,还可以实现废物的互相利用和资源回收。梳理了餐厨垃圾厌氧消化面临的问题及挑战,深入探讨了餐厨垃圾与其它生物质联合厌氧共消化的协同效应及影响因素,总结了提升餐厨垃圾厌氧共消化性能的强化策略,以期为餐厨垃圾厌氧共消化技术研究提供参考。  相似文献   

4.
以餐厨垃圾为发酵底物,研究不同初始p H和发酵温度对餐厨垃圾厌氧发酵制氢潜力、中间代谢产物和发酵途径的影响。结果表明,初始p H和发酵温度对餐厨垃圾厌氧发酵产氢性能及代谢途径具有显著影响,高温发酵的产氢效率优于中温发酵。55℃高温、初始p H为6时厌氧发酵产氢性能最佳,累积产气量、最大氢气含量最大,分别达到620 m L和52.45%,挥发性脂肪酸中丁酸浓度最高为6 182.96 mg·L~(-1),发酵类型以丁酸型发酵途径为主。通过初始p H和发酵温度的优化控制可以有效提高产氢微生物的底物利用效率和产氢潜能,改变厌氧发酵途径,保证厌氧发酵制氢系统高效稳定运行。  相似文献   

5.
采用餐厨垃圾和果蔬垃圾协同厌氧产氢工艺,通过pH、氨氮、还原糖、溶解性COD(SCOD)等指标变化规律、产氢动力学和相关性分析,研究不同温度和物料配比(餐厨垃圾与果蔬垃圾的湿质量比)对协同厌氧产氢潜力的影响。结果表明,温度和物料配比对餐厨垃圾和果蔬垃圾协同厌氧产氢均有显著影响。高温组(55℃)物料配比为1∶4时累积产气量和氢气体积分数最大,分别为510mL和52.57%;中温(35℃)组物料配比为1∶2时累积产气量最大为200mL,物料配比为1∶1时氢气体积分数最大为5.45%。相关性分析表明,pH与累积产气量呈显著负相关,氨氮与累积产气量呈显著正相关。高温协同厌氧产氢可有效提高微生物活性和产氢潜力,促进餐厨垃圾和果蔬垃圾的有效利用,实现有机废弃物的绿色能源化。  相似文献   

6.
贾璇  王勇  任连海  李彤  李迎新  赵敏 《环境工程学报》2017,11(11):6034-6040
采用北京市2种典型餐厨垃圾,研究不同湿热预处理温度(40、80、120和160℃)和时间(30、60、90和120 min)对2种典型餐厨垃圾理化性能的影响。在此基础上,阐明餐厨垃圾厌氧产氢潜力。结果表明,湿热预处理温度、时间对餐厨垃圾可浮油脱出量具有显著影响,ρ(SCOD)、ρ(TOC)与VS/TS呈负相关。餐厨垃圾处理厂的厨余垃圾经120℃湿热预处理30 min后,可浮油脱出量最大达17 mL·kg-1,ρ(SCOD)、ρ(TOC)分别为150.99、57.91 g·L-1;食堂的餐饮垃圾经160℃湿热预处理30 min后效果最佳,可浮油脱出量最高达99 mL·kg-1,ρ(SCOD)、ρ(TOC)分别为120.69、62.58 g·L-1。餐饮垃圾经160℃湿热预处理30 min,在中温(35±1℃)、高温(55±1℃)厌氧制氢,高温比产氢率和最大产氢速率分别可达40.58 mL·g-1 VS、29.20 mL·h-1,与未经预处理组比提高0.78、2.02倍,中温产氢启动时间缩短1倍以上。可见,湿热预处理能显著改善餐厨垃圾理化性质,提高微生物的底物利用效率,提高餐厨垃圾厌氧制氢量及产氢效率。  相似文献   

