首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
运用不同类型的PM_(1.0)自动监测仪,于2017年11月至2018年11月对兰州城市大气PM_(1.0)开展了为期一年的观测,分析了兰州PM_(1.0)污染特征及来源,以及气象条件和SO_2、NO_2等污染物对PM_(1.0)浓度特征的影响,重点分析了重污染天气过程PM_(1.0)的演变情况。结果表明:研究期内,兰州城市PM_(1.0)日均最大浓度为117.5μg/m~3,最小浓度为8.3μg/m~3,平均浓度为33.7μg/m~3;4个季节的PM_(1.0)平均浓度排序为冬季秋季春季夏季,冬季PM_(2.5)中PM_(1.0)的占比超过70%。从全年来看,PM_(1.0)主要来源于内蒙古西北部地区污染气团输入。PM_(2.5)与PM_(1.0)的来源区域具有一致性,但PM_(1.0)的来源范围更广泛,而PM_(2.5)的来源更集中。重污染阶段,PM_(1.0)与PM_(2.5)、PM_(10)污染演变趋势呈现负相关,PM_(2.5)与PM_(10)呈现正相关,且秋冬季PM_(1.0)和PM_(2.5)的潜在污染来源距离兰州较近,范围更集中。  相似文献   

2.
对2014—2016年齐齐哈尔市PM_(2.5)与PM_(10)质量浓度的时间变化特征进行简要分析,并探究PM_(2.5)/PM_(10)以及PM_(2.5)与PM_(10)的相关性。结果表明:2014—2016年齐齐哈尔的PM_(2.5)与PM_(10)的年均质量浓度分别为36.7、62.9μg/m~3,且呈逐渐下降趋势;冬季的PM_(2.5)与PM_(10)浓度最高,秋季次之,春季与夏季相对较低;2014—2016年PM_(2.5)与PM_(10)质量浓度月变化趋势基本相同,整体呈现2—6月逐渐下降,9—11月逐渐上升的规律;PM_(2.5)与PM_(10)质量浓度的日变化均呈双峰现象;对PM_(2.5)与PM_(10)进行线性拟合,相关系数为0.896 3。同时,残差分析也说明两者拟合情况良好,四季相关系数为r_(秋季)(0.982 2)r_(冬季)(0.964 4)r_(夏季)(0.943 9)r_(春季)(0.829 6);2014—2016年PM_(2.5)/PM_(10)平均值为55.27%,大气颗粒物PM_(2.5)的贡献率高达一半以上。  相似文献   

3.
为研究北京地区冬季PM_(2.5)载带的水溶性无机离子组分污染特征,2013年1月在中国环境科学研究院内采用在线离子色谱(URG-9000B,AIM-IC)对PM_(2.5)中水溶性无机离子(SO_4~(2-)、NO_3~-、Cl~-、NH_4~+、Na~+、K~+、Mg~(2+)、Ca~(2+))进行监测与分析。结果表明,采样期间总水溶性无机离子(TWSI)浓度为61.0μg/m~3,其中二次无机离子SO_4~(2-)、NO_3~-、NH_4~+(SNA)占比达72.3%,在PM_(2.5)中占比为40.29%,表明北京市PM_(2.5)二次污染严重。重污染天[NO_3~-]/[SO_4~(2-)]表明,固定源污染较移动源更为显著。三元相图表明,在空气质量为优的情况下,NH_4~+(在SNA中占比为30.3%~65.5%,下同)主要以NH_4NO_3的形式存在,较少比例以(NH_4)_2SO_4存在;严重污染时,NH_4~+(47.3%~77.9%)主要以(NH_4)_2SO_4形式存在,其次以NH_4NO_3的形式存在,其余的NH_4~+以NH_4Cl的形式存在。[NO_3~-]/[SO_4~(2-)]日变化表明,早、晚机动车高峰影响北京重污染发生。  相似文献   

