首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

The effects of the flooding and initial Eh of sediments on the sorption of uranium onto the sediments were analysed by flooding and static experiments. The changes in uranium species with Eh and kinetic and thermodynamic characteristics of the uranium sorption onto the sediments were investigated. The flooding experiment indicates that the initial Eh of the sediment gradually decreased with the increase in flooding time. Based on the redox potential in the flooding experiment, simulation results obtained using the geochemical simulation software PHREEQC show that the concentration of U (VI) decreased. In contrast, the concentrations of U (III), U (IV), and U (V) gradually increased. The pseudo-second-order kinetic model well fitted the experimental data, which shows that the sorption was mainly chemical sorption. The thermodynamic parameters suggest that the entropy and enthalpy under the used conditions were positive and that ΔGθ was negative. A thermodynamic analysis shows that the sorption was endothermic and spontaneous. These results are useful for the understanding of the sorption mechanism and migration of uranium onto the sediment under different initial sediment redox potentials and provide a good theoretical foundation for radioactive pollution remediation.  相似文献   

2.
The Salí River Basin in north-west Argentina (7,000 km2) is composed of a sequence of Tertiary and Quaternary loess deposits, which have been substantially reworked by fluvial and aeolian processes. As with other areas of the Chaco-Pampean Plain, groundwater in the basin suffers a range of chemical quality problems, including arsenic (concentrations in the range of 12.2–1,660 μg L−1), fluoride (50–8,740 μg L−1), boron (34.0–9,550 μg L−1), vanadium (30.7–300 μg L−1) and uranium (0.03–125 μg L−1). Shallow groundwater (depths up to 15 m) has particularly high concentrations of these elements. Exceedances above WHO (2011) guideline values are 100% for As, 35% for B, 21% for U and 17% for F. Concentrations in deep (>200 m) and artesian groundwater in the basin are also often high, though less extreme than at shallow depths. The waters are oxidizing, with often high bicarbonate concentrations (50.0–1,260 mg L−1) and pH (6.28–9.24). The ultimate sources of these trace elements are the volcanic components of the loess deposits, although sorption reactions involving secondary Al and Fe oxides also regulate the distribution and mobility of trace elements in the aquifers. In addition, concentrations of chromium lie in range of 79.4–232 μg L−1 in shallow groundwater, 129–250 μg L−1 in deep groundwater and 110–218 μg L−1 in artesian groundwater. All exceed the WHO guideline value of 50 μg L−1. Their origin is likely to be predominantly geogenic, present as chromate in the ambient oxic and alkaline aquifer conditions.  相似文献   

3.
The mobility of phenanthrene (PHE) in soils depends on its sorption and is influenced by either the existing soil humus or exogenous humic substances. Exogenous humic acids (HAs) were added to soil to enhance the amount of soil organic carbon (SOC) by 2.5, 5.0, and 10.0 g kg−1. PHE desorption of the treated soils was determined at two pH levels (3.0 and 6.0) and temperatures (15 and 25 °C). Soil PHE adsorption was related to pH and the type and quantity of added HAs. Humic acid (HA) and fulvic acid (FA) derived from peat had different effects on adsorption of PHE. Adsorption increased at first and then decreased with increasing quantity of exogenous FA. When the soil solution pH (in 0.005 M CaCl2) was 4.5 or 3.0, the turning points were 2.5 g FA kg−1 at pH 3.0 and 5 g FA kg−1 at pH 4.5. When soil solution pH was 6, the amount of adsorbed PHE was enhanced with increasing exogenous HAs (HA or FA) and amount of adsorption by soil treated with FA was higher than with HA. Adsorption of PHE in the FA treatment at 10.0 g kg−1 was lower than the controls (untreated soil or treatment with HAs at 0 g kg−1) when the soil solution pH was 3.0. This suggests that FA adsorbed by soil was desorbed at low pH and would then increase PHE solubility, and PHE then combined with FA. PHE adsorption was usually higher under lower pH and/or lower temperature conditions. PHE sorption fitted the Freundlich isotherm, indicating that exogenous humic substances influenced adsorption of phenanthrene, which in turn was affected by environmental conditions such as pH and temperature. Thus, exogenous humic substances can be used to control the mobility of soil PAHs under appropriate conditions to decrease PAH contamination.  相似文献   

4.
This study aimed at statistically investigating the association between the internal exposure of children and young adults to uranium (U) and epidemiologically relevant external determinants of exposure. The investigation was performed with data from two studies within the framework of the German health-related environmental monitoring program: The German Environmental Survey for Children (GerES IV) conducted by the Federal Environment Agency (Umweltbundesamt) with data on 1,780 children 3–14 years of age and their home environment and the German Environmental Specimen Bank (ESB, section: human specimens) with data on 2,253 students 20–29 years of age. Both studies provided data on the U levels in human urine for all probands. GerES IV furthermore provided an extensive environmental and demographic database on, e.g., U levels in drinking water. The data from GerES IV and ESB were linked by GIS to spatially relevant exposure information, including background values of U in stream sediments and in upper and lower soils, U levels in mosses and particulate matter in the lower atmosphere, precipitation and elevation as well as forest density. Bivariate correlation analysis and two decision tree models showed moderate but significant associations between U in human urine and U levels in drinking water, stream sediments and upper and lower soils. Future investigations considering additional epidemiologically relevant data sets may differentiate the results. Furthermore, the sample design of future environmental epidemiology studies should take the spatial evaluation of the data into greater account.  相似文献   