7.
将污泥与餐厨垃圾联合厌氧发酵产氢余物进一步产甲烷,产甲烷量比污泥与餐厨垃圾单独或直接联合厌氧发酵产甲烷大。研究污泥与餐厨垃圾联合厌氧发酵产氢余物产甲烷过程中产甲烷量与底物指标变化的关系,实验结果表明,整个消化过程中,累积产甲烷量为613 L,最大产气速率和产甲烷速率分别为2.12 L/(kg·d)和1.46 L/(kg·d),最大甲烷含量为72.5 %,消化系统的pH在总挥发性脂肪酸(TVFA)以及氨氮、CO32-和HCO3-等碱度的共同作用下基本维持在适宜产甲烷的范围内,在不同的消化阶段,厌氧发酵产甲烷过程起主要作用的物质不同,先后顺序依次为糖类、蛋白质和TVFA,并且累积产甲烷量与COD、总糖、总蛋白质的显著相关性大小依次为:COD > 总糖 > 总蛋白质,COD去除率高达79.54 %。  相似文献   

8.
通过向餐厨垃圾厌氧发酵系统中投加生物类表面活性剂烷基多苷(APG)的方式,探究了APG对餐厨垃圾研究发酵生产挥发性脂肪酸的影响。结果表明,APG的最佳投放量为0.12 g·(g TSS)~(-1)(总悬浮固体),最佳挥发性脂肪酸(VFA)的产量为18.9 g·L~(-1),相应的发酵时间为6 d。机理研究表明,APG能够促进餐厨垃圾中多糖和蛋白质的释放,抑制甲烷的产生。进一步研究发现,APG自身分解会产生VFA,但VFA的产量远远小于对餐厨垃圾厌氧厌氧分解值。  相似文献   

9.
近年来,餐厨垃圾厌氧发酵生产挥发性脂肪酸(VFA)得到广泛的研究,水解反应是餐厨垃圾厌氧发酵的限速步骤。利用生物表面活性剂——烷基多苷(APG)强化餐厨垃圾厌氧发酵生产VFA,考察了APG投加量对餐厨垃圾干式厌氧发酵的影响,分析了APG对餐厨垃圾厌氧发酵的强化机制。结果表明,APG的最佳投加量为0.5g/L,在此投加量下VFA的最大累积量为18.5g/L,VFA的转化率为38%;APG能够强化餐厨垃圾的水解反应,使溶解性蛋白质和溶解性多糖含量明显增加,为后续产酸细菌提供了更多的发酵基质。APG自身分解对VFA有一定贡献,但贡献量远远小于餐厨垃圾的产生量。  相似文献   

10.
在中试规模下,研究餐厨垃圾高温厌氧消化试验,通过监测餐厨垃圾厌氧消化过程中产气量、气体组成等产气情况和消化液中pH值、SCOD、NH4+-N、VFAs等化学指标含量变化,确定餐厨垃圾厌氧消化的最大有机负荷,并分析餐厨垃圾高温厌氧消化技术的可行性,结果表明,在工程上餐厨垃圾单独进行高温厌氧消化产甲烷具有技术可行性,但难以保证系统长时间安全稳定运行;餐厨垃圾厌氧消化正常运行时最大有机负荷可达2.551 kg VS/(m3.d);当系统有机负荷为2.551 kg VS/(m3.d)时,每天每千克VS最高可产生甲烷量0.622 m3;氨氮对餐厨垃圾厌氧消化产甲烷影响明显;餐厨垃圾中固有Na+含量对厌氧消化产甲烷影响不明显。  相似文献   

11.
餐厨垃圾处置方式及其碳排放分析   总被引:2,自引:0,他引:2  
在综述填埋、好氧堆肥、粉碎直排、厌氧消化产沼气及综合处置等5种餐厨垃圾处置方式原理与特点的基础上,分别罗列出各种处置方式的优缺点、应用场合以及今后仍然需要研究的方向。着眼于餐厨垃圾资源化与碳减排,厌氧消化产沼气被定位为今后餐厨垃圾处置的主要应用方向,特别是与市政污水处理剩余污泥共消化更是今后研究与应用的主流。餐厨垃圾处置全生命周期碳排放分析亦表明,厌氧消化产沼气与其他4种处置方式相比,在资源回收与碳减排方面优势明显,这就决定了厌氧消化今后在餐厨垃圾处置技术中将处于首选位置。餐厨垃圾与剩余污泥厌氧共消化产生的沼气量具有“1+1>2”的能量转化效果,这种方式可以使污水处理厂演变为“能源工厂”的角色,而且还能省去餐厨垃圾单独处置所需的各种设施。  相似文献   