4.
为了解采暖期大气PM_(1.0)和PM_(2.5)中水溶性离子污染特征,采集哈尔滨市2014年11月至2015年3月采暖期PM_(1.0)和PM_(2.5)的样品,进而分析其中的水溶性离子(F-、Cl-、NO-3、SO2-4、Na+、NH+4、K+、Mg2+、Ca2+)的质量浓度。结果表明:PM_(1.0)和PM_(2.5)中的水溶性离子具有相同的变化趋势。采暖期间PM_(1.0)和PM_(2.5)中9种水溶性离子质量浓度总和分别为25.4~60.7μg/m~3和38.8~78.0μg/m~3。在PM_(1.0)和PM_(2.5)中NH+4、NO-3、SO2-4占比较高,而F-、Mg2+占比较低。PM_(1.0)和PM_(2.5)中9种水溶性离子质量浓度均为夜间大于白天。在PM_(1.0)和PM_(2.5)中,Mg2+和NH+4、F-和Cl-呈显著相关,说明它们来自相似的污染源,在PM_(1.0)中的K+和Ca2+显著相关,故它们受相似的污染源的影响。根据酸度与各离子的相关性,得出SO2-4和NH+4是控制大气颗粒物酸碱性的主要离子。另外,气象因素对PM_(1.0)和PM_(2.5)的浓度有影响。  相似文献   

5.
为探究衡阳冬季PM_(2.5)和水溶性离子污染特征及其来源,于2019年1月在衡阳市城区采集大气PM_(2.5)样品,使用重量法和离子色谱法测得PM_(2.5)和水溶性离子组分质量浓度,并分析其浓度特征、酸碱度和来源等问题。结果表明:采样期间衡阳大气PM_(2.5)平均质量浓度为94.25μg/m~3,总水溶性离子质量浓度为52.94μg/m~3,占PM_(2.5)总质量浓度的56.43%;阴阳离子当量之比为1.12,PM_(2.5)呈酸性,其中SNA(SO_4~(2-)、NO_3~-和NH_4~+)占总水溶性离子质量浓度的95.06%。污染期间二次转化明显,SNA主要以(NH_4)_2SO_4和NH_4NO_3形式存在。源解析发现大气PM_(2.5)受化石燃料和生物质燃烧、垃圾焚烧、建筑扬尘、气态前体物二次转化、外来输送等多重因素影响,其中机动车尾气排放的NO_x在大气中二次转化形成的硝酸盐是衡阳重污染的最主要原因。  相似文献   

6.
基于聚类分析的颗粒物监测网络优化研究   总被引:1,自引:0,他引:1  
为了优化香港环境监测网络,收集香港14个监测站2011年1月1日至2015年11月30日的颗粒物PM_(2.5)、PM_(10)的小时数据进行统计分析。对PM_(2.5)进行聚类,并利用日均浓度变化图进行验证,结果表明,可将监测站分为4类(A、B、C、D类),A类位于城市郊区,B类则位于港口附近,且A、B类的PM_(2.5)日变化特征均呈现双峰型分布,峰值分别出现在09:00和21:00。对PM_(10)进行类似分析结果表明,监测站同样可以分为4类,A类位于九龙区,B类则位于港口附近,而且A、B类的PM_(10)日变化双峰分别出现在11:00和20:00左右。说明污染源头及地形的相似致使某些监测站颗粒物浓度的变化出现相同的趋势,导致监测设备的浪费和管理的冗余。建议建立更高效的空气管理系统,将冗余设备转移到其他地区,扩大空气监控区域。对PM_(2.5)/PM_(10)聚类结果表明,将监测站分为4类,B类均属于路边站,C类则位于居民区。同时还发现同类监测站PM_(2.5)/PM_(10)数值变化相同,并且可以用其中一个站的PM_(2.5)和PM_(10)浓度及另一个站的PM_(2.5)或PM_(10)浓度预测PM_(2.5)或PM_(10)浓度,为优化监测资源提供了一种新的思路。  相似文献   

7.
为深入了解邢台市PM_(10)、PM_(2.5)浓度变化情况和气流后向轨迹,对邢台市2013—2016年环境大气颗粒污染物监测数据进行了分析,同时利用HYSPLIT模型计算出逐日72 h后向气流轨迹。结果表明:邢台市的PM_(10)和PM_(2.5)质量浓度在2013—2016年间呈逐年下降趋势,PM_(10)和PM_(2.5)质量浓度高值出现在冬季(296μg/m~3和192μg/m~3),最低值出现在夏季(140μg/m~3和80μg/m~3),PM_(10)和PM_(2.5)质量浓度在日变化上均呈"双峰双谷"型分布;后向轨迹的季节聚类分析表明,春季大气颗粒物污染以粒径2.5~10μm的颗粒污染物为主,夏季、秋季和冬季的大气颗粒物污染以PM_(2.5)为主;逐日聚类分析表明,在路径为西北偏西向的、途经多个沙源地的气流影响下,邢台市的PM_(10)和PM_(2.5)质量浓度处于一个相对高值;来源于偏南向的气流由于化合反应,污染物积聚导致PM_(10)、PM_(2.5)质量浓度也处于相对高值;在来源于西北向和偏北向的、水汽含量相对较低的气流影响下,邢台市的PM_(10)、PM_(2.5)质量浓度出现一个明显的下降。  相似文献   

