共查询到19条相似文献,搜索用时 52 毫秒
1.
锰矿尾渣污染土壤商陆根际和非根际土壤酶活性 总被引:1,自引:0,他引:1
对湘潭锰矿尾渣库地区商陆根际和非根际土壤酶的活性特征进行了研究,结果表明,商陆根际土壤各种酶的活性显著大于非根际土壤。商陆根际环境对土壤酶活性的影响表现为:蔗糖酶>脲酶>脱氢酶>酸性磷酸酶>过氧化氢酶,根际效应值(R/S)分别为:1.622、1.598、1.586、1.485和1.328。除过氧化氢酶活性外,土壤各种酶活性与重金属复合污染程度显著负相关,表现出重金属复合污染对土壤酶活性的抑制效应。商陆可有效改善土壤环境,提高土壤各种酶的活性,是锰污染土壤植物修复的理想植物。 相似文献
2.
对湘潭锰矿尾渣库地区商陆根际和非根际土壤酶的活性特征进行了研究,结果表明,商陆根际土壤各种酶的活性显著大于非根际土壤。商陆根际环境对土壤酶活性的影响表现为:蔗糖酶〉脲酶〉脱氢酶〉酸性磷酸酶〉过氧化氢酶,根际效应值(R/S)分别为:1.622、1.598、1.586、1.485和1.328。除过氧化氢酶活性外,土壤各种酶活性与重金属复合污染程度显著负相关,表现出重金属复合污染对土壤酶活性的抑制效应。商陆可有效改善土壤环境,提高土壤各种酶的活性,是锰污染土壤植物修复的理想植物。 相似文献
3.
生物处理镉污染土壤及其酶活性研究 总被引:2,自引:0,他引:2
以添加镉的天津农田土壤为对象,分别设定空白处理、添加诺沃肥处理及生物强化处理(添加1株紫外线诱变工程菌和诺沃肥).研究土壤在不同pH、温度和含水率条件下可提取有效态镉(E-Cd)、过氧化氢酶及脲酶活性的变化情况.结果表明,添加诺沃肥处理可以有效降低E-Cd含量.而生物强化处理可进一步促进镉的固定效果;最适合生物修复的环境条件为PH 7.0、温度30℃和土壤含水率50%;添加诺沃肥处理和生物强化处理的土壤中过氧化氢酶和脲酶活性明显高于空白处理,说明生物修复后,土壤酶活性已经恢复,表明这2种处理能改善土壤结构和性能,提高土壤的肥力. 相似文献
4.
重金属离子Cd^2+、Pb^2+污染对土壤酶活性的影响 总被引:1,自引:0,他引:1
通过对土壤中比较重要的两种酶(过氧化氢酶、脲酶)活性的测定,研究了重金属离子(Cd^2+、Pb^2+)单因素污染、复合污染对两种酶活性的影响,进而找出重金属污染程度与土壤酶活性的关系,为建立土壤中的酶活性可以表征重金属污染程度的生化指标平台提供试验依据。结果表明,在Cd^2+、Pb^2+单因素污染影响中,在一定浓度下的重金属离子对土壤酶活性会有激活效应,但大多表现为抑制效应;Cd^2+、Pb^2+复合污染对两种土壤酶活性的影响存在着明显差异,其复合污染对脲酶表现出协同抑制负效应的特征;对过氧化氢酶表现出一定的屏蔽作用。通过重金属离子形态对土壤酶有效性影响的研究,脲酶活性可以作为土壤重金属离子(Cd^2+、Pb^2+)单因素和复合污染程度的主要生化指标。 相似文献
5.
采煤沉陷区耕地土壤微生物数量及酶活性的空间特征 总被引:1,自引:0,他引:1
通过野外调查和采样分析,研究了焦作矿区韩王矿沉陷区不同沉陷部位和不同深度耕地的土壤微生物数量及酶活性特征。研究结果表明:与对照区比较,沉陷区耕地土壤微生物数量、酶活性赋存特征及微生物类群组成比例发生了明显变化。沉陷区表层(0~5 cm)、上层(5~10 cm)、中层(10~20 cm)土壤微生物总数、细菌数量均明显减少,而下层(20~40 cm)土壤微生物总数、细菌、真菌、放线菌数量均明显升高。沉陷区表层、上层土壤细菌数量所占微生物总数比例分别降低了20.64%和13.17%,而放线菌数量所占比例分别升高了20.69%和12.66%。沉陷区表层土壤脲酶、蔗糖酶、磷酸酶、脱氢酶、过氧化氢酶和多酚氧化酶活性分别降低了1.5%、17.5%、22.0%、35.3%、20.4%和5.4%。不同沉陷部位的土壤微生物数量及部分酶活性指标空间异质性显著(p0.05)。沉陷区土壤真菌、放线菌数量、蔗糖酶、磷酸酶、脱氢酶、过氧化氢酶、多酚氧化酶活性较对照区均具有不同的垂向分布特征。表明采煤引发的地表沉陷使耕地土壤微生物数量及酶活性在水平和垂直方向上均发生了显著变化,而这些变化是导致沉陷区耕地退化、生产力降低的重要原因。 相似文献
6.