12.
竹叶与餐厨垃圾厌氧共消化工艺   总被引:1,自引:0,他引:1  
将黄金竹和毛竹的竹叶分别与餐厨垃圾厌氧共消化,通过分析消化过程中的产气量、pH、COD、NH4+-N和VFAs变化,探讨添加不同竹叶对餐厨垃圾厌氧消化效果的影响。实验结果表明,添加毛竹叶显著增强了餐厨垃圾的厌氧消化能力。毛竹叶+餐厨垃圾组的总产气量是餐厨垃圾对照组单独厌氧消化总产气量的3.28倍,甲烷总产量为10.1 L,COD去除率高达83.0%。而添加黄金竹叶对餐厨垃圾厌氧消化的影响则不明显,可能因为黄金竹叶在消化过程中释放了大量挥发性脂肪酸(VFAs),造成体系酸中毒。  相似文献   

13.
在中试规模下,研究青岛市餐厨垃圾与菜市场垃圾混合(质量比1∶1)高温厌氧消化实验,通过监测厌氧消化过程中产气量、气体组成等产气情况和消化液中pH值、SCOD、NH3-H、VFAs含量和组分等化学指标变化,确定混合厌氧消化的最大有机负荷,并分析混合高温厌氧消化技术的可行性,结果表明,(1)青岛市餐厨垃圾与菜市场垃圾混合高温厌氧消化产甲烷具有技术可行性;(2)混合厌氧消化的最大有机负荷可达4.069 kg VS/(m3.d);(3)当系统最大有机负荷时,每天每千克VS最高可产生甲烷量0.346 m3;(4)混合厌氧消化可削减氨氮对餐厨垃圾单独厌氧消化产沼气的影响。  相似文献   

14.
Food wastes have been recognized as the largest waste stream and accounts for 39.25 % of total municipal solid waste in Thailand. Chulalongkorn University has participated in the program of in situ energy recovery from food wastes under the Ministry of Energy (MOE), Thailand. This research aims to develop a prototype single-stage anaerobic digestion system for biogas production and energy recovery from food wastes inside Chulalongkorn University. Here, the effects of sludge recirculation rate and mixing time were investigated as the main key parameters for the system design and operation. From the results obtained in this study, it was found that the sludge recirculation rate of 100 % and the mixing time of 60 min per day were the most suitable design parameters to achieve high efficiencies in terms of chemical oxygen demand (COD), total solids (TS), and total volatile solid (TVS) removal and also biogas production by this prototype anaerobic digester. The obtained biogas production was found to be 0.71 m3/kg COD and the composition of methane was 61.6 %. Moreover, the efficiencies of COD removal were as high as 82.9 % and TVS removal could reach 83.9 % at the optimal condition. Therefore, the developed prototype single-stage anaerobic digester can be highly promising for university canteen application to recover energy from food wastes via biogas production.  相似文献   

15.

Background, aim, and scope  

Hydrogen is a clean and efficient energy source and has been deemed as one of the most promising carriers of new energy for the future. From an engineering point of view, producing hydrogen by mixed cultures is generally preferred because of lower cost, ease of control, and the possible use of organic waste as feedstock. The biological hydrogen production has been intensively studied in recent decades. So far, most investigates of biohydrogen production are still confined to using pure carbohydrates and carbohydrate-rich wastewater. Nowadays, the large amounts of livestock manure, which come from cattle feedlots, poultry, and swine buildings, are causing a major environmental issue because it has become a primary source of odors, gases, dust, and groundwater contamination. The increasingly stringent requirements for pollution control on livestock manures are challenging the scientific community to develop new waste treatment strategies. Thus, there is a pressing need to develop nonpolluting and renewable energy source utilizing the organic waste (e.g., livestock manure). It is well known that anaerobic digestion had successfully been used for the disposal of manures to produce methane in the last two decades. Recently, an alternative strategy has been developed to convert livestock manures (e.g., dairy manures) to biohydrogen as a high value-added clean energy source instead of methane. However, little information is available on hydrogen production from dairy manure via the mixed anaerobic microbe. As far as we know, the hydrogen production is habitually accompanied with production of volatile fatty acids (VFAs), such as acetate, butyrate, and propionate, which are also an optimal feedstock for production of methane by anaerobic digestion. Provided that the biohydrogen production from dairy manure is further combined with the anaerobic digestion of the effluent from the producing hydrogen reactor that would be a one-stone two-bird paradigm, it not only produces a clean and readily usable biologic energy but also cleans up simultaneously the environment in a sustainable fashion.  相似文献   