8.
南京市大气颗粒物中多环芳烃变化特征   总被引:4,自引:2,他引:2  
逐月采集南京市大气中不同粒径的颗粒物,采用HPLC分析了2010年每个月PM_(10)和PM_(2.5)颗粒物样品中的多环芳烃(PAHs)的种类和浓度水平。结果表明:PM_(10)中PAHs年均值为25.07 ng/m~3,范围为11.03~53.56 ng/m3;PM_(2.5)中PAHs年均值为19.04 ng/m~3,范围为10.82~36.43 ng/m~3。PM_(10)和PM_(2.5)中PAHs总体浓度有着相似的变化趋势,呈现凹形变化曲线;在南京市大气颗粒物中吸附的PAHs大部分以5~6环的高环数组分为主,大部分PAHs和∑PAHs的相关性较好,年度变化幅度不大,分析结果表明,颗粒物中PAHs的来源与稳定的排放源相关,机动车排放不容忽视,与北方城市燃煤污染有着较大的区别。  相似文献   

9.
为研究焦作市大气污染特征及其相关性,对2015—2017年焦作市4个国控空气监测点位的监测数据进行统计分析。结果表明:2015—2017年城区环境空气污染SO_2、NO_2、CO、PM_(10)、PM_(2.5)浓度均呈逐年下降趋势;大气污染浓度季节变化特征明显,PM_(10)、PM_(2.5)、SO_2、NO_2、CO的浓度均为冬季最高、夏季最低,空气质量指数也在冬季达到最高值; O_3浓度则为夏季最高、冬季最低。2017年焦作市沙尘天气共计36 d,严重影响了环境空气中颗粒物的浓度。由PM_(2.5)与PM_(10)的比值说明大气颗粒物污染以PM_(2.5)为主。通过SPSS软件分析,SO_2、NO_2、CO、PM_(10)、PM_(2.5)浓度间呈两两正相关,O_3浓度与NO_2、CO呈负相关。  相似文献   

10.
重庆市主城区大气水溶性离子在线观测分析   总被引:3,自引:0,他引:3  
2015年12月—2016年3月期间,利用在线气体与气溶胶成分监测仪(IGAC)在重庆市大气超级站开展连续观测分析,并捕捉到2次持续时间较长的空气重污染过程。对PM_(2.5)中9种水溶性离子及5种气态前体物的观测结果分析表明:NO_3~-、NH_4~+和SO_4~(2-)是重庆市主城区PM_(2.5)中主要的水溶性离子成分,其浓度均表现出明显的日变化特征,主要以(NH4)_2SO_4和NH_4NO_3的形式存在。NH_3和SO_2是最主要的气态污染物。2次重污染过程的水溶性离子组分有明显差异,细颗粒物累积型污染的NH_4~+、SO_4~(2-)、NO_3~-浓度高,二次转化十分明显;春节期间烟花爆竹集中燃放,Cl~-、K~+浓度高,主要属于一次排放;污染期间主要离子组分的同源性特征显著。  相似文献   

11.
于2017年3月1日—5月31日监测分析了连云港市大气PM_(2.5)中主要水溶性无机离子质量浓度的日变化规律,以及与气象因子、PM10、PM_(2.5)相关性。结果表明,水溶性无机离子质量浓度与环境空气中NO_2、CO、PM_(10)、PM_(2. 5)显著相关,与气温、风速、能见度等呈负相关;日变化呈明显单峰型,峰值出现在08:00左右;水溶性无机离子季度均值为27. 2μg/m~3,占ρ(PM_(2.5))平均50%左右,ρ(NO_3~-)、ρ(SO_4~(2-))和ρ(NH_4~+)占ρ(水溶性无机离子)总85%以上;指出,SO_4~(2-)主要受远距离传输的影响,NO_3~-和NH_4~+主要受局地源的影响。  相似文献   

