首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of starvation on glycogen, lipid, water content and muscle proteins of red and white muscles in the plaice Pleuronectes platessa L. has been investigated. The two muscle systems behave differently in their response to food shortage, glycogen and protein depletion being more marked in the white muscle. Little change occurred in the constituents of the red muscle, except lipid. Starvation resulted in an increase in water content in the white, but not in the red muscle. The differential response of these two musole systems to starvation is discussed. It is suggested that the small amount of red muscle in the body is spared from the effects of starvation because it is needed for continuous activity during swimming at all speeds.  相似文献   

2.
S. W. Kim  T. Onbé 《Marine Biology》1989,100(2):203-210
Embryology of the hermaphroditic and dimorphic alcyonacean Heteroxenia fuscescens has been examined by scanning electron microscopy and light microcopy. Initial embryonic development in this octocoral occurs while the embryos migrate freely inside the anthocodiae and the tentacles. Immature planulae are extruded externally into intersiphonozooid spaces, where they mature. All stages of planular morphogenesis, from egg to planula, occur while the embryo is coated by the original egg mesogleal coat derived from the parent colony. Hatching from this mesogleal coat occurs as late as immediately prior to planulation. H. fuscescens demonstrates highly specialized brood care involving the retention of embryos in internal polyp cavities as well as in external spaces. This highly specialized brood care, coupled with the embryo coating, may provide better protection for the embryo and greater fecundity for the colony.  相似文献   

3.
We describe aspects of the anatomy and suspension-feeding mechanism of a single Planctosphaera pelagica captured from the plankton in June 1992 off Bermuda in the western Atlantic. We also describe several unusual features of the larva, including its occurrence in surface waters, unusually large size, and limited swimming ability. Our account of the form and feeding behavior of P. pelagica is the first based on observations of a specimen captured and observed alive. Our limited observations suggest that the planctosphaera may use a suspension-feeding mechanism much like that of the other feeding deuterostome larvae (the pluteus and bipinnaria larvae of echinoderms and the tornaria larva of enteropneust hemichordates) known to capture food particles using a single ciliated band. Although we could not observe cilia directly, the movement of dye streams and food particles and the structure of the ciliated band suggest that some particles may be captured at the ciliated band by the reversal of ciliary beat. The planctosphaera possesses many prominent mucous glands near the food grooves. This suggests an important role of mucus in the biology of the larva, but we were not able to observe directly any role of mucus in particle capture.  相似文献   

4.
D. Dean 《Marine Biology》1978,48(1):99-104
Glycerid polychaetous annelids have been thought to have only limited migratory ability and to swim in the water column only for reproductive purposes. Nevertheless, adult Glycera dibranchiata were observed swimming in the upper 0.75 m of water in the Damariscotta River estuary, Maine, USA, on 5 nights in March of 1977. Of the 15 specimens collected with a dip net, 9 were females and 6 were males. None had ripe gametes. Worms weighed from 8.0 to 22.8 g, and were up to 42 cm in length. The presence of glycerids in buoyed and anchored nets fished at night in two other Maine estuaries lend support to the conclusion that the swimming of bloodworms at night is not an anomalous event. Twenty-four specimens of 5 other species of polychaetes and two specimens of a nemertean were collected from surface waters during 52 min of sampling on two nights in March. It is suggested that the swimming of worms at night in estuaries is a much more common phenomenon than was recognized heretofore.Contribution No. 103 of the Ira C. Darling Center, Walpole, Maine 04573, USA.  相似文献   

