首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
<正> 美国环保局把4-硝基苯酚,2-硝基苯酚,2,4—二硝基苯酚及4,6—二硝基-2-甲基苯酚,列为重要的污染物质,4,6—二硝基-2-甲基苯酚被用作杀虫剂;2-4—二硝基苯酚被用作木材防腐剂,并且在染料制造中有其用途;2-硝基苯酚和4-硝基苯酚是多种化学药品制造中所需要的材料;杀虫剂硝  相似文献   

2.
环糊精对硝基化合物混合体系微生物降解影响   总被引:7,自引:0,他引:7  
通过对硝基苯和对硝基苯酚混合体系微生物降解过程的研究,探讨了在降解过程中加入-环糊精及其衍生物羧甲基--环糊精(CMCD)对混合体系微生物降解的影响.研究表明,对硝基苯酚不能被单独降解;硝基苯能与对硝基苯酚产生共代谢作用,对硝基苯酚浓度影响混合体系的降解程度.加入环糊精能促进对硝基苯酚的降解率,影响程度与对硝基苯酚的浓度和环糊精的种类及量有关.  相似文献   

3.
Rhodococcus sp. Ns对硝基苯酚的好氧生物降解   总被引:3,自引:2,他引:1  
通过驯化富集培养,从红树林底泥中分离出6株硝基苯酚降解菌,其中Rhodococcus sp. Ns为对硝基苯酚(PNP)与邻硝基苯酚(ONP)的高效降解菌.在好氧条件下该菌可以耐受小于1.8 mmol/L的PNP,能够利用PNP和ONP为唯一碳源、能源和氮源生长并将其完全矿化.研究了Rhodococcus sp. Ns在不同pH、盐度与浓度范围下,PNP的降解特性并探讨了该菌降解PNP的途径.实验得出该菌在盐度<5‰、 pH>5的条件下能较快生长,1.5 mmol/L的PNP在96h内被完全降解,并检测到至少2种中间产物4-硝基儿茶酚(4-nitrocatechol)和1,2,4-苯三酚 (1,2,4-benzenetriol).红树林底泥中固有的细菌对PNP和ONP具有高效降解作用.  相似文献   

4.
Rhodococcus sp. Ns对硝基苯酚的好氧生物降解   总被引:5,自引:0,他引:5  
通过驯化富集培养,从红树林底泥中分离出6株硝基苯酚降解菌,其中Rhodococcus sp.Ns为对硝基苯酚(PNP)与邻硝基苯酚(ONP)的高效降解菌.在好氧条件下该菌可以耐受小于1.8 mmol/L的PNP,能够利用PNP和ONP为唯一碳源、能源和氮源生长并将其完全矿化.研究了Rhodococcus sp. Ns在不同pH、盐度与浓度范围下,PNP的降解特性并探讨了该菌降解PNP的途径.实验得出该菌在盐度<5‰、pH>5的条件下能较快生长,1.5 mmol/L的PNP在96h内被完全降解,并检测到至少2种中间产物4-硝基儿茶酚(4-nitrocatechol)和1,2,4-苯三酚(1,2,4-benzenetriol).红树林底泥中固有的细菌对PNP和ONP具有高效降解作用.  相似文献   

5.
光催化与Fenton试剂对硝基苯酚降解的研究   总被引:3,自引:1,他引:2  
文章对光催化/Fenton试剂联合降解硝基苯酚模拟废水进行了研究。探讨了硝基苯酚溶液的初始浓度、pH、亚铁离子浓度、双氧水浓度、催化剂量等对对硝基苯酚降解效果影响。结果表明,对于200mL,浓度为100mg/L的硝基苯酚溶液,当加入Fe2+为20mg/L,5mmol/LH2O2,催化剂TiO2为0.6g/L,紫外灯功率为250W且反应40min后,对硝基苯酚的降解率达到约100%。通过对比试验,发现光催化和Fenton试剂对对硝基苯酚的降解起协同作用,并通过GC/MS技术测定中间产物并给出了可能的降解途径。  相似文献   