12.
利用2013年佛山市8个国控大气自动监测站点ρ(PM_(2.5))监测数据,分析佛山市PM_(2.5)污染的时空分布特征,并诊断诱发PM_(2.5)高污染过程的关键天气类型。结果表明,佛山市2013年PM_(2.5)年均值为53μg/m3,高于国家二级标准,污染主要集中在三水区中部、南海区中部和禅城区北部。佛山市ρ(PM_(2.5))表现出明显的季节变化和日变化特征,秋、冬季是PM_(2.5)的高污染季节,其值夜间略高于白天,呈典型的双峰型分布,08:00—09:00短暂出现一个浓度的小峰值,推测与上班交通高峰有关。对PM_(2.5)持续高污染发生的地面天气形势分析表明,高压出海是诱发佛山市PM_(2.5)高污染事件最主要的天气类型。  相似文献   

13.
广州市冬季PM_(2.5)污染过程二次水溶性无机离子组分特征   总被引:1,自引:0,他引:1  
为了解广州地区灰霾天气成因,基于城市超级站,对2013年12月1日—12月8日期间2次灰霾天气过程的水溶性无机离子污染特征进行研究。结果表明:监测期间二次离子(SNA)SO_4~(2-)、NO_3~-、NH_4~+分别占PM_(2.5)质量浓度的15.8%、7.4%、7.0%;2次污染过程SNA对PM_(2.5)贡献显著,机动车排放和燃煤是PM_(2.5)的主要污染来源。广州冬季属于富氨区,2次污染过程都伴随着NH_4~+显著增加,NH_4~+主要以(NH_4)_2SO_4和NH_4NO_3形式存在。  相似文献   

14.
利用2015年1月1日至12月31日南水北调中线源头南阳市主城区5个国控空气质量监测站24 h自动连续采样的PM_(10)、PM_(2.5)质量浓度数据和同期气象要素观测数据,分析了南阳市大气颗粒物浓度的污染特征及其与气象因子的关系。结果表明:2015年南阳市PM_(10)、PM_(2.5)年均质量浓度分别为0.136、0.074 mg/m~3,超标率分别为31.8%、39.2%;PM_(10)、PM_(2.5)峰值均出现在1月,PM_(10)谷值出现在11月,PM_(2.5)谷值出现在9月;PM_(10)四季日变化均呈双峰型,而PM_(2.5)冬季日变化呈双峰型,其他季节无明显峰值;PM_(2.5)/PM_(10)值在43%~65%,均值54%;PM_(10)、PM_(2.5)与大气压呈显著正相关,与温度、相对湿度呈显著负相关,与风速、降水相关性不明显。  相似文献   

15.
北京地区不同季节PM2.5和PM10浓度对地面气象因素的响应   总被引:1,自引:0,他引:1  
利用2013年1月—2014年12月北京地区PM_(2.5)和PM_(10)监测数据和同期近地面气象观测数据,采用非参数分析法(Spearman秩相关系数)研究了北京地区PM_(2.5)和PM_(10)的浓度对不同季节地面气象因素的响应。结果表明:北京地区大气颗粒物浓度水平具有明显的季节特征,冬季大气颗粒物污染最严重,夏季最轻。不同季节影响颗粒物浓度水平的气象因素各不相同,其中风速和日照时数为主要影响因素。PM_(2.5)和PM_(10)质量浓度对气象因素变化的响应程度也有较大区别,PM_(2.5)/PM_(10)比值冬季最高,PM_(2.5)影响最大,春季最低,PM_(10)影响最大。这些结论可对制订科学有效的大气污染控制策略提供参考。  相似文献   

16.
新疆大气颗粒物的时空分布特征   总被引:1,自引:0,他引:1  
基于2015年新疆12个城市的PM_(10)和PM_(2.5)地面监测数据,并结合同期气象观测数据,分析了新疆PM_(10)和PM_(2.5)质量浓度的时空分布特征及其与气象要素的关联性。结果表明:新疆大气颗粒物年均质量浓度呈现南高北低特征,南疆各城市的年均PM_(10)质量浓度为150~262μg/m~3,年均PM_(2.5)质量浓度为50~118μg/m~3。北疆各城市的质量浓度相对较低,年均PM_(10)质量浓度为28~139μg/m~3,年均PM_(2.5)质量浓度为13~74μg/m~3。从时间变化来看,在春季和夏季,新疆以粗颗粒物污染为主,冬季以细颗粒物污染为主。此外,在南疆各城市3月PM_(10)质量浓度突然大幅升高与相对湿度明显下降、风速增大直接相关,沙尘天气是导致该区域春季高PM_(10)质量浓度的重要原因。  相似文献   