5.
Ciliary feeding by tornariae of Ptychodera flava (Eschholtz) and other tornariae from the plankton is compared with Garstang's (1939) account of feeding by these larvae, which account contains errors, and with ciliary feeding by echinoderm larvae. Some details of ciliation are also described. As in echinoderm larvae, band cilia beat away from the food grooves and retain particles on the upstream side of the ciliated band, but tornariae use muscles less in ingestion and rejection. In early-stage and most late-stage echinoderm larvae, the ciliated band functions in both swimming and feeding, but in tornariae the ciliated band is arranged meridionally so that few portions of the ciliated band produce a posteriorly-directed current and a locomotory teletroch is needed for swimming. Faster-swimming tornariae observed in bowls achieved higher ingestion and clearance rates. These observations raise questions about form and function in the giant Planctosphaera pelagica. Cilia of the locomotory telotroch increase in length as tornariae increase in size, but there is little increase in length of cilia which capture food. Instead, the length of the ciliated band increases relative to other larval tissues by means of increasing convolution of the band. Hence, the volume of water processed for food probably increases relative to energy expended by larvae during development to the tentaculate stage. However, the length of the ciliated band may decrease relative to other larval surfaces with continued increase in size beyond this stage. These interpretations of growth and feeding efficiency are consistent with the reported geographic distribution of tornariae with and without tentacles.  相似文献   

6.
Skeleton and sclerite formation in the precious red coral Corallium rubrum   总被引:1,自引:0,他引:1  
The carbonate skeleton of the gorgonian coral Corallium rubrum (L.) is composed of both a skeletal axis and numerous sclerites scattered in the mesoglea. Studies carried out on these skeletal elements and their associated tisues using microscopy and X-ray microanalysis, suggest a close relationship between the process of sclerite formation and skeletogenesis. The skeleton is surrounded by an axial epithelium composed of a single cell type. These cells associate intimately with mesogleal sclerites and scleroblasts, incorporating them into a nascent skeleton at the branch tip. Subsequent (sub-apical) growth appears to occur solely through the agency of the axis epithelial cells that serve to physically separate mesogleal sclerites and scleroblasts from contact with the axis. The epithelium is associated with the production of layered calcite crystals and irregular protuberances that constitute the mature, calcareous skeleton. Free sclerites in the mesoglea appear to be the product of multiple cells that are cytologically indistinguishable from those in the axis epithelium. Like the axis, sclerites are produced as layers of calcite crystals with irregular protuberances. The protuberances differ only slightly from those of the axis, and the skeleton is mineralogically indistinguishable from the sclerites. Thus, the skeleton of red coral is not primarily the product of fused sclerites. Instead, we suggest that the axis epithelium treats the incipient skeleton as if it were the core of a single sclerite, and conversely, that the mesogleal scleroblasts of C. rubrum constitute a fragmented axis epithelium.  相似文献   

7.
The effects of swimming frequency and water temperature on shell growth, tissue mass, and stored energy reserves of juvenile sea scallops, Placopecten magellanicus Gmelin, were examined in a factorial laboratory experiment spanning six weeks in July and August 1992. Individually tagged scallops of similar initial size (22.5±0.1 mm shell height, n=240) were induced to swim to exhaustion at three different swimming frequencies (every day, twice a week, or not at all) in two different water temperature regimes (4 to 7 or 7 to 13°C). The scallops were fed an ad libitum mixture of cultured microalgae. At the end of the experiment, cumulative increase in shell height, dry weight of soft tissues, condition index of dry adductor muscle (adductor muscle dry weight/soft tissue dry weight x 100) and total carbohydrate content of dry adductor muscle were measured for each scallop. Scallops at the higher temperature had significantly greater shell heights, and were in better metabolic condition as evidenced by significantly higher condition indices and muscle carbohydrate contents. The dry soft tissue weights did not differ significantly from their low temperature counterparts. Swimming frequency had no significant effect on shell height, dry tissue weight, or carbohydrate content, but condition index of the adductor muscle increased significantly with swimming frequency. These results show that not only was there no cumulative cost of swimming in terms of shell growth, total soft tissue weight, or carbohydrate content in young scallops, but that condition of adductor muscle tissue was higher in scallops that swam.  相似文献   