16.
为资源化回收利用餐厨垃圾,采用BMP实验对其产甲烷潜力进行了研究,测定了不同厌氧消化时间内的沼气产量及COD、VFA浓度,并在此基础上对餐厨垃圾产甲烷潜力进行了数学模拟。结果表明,混合液COD浓度变化曲线呈逐渐下降的趋势,VFA出现短暂积累,应调控厌氧消化系统的碱度。餐厨垃圾经40 d厌氧消化后,实际生物化学产沼气及产甲烷潜力分别可达559.1、349.7 mL·g-1 VS,第20天后累积产气量增加不显著。数学模拟结果表明,餐厨垃圾最初7 d的平均水解常数为0.244 d-1,模拟产沼气及甲烷潜力分别可达578.36和363.72 mL·g-1 VS,实际产沼气及甲烷潜力分别占模拟产沼气及甲烷潜力的96.7%、96.1%,采用固体停留时间为25~30 d进行厌氧消化较为合理。  相似文献   

17.
Food waste and sewage sludge are the most abundant and problematic organic wastes in any society. Mixture of these two wastes may provide appropriate substrate condition for dark fermentative biohydrogen production based on synergistic mutual benefits. This work evaluates continuous hydrogen production from the cosubstrate of food waste and sewage sludge to verify mechanisms of performance improvement in anaerobic sequencing batch reactors. Volatile solid concentration and mixing ratio of food waste and sludge were adjusted to 5 % and 80:20, respectively. Five different hydraulic retention times (HRT) of 36, 42, 48, 72, and 108 h were tested using anaerobic sequencing batch reactors to find out optimal operating condition. Results show that the best performance was achieved at HRT 72 h, where the hydrogen yield, the hydrogen production rate, and hydrogen content were 62.0 mL H2/g VS, 1.0 L H2/L/day, and ~50 %, respectively. Sufficient solid retention time (143 h) and proper loading rate (8.2 g COD/L/day as carbohydrate) at HRT 72h led to the enhanced performance with better hydrogen production showing appropriate n-butyrate/acetate (B/A) ratio of 2.6. Analytical result of terminal-restriction fragment length polymorphism revealed that specific peaks associated with Clostridium sp. and Bacillus sp. were strongly related to enhanced hydrogen production from the cosubstrate of food waste and sewage sludge.  相似文献   

18.
氨氮抑制是造成畜禽养殖废弃物厌氧消化处理效率低和运行稳定性差的主要因素之一。在总结国内外研究进展的基础上,简述了氨氮的来源及抑制阈值,剖析了氨氮抑制的机理及其影响因素,从氨氮的缓冲和微生物驯化2 个方面总结了氨氮抑制的应对措施。建议重点加强畜禽养殖废弃物厌氧消化过程中氨氮释放规律、“氨氮-VFAs-碳酸盐”三元缓冲体系的调控模式、氨氮抑制的微生物学机制等方面的研究,以期为提高畜禽养殖废弃物厌氧消化工程的处理效率和运行稳定性提供参考。  相似文献   

19.
为了考察连续式两相厌氧消化过程及产酸相、产甲烷相最佳水力停留时间和产气潜能,并与序批式单相厌氧消化实验比较,采用生活垃圾、粪便、餐厨垃圾、污泥混合物料为消化原料,进行中温连续式两相厌氧消化和序批式单相厌氧消化实验。结果表明,单相厌氧消化产气潜能为242 m3·t-1 TS,两相厌氧消化产气潜能达到380 m3·t-1 TS以上,提高了57.6%。两相厌氧消化最佳水力停留时间为14 d,比单相厌氧消化的水力停留时间缩短了一半,并且连续式两相厌氧消化过程比单相厌氧消化具有更高的运行稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号