6.
从生产甲基对硫磷的山东华阳农药厂污水曝气池中,分离到一株能以甲基对硫磷及其降解中间产物对硝基苯酚为唯一碳源生长的细菌L4菌株.经16S rRNA基因序列分析,该菌株被鉴定为节杆菌属(Arthrobacter sp.).用气相色谱法和分光光度法分析L4菌株的降解性能,结果表明,L4在5h内对50mg·L-1的甲基对硫磷和对硝基苯酚的降解率分别为85%和98%,对其它有机磷农药也有良好的降解效果.L4的最适培养条件为pH值7、30℃、接种量30%.  相似文献   

7.
苯酚在氯离子体系中的电化学氧化研究   总被引:4,自引:1,他引:4  
研究了用Ti/RuO2-IrO2三元电极作阳极电解处理人工合成苯酚废水时Cl-初始浓度对处理效果的影响。结果表明,在一定的电解时间范围内苯酚在阳极上的电化学氧化符合一级动力学关系;废水中Cl-的初始浓度越大,苯酚完全被电化学氧化所需的时间也越短,其表观速度常数越大,电解中间体的生成和降解速率也越大。采用HPLC、GC/MS等方法鉴定出苯酚在Cl-体系下降解的中间产物主要有4-氯苯酚,1-氯苯酚,2,4-二氯苯酚,2,6二氯苯酚,2,4,6-三氯苯酚、各种短链脂肪酸及氯代醇等;最终产物是CO2、CHCl2和CHCl3。依此推导出了苯酚在Cl-体系下电化学降解的途径。  相似文献   

8.
甲基对硫磷降解菌DLL-E4降解对-硝基苯酚特性   总被引:10,自引:0,他引:10  
甲基对硫磷降解菌DLL-E4(Pseudomonas putida)能以对-硝基苯酚(PNP)为唯一碳源和氮源生长,还可以利用对-硝基苯酚代谢产生的亚硝酸根为唯一氮源.DLL-E4降解对-硝基苯酚的酶系是诱导产生的,甲基对硫磷(MP)和PNP驯化菌株,能有效诱导DLL-E4对PNP的降解,生长延滞期由原来的6h减少到3h,降解完全的时间由9h缩短为7h和6h.对苯二酚(HQ)诱导,降解完全的时间延长为15h.该诱导酶同时能够降解2-硝基酚.DLL-E4菌株中含有大质粒,在丢失对-硝基苯酚降解性状的突变株M+P-中依然存在.  相似文献   

9.
铁-草酸盐配合物光分解降解对硝基苯酚的研究   总被引:7,自引:0,他引:7  
研究了铁(Ⅲ)-草酸盐配合物在可见光及太阳光照射下,对对硝基苯酚的光解降解作用。结果表明,在pH=4.0、Fe(Ⅲ)/H_2C_2O_4=0.080mmol/L/0.96mmol/L(分4次加入)、光照4h的条件下,20mg/L对硝基苯酚的降解率为89%。溶液pH值,铁与草酸盐浓度比和对硝基苯酚浓度均对降解效果产生影响。  相似文献   

10.
高效液相色谱法测定饮用水酚类分合物   总被引:1,自引:0,他引:1  
酚类化合物是芳香族羟基化合物,其羟基与苯环上的碳相连,根据苯环上羟基和氯根的数目和位置,一般常见的酚类有:苯酚、4-硝基酚、3-甲基酚、2,4-二氯酚、2,4,6-三氯酚、五氯酚等。在天然水中,一般检出不出酚类化合物,但受到如焦化、煤气制造、石油精炼、木材防腐、造纸及石油化工所排放的工业废水污染的水源可能含有该类物质。这些酚类化合物一般毒性不大,但多有恶臭,尤其苯酚,在饮用水加氯消毒时能形成嗅味更强烈的氯酚。因此,研究酚类化合物检测方法已迫眉睫。  相似文献   