8.
The development of swimming (myotomal) muscles was studied in herring larvae (Clupea harengus L.) caught in the Firth of Clyde, Scotland, in spring 1990 and reared at either 5, 10 or 15°C. Two muscle-fibre types can be distinguished in the myotomes of herring larvae using ultrastructural criteria. A single layer of small-diameter muscle fibres, packed with mitochondria, is present beneath the entire surface of the skin (superficial muscle fibres). The remaining bulk of the muscle is composed of larger diameter fibres (inner muscle fibres) containing significantly more myofibrils than the superficial fibres. In 1 d-old larvae, the number of inner muscle fibres in myotomes immediately posterior to the yolk-sac was 311±41 at 15°C, 257±22 at 10°C and 187±22 at 5°C (mean±SD,n=6). The average diameter of inner muscle fibres increased with decreasing temperature, so that the total cross-sectional area of muscle was similar at each temperature. After 6 to 7 d, the number of muscle fibres had significantly increased at 15°C (383±25), but not at 10°C (281±32) or 5°C (192±17). In contrast, the average cross-sectional area of inner muscle fibres had increased by 19% at 15°C, 34% at 10°C, and 26% at 5°C. Temperature also influenced the relative proportions and spatial distributions of muscle-fibre organelles. For example, in 1 d-old larvae, the fraction of muscle-fibre volume (volume density) occupied by mitochondria in the superficial fibres was significantly higher at 15°C (46.0%) than at either 5°C (37.6%) or 10°C (38.8%). In the inner muscle fibres, the volume density of mitochondria was 26.1% at 15°C, 20.5% at 10°C and 15.9% at 5°C, whereas the volume density of myofibrils was similar at the three temperatures (33 to 38%). Typically, inner muscle fibres from 10°C larvae, but not from 5 or 15°C larvae contained a large central mitochondrion.  相似文献   

9.
P. J. Herring 《Marine Biology》1990,106(3):413-417
The bioluminescent responses of specimens of the deep-sea scyphozoanAtolla wyvillei, collected in the North East Atlantic and Southern Oceans between 1978 and 1984, were investigated. They include propagated waves of light travelling around both the coronal groove and/or various sites on the umbrella margin. The responses are non-polarised, there may be multiple waves resulting from a single stimulus, and propagation velocities range from 70 to 490 mm s–1. Isolated luminous areas at the tentacle base do not produce multiple responses, but show summation of flashes at stimulus frequencies >2 s–1 and facilitation is at least partly produced by local recruitment of additional luminous sources. Propagated luminous responses have also been observed in the neritic scyphozoanPelagia noctiluca. Damage during capture and handling probably limits the responses obtainable in the laboratory.  相似文献   

10.
The hypothesis that the behaviour of deep-sea scavenging fishes is influenced by seasonal input of organic matter from the ocean surface was investigated by observing responses to baits placed on the sea floor at 4800 m depth in the NE Atlantic (48°50′N; 16°30′W) during spring (April 1994). Data from the present study are compared with those from previous studies of the same location made in summer 1989. The first fishes to arrive at baits were the grenadier Coryphaenoides (Nematonurus) armatus and the eel Histiobranchus bathybius, after delays of 28 and 29 min, respectively; these results are not significantly different from those of summer 1989. Similarly, other indices of activity (staying time and swimming speed) showed no evidence of differences between years/seasons. However, the rate of radial dispersal of bait (0.009 m s−1) by C. (N.) armatus was much slower than in all previous studies. A change in the size distribution of C. (N.) armatus to smaller individuals in spring 1994 was also evident. It is suggested that the fish on the abyssal plain may not comprise a steady-state population and that major episodic or seasonal migrations may occur. Received: 18 October 1996 / Accepted: 20 December 1996  相似文献   