17.
中国北方地区采暖期颗粒物污染现状   总被引:2,自引:2,他引:0  
分析了2013—2016年冬季采暖期与非采暖期中国北方地区颗粒物污染现状及时空变化特征。结果表明:中国北方地区空气污染比较严重,采暖期尤为突出。2016年,中国北方地区重度及以上污染天数比例超过10%,采暖期优良天数比例较非采暖期下降22.8%,重度及以上污染天数比例升高10.1个百分点。颗粒物浓度呈现明显的冬季高、夏季低的特点,最高值一般出现在12月至次年1月,最低值一般出现在7—9月。2013—2016年,北方地区空气质量呈较为明显的改善趋势,PM_(10)和PM_(2.5)浓度总体呈下降趋势,但2014年以来采暖期同期比较显示,PM2.5浓度呈缓慢升高趋势,采暖期空气污染形势十分严峻。颗粒物浓度呈现明显的空间分布规律,采暖期石家庄、保定、衡水、邢台、邯郸、安阳等城市为京津冀区域污染最严重的城市。  相似文献   

18.
杭州城区PM2.5和PM10污染特征及其影响因子分析   总被引:1,自引:0,他引:1  
利用2013年12月—2014年11月杭州城区空气质量监测站PM_(2.5)、PM_(10)浓度值结合气象、道路、人口数据以及站点周边绿地信息分析PM_(2.5)、PM_(10)浓度时空特征及其影响因子。结果表明,杭州城区各监测站PM_(2.5)和PM_(10)晴天日浓度变化趋势基本一致,PM_(2.5)比PM_(10)污染严重;晴天日PM_(2.5)、PM_(10)浓度值与对应的温度(-0.463,-0.281)、风速(-0.305,-0.332)呈负相关,与湿度(0.257,0.239)呈正相关;晴天有风时,杭州市区PM_(2.5)、PM_(10)污染北部重于南部,东部重于西部,浓度极高值集中在风速小于5 m/s时段,且风速越小浓度值越高;温度为12℃左右,湿度在60%~80%时,颗粒物污染最严重;交通高峰时各监测站PM_(2.5)、PM_(10)污染程度存在明显差异。相关性分析表明,PM_(2.5)、PM_(10)污染程度与道路密度成正比,与缓冲区内绿地覆盖面积成反比。PM_(2.5)污染程度与人口密度成正比,PM_(10)污染与人口密度成反比。  相似文献   

19.
北京昌平某地冬季大气PM2.5元素污染特征分析   总被引:2,自引:2,他引:0  
以北京昌平区某地大气PM_(2.5)和重金属污染状况为研究对象,应用射线法与XRF技术相结合的分析技术,对PM_(2.5)浓度和其重金属组分浓度进行同步监测,以重金属元素为污染物示踪因子进行污染特征分析。结果表明,监测期间该区域PM_(2.5)平均质量浓度达92μg/m~3,Ca、Fe、K元素含量较高。通过主成分分析该区域PM_(2.5)元素影响因素主要为工业和生活燃料燃烧、冶金工业废气、扬尘3类,贡献比分别为52.42%、26.82%、13.10%。  相似文献   

20.
烟花爆竹燃放对北京市空气质量的影响研究   总被引:2,自引:2,他引:0  
结合常规污染物浓度和PM_(2.5)化学组分浓度,分析了2015年春节期间烟花爆竹燃放对北京市空气质量的影响。结果表明:烟花爆竹燃放会在短时间内造成严重的大气污染,其中对SO2、PM_(2.5)和PM10的影响最为显著。除夕夜间良乡、官园和怀柔3个监测站点的PM_(2.5)质量浓度峰值分别达730.5、343.4、762.2μg/m~3,为2月17—25日和3月4—8日(观测期间)平均值的5.2、3.1、7.1倍。烟花爆竹燃放对PM_(2.5)组分中的SO_4~(2-)、K+和Cl-的影响最为显著,除夕夜间监测中心点位的SO_4~(2-)、K~+和Cl~-质量浓度峰值分别达92.2、95.6、57.4μg/m~3,为观测期间平均值的4.5、10.5、6.8倍。烟花爆竹燃放产生的气态前体物和NO_3~-、SO_4~(2-)、NH+4、OC等PM_(2.5)二次化学组分在不利的气象条件下会发生化学反应和物理积累,造成PM_(2.5)浓度升高,产生持续性的大气污染。根据各污染物与NH+4的质量浓度比推算得出,除夕、"破五"和元宵节3个时段烟花爆竹燃放对K~+、Cl~-、SO_4~(2-)、SO_2和PM_(2.5)浓度的平均贡献率分别为78.4%、61.1%、37.4%、38.7%和30.1%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号