11.
菌株 Arthrobacter sp. CN2降解对硝基苯酚的特性与动力学   总被引:2,自引:2,他引:0  
为研究对硝基苯酚降解菌Arthrobacter sp.CN2在实际生产中的应用潜力,本文分别分析了p H、盐浓度和额外添加碳源对降解效率的影响,同时对降解的动力学方程进行拟合分析.菌株CN2在p H 7.0~8.0,Na Cl浓度60 g·L-1之间能够高效降解对硝基苯酚,72 h内对50 mg·L-1对硝基苯酚的降解率均大于90%.同时发现适量添加葡萄糖(0.5%)可显著促进CN2降解对硝基苯酚,与不添加葡萄糖条件下相比,达到90%降解率所需时间缩短了16 h.当对硝基苯酚浓度低于300 mg·L-1时,菌株CN2对对硝基苯酚的降解符合一级动力学方程,降解速率常数在0.021 7~0.025 0之间.在生物反应器中应用菌株CN2模拟处理工业废水,3 L含对硝基苯酚废水(100 mg·L-1)在72h的降解率大于90%.研究表明,菌株Arthrobacter sp.CN2能够高效地降解对硝基苯酚,对于环境有良好适应能力,具有良好的应用前景.  相似文献   

12.
地下水中广泛存在的氯离子(Cl?)会在自由基作用下生成氯活性物质,进而与污染物反应可能引发新的环境风险. 为研究Cl?影响过硫酸盐(PS)高级氧化技术修复苯酚污染地下水的效果及机理,采用热活化PS氧化体系考察温度、PS浓度、初始pH及Cl?浓度对苯酚降解效果的影响,结合三维荧光平行因子分析(EEM-PARAFAC)查明苯酚降解过程中体系的光谱特征,借助气相色谱-质谱联用仪识别氯代有毒副产物的数量及种类,并揭示其降解机理. 结果表明:①反应温度的升高和PS浓度的增加均可促进苯酚的降解,且降解过程符合伪一级动力学模型. ②Cl?的存在会加速热活化PS对苯酚的降解,其降解效率随Cl?浓度的增加而提高,当Cl?浓度为10、25和50 mmol/L时,反应5 h后苯酚降解率为100%. ③苯酚降解过程中反应体系的荧光特征可分为4种荧光组分(C1、C2、C3和C4),Cl?存在时,C1和C2组分的荧光强度降幅更大,C3和C4组分主要为苯酚降解产物的光谱特征,其中C3组分的荧光强度随反应时间延长呈先增强后降低趋势. ④根据质谱测试结果,推断出Cl?存在时苯酚降解的可能机理,主要包括羟基化/氧化和氯化作用,其中生成的氯代有毒副产物包括2-氯苯酚、4-氯苯酚、2,4-二氯苯酚、氯氢醌、3,5-二氯儿茶酚、2,3-二氯-2-甲基丁烷和2-氯-4-甲基-2-戊醇. 研究显示,Cl?会提升热活化PS对苯酚污染地下水的修复效率,但也会因氯化作用生成氯代有毒副产物.   相似文献   

13.
为研究硝酸纤维素膜(NCM)作为新型污染物降解材料在水处理领域的应用潜力,本文以对硝基苯酚为目标污染物,NCM为活性氧物种来源,考察了溶液pH、光照条件、水体成分等因素对光解的影响及其作用机制。结果表明,NCM光致·OH量子产率为1.30×10-4,是传统光催化材料TiO2的1.86倍。纯水中对硝基苯酚的直接光解速率仅为9.52×10-4min-1,而在NCM存在情况下光解速率达到0.0055min-1。这种促进作用主要是由NCM表面光致·OH引起的,其中UVA对光解起重要作用。水体酸性条件有利于NCM光解对硝基苯酚,在pH=2.0时,降解率达到90%以上,相应的光解速率为0.0165min-1。对硝基苯酚的光解速率随光照强度、膜面积的增大而提高。水体成分对光解影响呈显著差异,NO3-可通过光致·OH的生成促进光解;而可溶性有机质主要通过滤光作用抑制对硝基苯酚的光解。气相色谱-质谱分析中间产物主要有苯酚、对苯二酚、丙二酸和草酸等,由此给出了可能的光解途径。  相似文献   