11.
In this article, we show how a disease could bias stable isotope analyzes of trophic networks and propose a strategy in the choice of tissues to be analyzed. In the past few years, a new pathology (brown muscle disease or BMD) affecting the posterior adductor muscle of Ruditapes philippinarum has emerged in Arcachon Bay. BMD induces a necrosis of muscle tissues which become infused by conchiolin and hence calcified. As muscle of mollusks are often used for trophic food webs studies through stable isotopic analyzes, this work investigated the effect of BMD on carbon and nitrogen isotopic ratios of anterior and posterior adductor muscles of clams collected in February and August 2007. Infected clams displayed a lower condition index and a posterior adductor muscle δ13C enrichment of 1.2‰ in February and 0.7‰ in August. δ15N of posterior muscles was however not affected by the disease. Anterior muscle of diseased clams remained healthy and displayed the same isotopic signature as both posterior and anterior muscular tissues of healthy clam. Acidification significantly depleted δ13C in posterior muscles of infected clams, suggesting calcification, contrary to anterior muscles of infected clam and to both muscles of healthy clams, where no effect was observed. An X-ray diffractometry analysis confirmed the presence of CaCO3 (aragonite). Trophic food web studies relying on stable isotope ratios should utilize only healthy animals or anterior adductor muscles when expertise in mollusk pathology is lacking.  相似文献   

12.
Abstract: The umbrella‐species concept, which suggests that conservation strategies designed for one species may benefit co‐occurring species, has been promoted as a framework for conservation planning. Nevertheless, there has been considerable variation in the outcome of empirical tests of this concept that has led researchers to question its value, so we used data from 15 published studies in a meta‐analysis to evaluate whether conservation of putative umbrella species also conserves co‐occurring species. We tested the effectiveness of putative umbrella species categorized by taxonomic group, taxonomic similarity to co‐occurring species, body size, generality of resource use, and trophic level to evaluate criteria proposed to guide the selection of umbrella species. We compared species richness and number of individuals (by species and higher taxonomic group) between sites with and without putative umbrella species to test whether more co‐occurring species were present in greater abundances when the area or resource needs of umbrella species were met. Species richness and abundance of co‐occurring species were consistently higher in sites where umbrella species were present than where they were not and for conservation schemes with avian than with mammalian umbrella species. There were no differences in species richness or species abundance with resource generalist or specialist umbrella species or based on taxonomic similarity of umbrella and co‐occurring species. Taxonomic group abundance was higher in across‐taxonomic umbrella species schemes than when umbrella species were of the same taxon as co‐occurring species. Co‐occurring species had similar, or higher, species richness with small‐bodied umbrella species relative to larger‐bodied umbrella species. The only significant difference among umbrella species categorized by trophic level was that species richness was higher with omnivorous than it was with carnivorous avian umbrella species. Our results suggest there is merit to the umbrella‐species concept for conservation, but they do not support the use of the criteria we used to identify umbrella species.  相似文献   

13.
We investigated the influence of intracellular diffusion on muscle fiber design in several swimming and non-swimming brachyuran crabs. Species with sustained swimming behavior had aerobic dark fibers subdivided into small metabolic functional units, creating short diffusion distances necessary to support the high rates of aerobic ATP turnover associated with endurance activity. This dark fiber design was observed in all swimming species including Ovalipes ocellatus, which has apparently evolved swimming behavior independently of other Portunidae. In addition, we observed fiber and subdivision size-dependent differences in organelle distribution. Mitochondria, which rely on oxygen to function, were uniformly distributed in small fibers/subdivisions, but were clustered at the fiber periphery in larger fibers. The inverse pattern was observed for nuclei, which are not oxygen dependent, but rely on the transport of slow diffusing macromolecules. Phylogenetically independent contrast analysis revealed that these relationships were largely independent of phylogeny. Our results demonstrate cellular responses to diffusion that were necessary for the evolution of swimming and that are likely to be broadly applicable.  相似文献   