7.
香菇菌渣对土壤微生态的影响 总被引:4,自引:0,他引:4
为研究香菇菌渣添加对土壤质量改善的效果和机制,在土壤中添加质量分数为0(对照)、1.5%、3.0%、4.5%的香菇菌渣进行培养处理,并定期检测土壤中各类微生物的数量与某些酶活性.结果表明:添加香菇菌渣对土壤微生物数量和酶活性都有不同程度的提高作用,其中真菌数量、放线菌数量、几丁质酶活性和脱氢酶活性均随添加量的增加而增大,说明香菇菌渣能够增加土壤中微生物群落的规模,从根本上有利于土壤质量的改善,同时还增强了土壤潜在的抑病能力;4.5%处理的平均真菌数量、放线菌数量、几丁质酶活性、脱氢酶活性分别为对照的1 399.00%、2 773.33%、1 309.36%、2 512.29%. 相似文献
8.
针对芋艿连作障碍造成土壤环境破坏的问题,进行玉米、毛豆与芋艿套作的田间试验,通过对土壤养分、土壤酶活以及芋艿产量、品质的分析,探讨套作减缓芋艿连作障碍的可行性。试验共设置4个处理:连作芋艿、非连作芋艿、套作玉米和套作毛豆。结果表明:(1)套作可以均衡连作土壤的养分含量,套作处理平均可以比连作提升速效氮9.88%、速效钾58.21%、有机质70.36%,降低速效磷64.08%。(2)套作可以提升连作土壤酶活性,套作处理平均可以比连作提高过氧化氢酶活性23.75%、脲酶活性38.15%、蔗糖酶活性129.60%。(3)在套作土壤中,过氧化氢酶活性与速效磷、速效钾显著正相关,脲酶活性与pH、速效氮显著正相关,蔗糖酶活性与有机质、速效氮显著正相关,套作使连作土壤酶活性的影响因子向非连作土壤转化。 相似文献
9.
针对集约化农业过量施入化肥农药等引起的土壤质量退化问题,采用造纸黒液废物提取的低聚木糖作为土壤调理剂。通过室内土壤培养,研究不同低聚木糖施用量(0.01%、0.05%、0.1%和0.2%)对土壤微生物数量和脲酶活性的影响。通过番茄盆栽实验,并设置添加0.1%商品生物有机肥处理作比较,研究不同低聚木糖施用量对土壤微生物量氮磷、脲酶和磷酸酶活性的影响。结果表明,低聚木糖可以提高土壤细菌、放线菌数量、土壤脲酶和磷酸酶活性。低聚木糖也显著增加番茄各生长期土壤微生物量碳和磷含量,其中开花期时低聚木糖的促进作用最为明显。所有剂量处理中,以0.05%的低聚木糖添加量处理效果最为明显,且该处理效果也优于添加0.1%生物有机肥处理。低聚木糖作为土壤调理剂,能显著提高土壤微生物数量和酶活性,改善土壤生态系统,提高土壤质量,在农业上具有广阔的应用前景。 相似文献
10.
采用电动力学方法修复重金属污染土壤。研究中采用高岭土模拟铜污染土壤,结合电动力学修复理论,考察了不同电压、添加络合剂条件下铜的修复效果。结果表明,当电压强度为0.5V/cm时,最靠近阴极部分的土壤中Cu^2+的C/C。为1.596,当电压强度为1V/cm时,C/C0为2.245,说明适当提高电压强度能够有效的增加Cu^2+的迁移效果;土壤中未加入络合剂时,Cu^2+大部分集中在第5段土壤中,C/C0为1.339,在土壤中加入络合剂以后Cu^2+大部分集中在靠近阴极部分的土壤中,C/C。为1.716,说明在污染土壤中加入一定量的络合剂可以与Cu^2+结合生成螯合物,提高Cu^2+的迁移效果。 相似文献
11.