14.
七株有机磷农药降解菌的降解特性比较   总被引:18,自引:0,他引:18  
对分离自同一有机磷农药污染土壤的7株有机磷农药降解菌的降解特性进行了比较,7株降解菌都能利用甲基对硫磷为唯一碳源生长,并生成中间代谢产物对硝基苯酚.对硝基苯酚的降解经过一段延滞期,不同菌株降解对硝基苯酚的能力和延滞期有很大差异.降解菌株对多种有机磷类农药和芳香族化合物具有降解能力,其降解谱表现了一定的差异.用PCR方法从7株降解菌中克隆了有机磷农药水解酶基因.  相似文献   

15.
CTMAB/TiO_2表面修饰膨胀珍珠岩光催化降解水中对硝基苯酚   总被引:1,自引:0,他引:1  
用溴化十六烷基三甲铵(CTMAB)和/或TiO2对膨胀珍珠岩(EP)进行表面修饰,获得不同表面修饰膨胀珍珠岩(CTMAB-EP,TiO2/CTMAB-EP,TiO2-EP和EP),研究其对水中对硝基苯酚的去除效果、吸附降解动力学以及最适条件.结果表明:膨胀珍珠岩对对硝基苯酚的吸附去除能力很小,对其用CTMAB进行表面修饰或负载TiO2均可显著提高对硝基苯酚的去除率,同时负载CTMAB和TiO2的膨胀珍珠岩对对硝基苯酚的去除率最高;环境修复材料用量、振荡时间、初始ρ(对硝基苯酚)和pH等对去除效果有一定影响.膨胀珍珠岩上负载的TiO2对对硝基苯酚的光催化降解能力受pH的影响不大,表面活性剂CTMAB在pH为8时对对硝基苯酚的吸附能力较强,pH为8时修复材料对对硝基苯酚的去除效果最好.  相似文献   

16.
采用紫外光(UV)/单过氧硫酸氢盐(PMS)体系可有效地氧化降解4-氯-2-硝基酚(4C2NP).考察了溶液pH值、底物初始浓度、PMS初始浓度和氯离子、硝酸根离子初始浓度对4C2NP降解效果的影响.在pH2~5时,体系中4C2NP的降解速率并未出现显著差异;随着pH值升高至近中性,其降解过程受到一定程度抑制.初始底物浓度和PMS浓度与体系中4C2NP的降解速率分别呈现负、正相关关系.外加氯离子对4C2NP降解呈现出双重作用,而硝酸盐离子对4C2NP降解抑制作用不显著.脱氯和脱硝过程是4C2NP主要的降解途径.被释放的氯离子会通过自由基反应进行再氯化过程,而脱落的硝基会很快被氧化生成稳定的硝酸盐,从而抑制了硝基的循环过程.最后,根据中间产物推断了4C2NP降解过程的反应机理.  相似文献   

17.
为研究硝酸纤维素膜(NCM)作为新型污染物降解材料在水处理领域的应用潜力,本文以对硝基苯酚为目标污染物,NCM为活性氧物种来源,考察了溶液p H、光照条件、水体成分等因素对光解的影响及其作用机制.结果表明,NCM光致·OH量子产率为1. 30×10~(-4),是传统光催化材料TiO_2的1. 86倍.纯水中对硝基苯酚的直接光解速率仅为9. 52×10-4min-1,而在NCM存在情况下光解速率达到0. 005 5 min-1.这种促进作用主要是由NCM表面光致·OH引起的,其中UVA对光解起重要作用.水体酸性条件有利于NCM光解对硝基苯酚,在p H=2. 0时,降解率达到90%以上,相应的光解速率为0. 016 5min-1.对硝基苯酚的光解速率随光照强度、膜面积的增大而提高.水体成分对光解影响呈显著差异,NO-3可通过光致·OH的生成促进光解;而可溶性有机质主要通过滤光作用抑制对硝基苯酚的光解.气相色谱-质谱分析中间产物主要有苯酚、对苯二酚、丙二酸和草酸等,由此给出了可能的光解途径.  相似文献   