14.
The architecture and function of the lophophore of the marine bryozoan Cryptosula pallasiana (Moll) are described, including some new features not previously discovered in bryozoans. The nature of fluid movements within the lophophoral coelom during feeding activities is postulated on the basis of the arrangements of epithelia and muscles. Epithelial cells at the tentacle bases are blastemic in nature, and there is a ciliated pit of unknown function in the angle between every pair of tentacles. There are 6 nerves in each tentacle, including a pair of single-axon subperitoneal nerves. Neurosecretory-like vesicles and glycogen occur in some neurons of the ganglion. The basal lamina collagen has a diameter smaller than that previously recorded for an invertebrate. Filament dimensions are given for several different muscles. Tentacle muscles and lophophore retractor muscles are smooth. Thick paramyosin-like filaments up to 75 nm diameter occur in two muscle types. A new set of muscles is described: the basal transverse muscles of the tentacles.  相似文献   

15.
D. Dean 《Marine Biology》1978,45(2):165-173
There have been many previous reports of the sandworm Nereis virens Sars swimming in the water column. This behavior usually has been attributed to reproductive processes. Sandworms were found swimming in surface waters at night on ebb tides during many nights of January, February and March in a Maine (USA) estuary. None of the specimens examined contained gametes or possessed other characteristic spawning or pre-spawning modifications. Several age classes were found, with worms measuring 9 to 38 cm in length, weighing 0.5 to 19.8 g, and having 82 to 187 segments. The greatest numbers of worms were observed during near-average tides on evenings in which low tides occurred a few hours after sunset but prior to moonrise. Up to 83 worms per minute were observed swimming seaward through a 20 m transect, while none were observed swimming landward at any stage of the tide. It is concluded that sandworms swimming during winter nights is unrelated to reproduction and that it is an inherent behavior pattern.Contribution No. 102 of the Ira C. Darling Center, Walpole, Maine 04573, USA.  相似文献   

16.
Changes in myofibrillar protein composition during development have been investigated in the swimming muscles of the Atlantic herring Clupea harengus L. using a range of electrophoretic techniques. The main muscle-fibre type of larvae, and the fast- and slow-muscle fibres of adult fish were found to contain distinct isoforms of myosin heavy chain (MHC) and myosin light chain 2 (LC2). Larval LC2 was present as a minor component of adult fast-muscle myosin. In contrast, larval and adult fast-muscle myosin appeared to contain identical alkali light chains. Tropomyosin and troponin C were also identical in larval and in adult fast-muscle. All three muscle-fibre types contained unique isoforms of troponin T (TNT) and troponin I (TNI). Larval muscle had multiple isoforms of TNT, some of which may correspond to embryonic forms. It was concluded that although the main muscle-fibre type in larvae shares some myofibrillar proteins with adult fast muscle, it also contains characteristic isoforms of MHC, TNI, TNT and LC2 and therefore represents a distinct fibre type. The particular combination of myofibrillar proteins present at any developmental stage was found to be dependent on the rearing temperature. For example, a higher proportion of embryonic TNT isoforms were present at hatching in larvae reared at 5°C than at either 10 or 15°C. Over a period of 7 d, there was a gradual reduction in the number of TNT isoforms, but the pattern in 5°C larvae after 7 d still did not resemble that in 1 d-old larvae reared at 15°C.  相似文献   

17.
The turning behavior of elvers of the American eel Anguilla rostrata was studied in an arena in which a horizontal electric or a vertical magnetic field could be manipulated. The objectives were to determine if the strength and polarity of a weak direct-current (dc) electric field influenced elver orientation, and to determine if any such influence was due to electric fields generated by the elvers' own swimming movements. As electric current density increased from 10-2 A cm-2 to 102 A cm-2, elvers turned increasingly more toward the anode, regardless of whether the anode was on the left or right side of the arena. Elvers in the lowest field turned more toward the cathode than control elvers, and elvers in the highest field turned more toward the anode than controls. There were no differences in mean turning angles of groups of elvers swimming in four different vertical magnetic field conditions (0.54 gauss, <0.02 gauss, 0.52 gauss reversed direction, and 2.00 gauss), suggesting that elvers were not influenced by internally generated electric fields. However, swimming speeds were such that the generated fields would have been of the order of 10-4 A cm-2 or less. Elver orientation apparently could be influenced by electric fields of the magnitude generated in major ocean current systems, but probably are not influenced by electric fields generated by their own swimming in the geomagnetic field.  相似文献   