Nakayama SM Ikenaka Y Hamada K Muzandu K Choongo K Teraoka H Mizuno N Ishizuka M 《Environmental pollution (Barking, Essex : 1987)》2011,159(1):175-181
Metal (Cr, Co, Cu, Zn, Cd, Pb, Ni) and metalloid (As) accumulation was studied in roadside soil and wild rat (Rattus sp.) samples from near a Pb-Zn mine (Kabwe, Zambia) and the capital city of Zambia (Lusaka). The concentrations of the seven metals and As in the soil samples and Pb in the rat tissue samples were quantified using atomic absorption spectroscopy. The concentrations of Pb, Zn, Cu, Cd, and As in Kabwe soil were much higher than benchmark values. Geographic Information System analysis indicated the source of metal pollution was mining and smelting activity. Interestingly, the area south of the mine was more highly contaminated even though the prevailing wind flow was westward. Wild rats from Kabwe had much higher tissue concentrations of Pb than those from Lusaka. Their body weight and renal Pb levels were negatively correlated, which suggests that mining activity might affect terrestrial animals in Kabwe. 相似文献
12.
Temporal changes in the distribution of exogenous HCB and DDT among different soil organic matter fractions were studied under sterile and non-sterile conditions, different soil water contents, and different concentrations of added Cu(2+). The residence time was 311days. Soil organic matter was fractionated into fulvic acid (FA), humic acid (HA), bound-humic acid (BHA), lipid, and insoluble residue (IR) fractions by a methyl isobutyl ketone (MIBK) method. Results revealed that there is a mass transfer tendency of DDT and HCB from FA, HA and BHA to IR and lipid fractions with increasing residence time. Microbial activity accelerated the mass transfer, while the addition of Cu(2+) slowed it down. The HCB and DDT transfer rate decreased as the soil moisture increased from 1.9% to 60%, but increased when soil moisture increased further to 90%. A two-compartment first order kinetic model was used to describe the mass transfer from FA, HA and BHA. 相似文献
13.
The dissipation of carbendazim and chloramphenicol alone and in combination and their effects on soil fungal:bacterial ratios and soil enzyme activities were investigated. The results revealed that carbendazim dissipation was little affected by chloramphenicol, whereas chloramphenicol dissipation was found to be retarded significantly by the presence of carbendazim. The inhibitory effect of carbendazim on the fungal:bacterial ratios was increased by the presence of chloramphenicol, and the inhibitory effect of chloramphenicol on neutral phosphatase was increased by the presence of carbendazim. Carbendazim increased soil catalase and urease activities, but this increase was partially diminished by the presence of chloramphenicol. Little interaction was observed between carbendazim and chloramphenicol with regard to their influence on soil invertase. The results obtained in this study suggest that combinations of fungicides and antibiotics may alter the compounds’ individual behaviors in soil and their effects on soil enzymes. 相似文献
14.
Application of bioassays to evaluate a copper contaminated soil before and after a pilot-scale electrokinetic remediation 总被引:1,自引:0,他引:1
Remediation programmes are considered to be complete when human risk-based criteria are met. However, these targets are often unsatisfied with the ecological parameters that may be important with regard to future soil use. Five soil subsamples, collecting along a pilot-scale soil column after electrokinetic treatment, were studied, from which about 42.0%-93.3% soil Cu had been successfully removed. A series of biological assays including soil microbial biomass carbon, basal soil respiration, soil urease activity, earthworm assays, and seed assays were used to evaluate their ecological risks. The results showed that the bioassay data from the treatment variants did not supposedly reflecting the decreased soil Cu concentrations after the electrokinetic treatment, but were highly correlated with some soil physicochemical characteristics. It suggests that bioassays are necessary to assess the ecotoxicity of soil after electrokinetic treatment. 相似文献
15.
Renella G Landi L Ascher J Ceccherini MT Pietramellara G Mench M Nannipieri P 《Environmental pollution (Barking, Essex : 1987)》2008,152(3):702-712
We studied the effectiveness of remediation on microbial endpoints, namely microbial biomass and activity, microbial and plant species richness, of an As-contaminated mine spoil, amended with compost (C) alone and in combination with beringite (B) or zerovalent iron grit (Z), to increase organic matter content and reduce trace elements mobility, and to allow Holcus lanatus and Pinus pinaster growth. Untreated spoil showed the lowest microbial biomass and activity and hydrolase activities, and H. lanatus as sole plant species, whereas the presented aided phytostabilisation option, especially CBZ treatment, significantly increased microbial biomass and activity and allowed colonisation by several plant species, comparable to those of an uncontaminated sandy soil. Microbial species richness was only increased in spoils amended with C alone. No clear correlation occurred between trace element mobility and microbial parameters and plant species richness. Our results indicate that the choice of indicators of soil remediation practices is a bottleneck. 相似文献
16.