18.
焦化废水中有机物在A1-A2-O生物膜系统中的降解机理研究   总被引:17,自引:2,他引:17  
对焦化废水中有机物在A1 A2 O生物膜系统各段的降解进行了研究 .结果表明 ,废水中主要有机组份为苯酚类和含氮杂环类化合物 ,它们所占比例分别为 5 0 %和 4 0 % .经过厌氧酸化处理后 ,苯酚类中简单酚得到了较大程度的降解 ,随着苯酚甲基取代基数目的增加 ,降解率逐渐降低 ,对三甲酚则没有降解 ;简单的含氮杂环化合物如喹啉、异喹啉、吲哚、吡啶在厌氧过程中也得到了较大的降解 ,而有取代基的含氮杂环化合物则有所增加 ;喹啉和甲基喹啉的降解可生成羟基喹啉和甲基 2(1H)喹啉酮中间产物 .经过厌氧酸化段处理后 ,废水的BOD5 COD有较大提高 .厌氧出水的大部分有机物可在缺氧段得到降解 .最终出水中有机物基本上为大分子难降解物质 .  相似文献   

19.
从舟山双峰盐场的盐田中分离筛选得到一株可降解碱性染料甲基绿细菌Salinivibrio kushneri DD-1。研究了该菌株最佳的生长盐浓度以及在不同NaCl浓度、甲基绿浓度、pH值以及O_2浓度对该菌株降解甲基绿的影响,并对其降解产物进行分析。结果表明:该菌株为一株嗜盐菌,最佳生长盐浓度为50 g/L。脱色实验中,Salinivibrio kushneri DD-1在ρ(NaCl)为50 g/L时脱色率最高,达到95%;对低浓度甲基绿(25 mg/L)的脱色效果较好;脱色率随pH升高而增大,该菌株在碱性条件下对甲基绿的脱色效果更佳; Salinivibrio kushneri DD-1在厌氧条件下无法降解甲基绿,随着O_2浓度升高,脱色效果逐渐增强。甲基绿降解产物主要为4-(N,N-二甲基氨基)-4'-(N',N'-二甲基氨基)二苯甲酮、4-(N-乙基-N,N-二甲基氨基)-4'-(N',N'-二甲基氨基)二苯甲酮、[4-(N-乙基-N,N-二甲基氨基)][4'-(N',N'-二甲基氨基)][4″(N″,N″-二甲基氨基)]三苯基甲醇。  相似文献   

20.
Achromobacter xylosoxidans NS12的分离和对硝基苯酚的降解   总被引:1,自引:1,他引:0  
通过富集培养,从红树林底泥中分离出6株硝基苯酚降解菌,其中Achromobacter xylosoxidans NS12在好氧条件下可耐受小于1.8 mmol/L的邻硝基苯酚(ONP)或3.0 mmol/L的对硝基苯酚(PNP),能以PNP和ONP作为唯一碳源、能源和氮源生长并将其完全矿化, 但该菌不能利用间硝基苯酚(MNP)作为唯一碳源和氮源生长.研究发现A. xylosoxidans NS12在降解PNP和ONP组成的混合底物时,PNP的存在可抑制ONP的降解,同时ONP的存在也抑制PNP的降解.此外,在利用PNP和ONP的混合底物时,NS12转化PNP的速率显著地高于转化ONP的速率.红树林底泥中固有的细菌对PNP和ONP具有高效降解作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号