18.
Association between copepods and bacteria was observed in many scanning electron micrographs. Particular sites on the copepods were selectively colonized by bacteria; the joints of segments and legs, swimming legs and depressed parts of the body surface were found to be densely covered with bacteria. In comparison, bacterial attachment to copepod skeletons in fecal pellets excreted by chaetognaths was not selective; bacteria were sparsely found all over the copepod. Between 9 to 30% of copepods in Tokyo Bay waters had attached bacteria in January and April 1983.  相似文献   

19.
Collections of Branchiostoma lanceolatum (Pallas) made in mid-May and mid-July at Helgoland before and after spawning have established that the larvae leave the amphioxus ground about June and therefore presumably become planktonic. Metamorphosing larvae and young adults can be collected on the ground in late August and early September and are either the same larvae returning, or others from a neighbouring ground within the same circulating current system. An examination of the gut contents of 67 larvae collected from the plankton at Helgoland in August showed that 30% of the animals had ingested calanoid copepods or other organic material of a size similar to that of the larval mouth. A few larvae had also taken small particles evidently by a ciliary mechanism. In 50% of the larvae the gut was empty. It has been found that, in addition to a muscular mouth and gill bars richly supplied with nerves, both the gut wall and the body wall are muscular and capable of passing, by peristalsis, large food masses that distend the body. The visceral muscles of the larva resemble the coelomyarian fibres of the Nematoda. The larva appears, therefore, to be both microphagous and macrophagous. Evidence from the swimming behaviour and from reports of the vertical distribution of larvae in the sea is discussed. It is suggested that the larvae normally swim upward with the mouth and gills closed and then sink passively in the horizontal position with the pharynx expanded and the open mouth directed downward. In the event of large organism such as a copepod or a mass of organic material coming into contact with the adhesive lower left surface of the larva, it could be captured by the mobile lower lip and engulfed. The straightening of the larval tail, the great increase in the number of eyecups and the growth of the metapleura at metamorphosis are suggested as factors leading to the settlement of the young adult. Attention is drawn to the possible significance of the structure of the larva in interpreting the relationships of the cephalochordates.  相似文献   

20.
Gastrotrichs are acoelomate micrometazoans common to marine interstitial environments of sublittoral sediments and exposed sandy beaches. The genus Neodasys (Chaetonotida) contains three marine species known from oceans and seas worldwide, and figures prominently in discussions of gastrotrich origins. To gain insight into the phylogenetic position of Neodasys and to understand the adaptive significance of muscle anatomy in marine interstitial gastrotrichs, a fluorescent phalloidin-linked marker was used to view the organization of muscles in two species from North America and Australia. Muscular topography of Neodasys cirritus from Florida, USA, and Neodasys cf. uchidai from Queensland, Australia, was found to be similar between species and to basal species of Macrodasyida; muscles were present in circular, longitudinal and helicoidal patterns. Musculature of the midgut region was partially reduced relative to basal macrodasyidan gastrotrichs, but well developed relative to most other chaetonotidan gastrotrichs. In general, muscle patterns in species of Neodasys closely correspond with those of other gastrotrichs of similar size and body type, and may therefore reflect a common adaptive solution to the physical demands of the interstitial environment. Results also suggest that reductions in midgut musculature may be functionally related to oviposition and, as such, are probably not homologous with similar reductions of circular muscles in other species of Chaetonotida.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号