Ginocchio R Carvallo G Toro I Bustamante E Silva Y Sepúlveda N 《Environmental pollution (Barking, Essex : 1987)》2004,127(3):343-352
Soil chemical changes produced by metal smelters have mainly been studied on a large scale. In terms of plant survival, determination of small scale variability may be more important because less toxic microhabitats may represent safe sites for successful recruitment and thus for plant survival. Three dominant microhabitats (open spaces and areas below the canopy of Sphaeralcea obtusiloba and Baccharis linearis shrubs) were defined in a heavily polluted area near a copper smelter and characterised in terms of microclimate, general soil chemistry, total and extractable metal concentrations in the soil profile (A0 horizon, 0-5 and 15-20 cm depth), and seedling densities. Results indicated a strong variability in microclimate and soil chemistry not only in the soil profile but also among microhabitats. Air/soil temperatures, radiation and wind speed were much lower under the canopy of shrubs, particularly during the plant growth season. Soil acidification was detected on top layers (0-5 cm depth) of all microhabitats while higher concentrations of N, Cu and Cd were detected on litter and top soil layers below shrubs when compared to open spaces; however, high organic matter content below shrubs decreased bioavailability of metals. Plant recruitment was concentrated under shrub canopies; this may be explained as a result of the nursery effect exerted by shrubs in terms of providing a more favourable microclimate, along with better soil conditions in terms of macronutrients and metal bioavailability. 相似文献
17.
EDTA was percolated in laboratory columns through a soil polluted by heavy metals to investigate the efficiency of and processes involved in soil decontamination by chemical extraction. At high EDTA concentration (10−2 M), elution of Pb and Cd was very efficient for one pore volume, after which it decreased to almost zero due to depletion of available Pb and Cd and to competition with Ca and Fe slowly solubilized during the passage of the EDTA front. Clogging occurred after the end of the EDTA plateau. At lower EDTA concentrations (10−3 and 10−4 M), elution was less efficient, but extraction decreased little with the volume percolated; moreover no Ca above background values was dissolved. The optimum EDTA concentration for heavy metal extraction ranges between 10−2 and 10−3 M. The higher the concentration, the greater the extraction efficiency, but as the EDTA concentration is increased there is an optimum point at which clogging takes place and permeability decreases. 相似文献
18.
Semifluorinated n-alkanes (SFAs) with carbon chain lengths of 22 to approximately 36 atoms are present in fluorinated ski waxes to reduce the friction between ski base and snow, resulting in a better glide. Semifluorinated n-alkenes (SFAenes) are byproducts in the production process of SFAs and are also found in ski waxes. Snow and soil samples from a ski area in Sweden were taken after a large skiing competition and after snowmelt, respectively, and analyzed for SFAs and SFAenes. Single analyte concentrations in snow (analyzed as melt water) ranged from a few ng L−1 up to 300 μg L−1. ∑SFA concentrations decreased significantly from the start to the finish of the ski trail. Single analyte concentrations in soil ranged up to 9 ng g−1 dw. ∑SFA concentrations in soil did not show a trend along the ski trail. This may be due to the fact that concentrations in soil, although strongly influenced by the competition, reflect inputs during the whole skiing season. The chemical inventory in snow was greater than the inventory in soil for shorter chain SFAs (C22C28) and for all SFAenes. Additionally, a significant change in SFA patterns between snow and soil samples was found. These observations suggested volatilization of shorter chain SFAs and of SFAenes during snowmelt. Evidence for long-term accumulation of SFAs in surface soil over several skiing seasons was not found. 相似文献
19.
Recently, we measured the concentrations of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) in soil and herbage samples collected in the vicinity of a municipal solid waste incinerator (MSWI) from Tarragona (Catalonia, Spain). Since these concentrations could be increased by the presence of other emission sources of PCDD/Fs in the same area in which the MSWI is placed, the main goal of the present study was to determine the PCDD/F congener profiles in the soil and vegetation samples collected in 1996 and again in 1997 near to the facility and to compare with those from samples collected in a close area outside of direct emissions of the plant. From an accurate inspection of the PCDD/F congener profiles, it was concluded that PCDD/F emissions from the MSWI here examined are neither the only nor the main responsible for the presence of PCDD/Fs in the samples of environmental matrices collected in the area under direct influence of the plant. 相似文献