5.
The water chemistry of 20 municipal water treatment plants in southern Sweden, representing various bedrock situations, and water qualities, were investigated. Four water samples, raw and treated, were collected from each plant and analyzed by predominantly ICP-OES and ICP-MS at four occasions from June to December, 2001. The concentrations of Ca, Mg, K, Na, HCO3 and a number of micronutrients, varied considerably in treated waters from the studied plants (ranges; Ca: 9.1–53.7 mg L−1, Mg: 1.4–10.9 mg L−1, K: 1.1–4.8 mg L−1, Na; 5.4–75.6 mg L−1, HCO3: 27–217 mg L−1). The elimination of Fe and Mn from raw water was efficient in all treatments investigated, giving concentrations in treated waters below the detection limits at some plants. Softening filters gave waters with Ca-concentrations comparable to the softest waters in this study. Adjustment of pH by use of chemicals like lye, soda or lime, modified the consumer water composition significantly, besides raising the pH. It was estimated that drinking water contributed to approximately 2.2–13% of the daily Ca uptake, if the gastrointestinal uptake efficiency from food and water was estimated to be around 50%. The corresponding figures for Mg was 1.0–7% and for F 0–59%. None of the studied elements showed any significant time trends in raw or treated waters during the follow-up period. The concentrations of potentially toxic metals such as Al, Pb and U were low and did not indicate risks for adverse health effects (ranges; Al: 0.5–2.3 μg L−1, Pb: 0–0.3 μg L−1, U: 0.2.5 μg L−1).  相似文献   

6.
Environmental exposure to arsenic (As) in the Kutahya region of the western Anatolia, Turkey has been reported to cause various types of arsenic-associated skin disorders (Dogan, Dogan, Celebi, & Baris, 2005). A geological and mineralogical study was conducted to find the sources and distribution of the As. Geogenic (background) levels were measured in samples collected from various sources in the Gediz, Simav, Tavsanli, Emet, Yoncali, Yenicekoy, and Muratdagi areas of the Kutahya region. Based on this analysis, we determined that natural sources are a domineering factor affecting the distribution of As, which was found: (1) mainly in evaporitic minerals, including colemanite (269–3900 ppm) and gypsum (11–99,999 ppm), but also in alunite (7–10 ppm) and chert (54–219 ppm); (2) in secondary epithermal gypsum, which has a high concentration of As in the form of realgar and orpiment along fracture zones of Mesozoic and Cenozoic carbonate aquifers; (3) in rocks, including limestone/dolomite (3–699 ppm) and travertine (5–4736 ppm), which are relatively more enriched in As than volcanics (2–14 ppm), probably because of secondary enrichment through hydrological systems; (4) in coal (1.9–46.5 ppm) in the sedimentary successions of the Tertiary basins; (5) in thermal waters, where As is unevenly distributed at concentrations varying from 0.0–0.9 mg/l. The highest As concentrations in thermal water (Gediz and Simav) correlate to the higher pH (7–9.3) and T (60–83°C) conditions and to the type of water (Na–HCO3–SO4 with high concentration of Ca, Mg, K, SiO2, and Cl in the water). Changes in pH can be related to some redox reactions, such as the cation exchange reactions driving the dissolution of carbonates and silicates. Fe-oxidation, high pH values (7–9.3), presence of other trace metals (Ni, Co, Pb, Zn, Al), increased salinity (Na, Cl), high B, Li, F, and SiO, high Fe, SO4 (magnetite, specularite-hematite, gypsum), and graphite, and the presence of U, Fe, Cu, Pb, Zn, and B, especially in the Emet, Gediz, and Simav areas, are the typical indicators for the geothermally affected water with high As content. A sixth source of As in this region is the ground (0.0–10.7 mg/l) and the surface waters (0.0022–0.01 mg/l), which are controlled by water–rock interaction, fracture system, and mixing/dilution of thermal waters. The high As concentration in groundwater corresponds to the areas where pathological changes are greatest in the habitants. Arsenic in ground water also effects ecology. For example, only Juriperus oxycedrus and J. varioxycedrus types of vegetation are observed in locations with the highest concentration of As in the region. Branches and roots of these plants are enriched in As.  相似文献   

7.
Magnetic ion-imprinted polymers (IIPs) were prepared by precipitate polymerization and leached with HCl to remove uranium. Their ability to remove hexavalent uranium from wastewater effluents was studied. Batch adsorption studies to determine the optimum conditions of U(VI) removal were conducted at different levels of sample pH, sorbent amount, agitation time, and initial uranium concentration. It was observed that, under optimum conditions (i.e. pH 4, adsorbent amount of 50 mg, 45 min agitation time, and initial U(VI) concentration of 2 mg L?1), the maximum removal of U(VI) cations was >98% and 80% for the magnetic IIP and the corresponding magnetic non-imprinted polymers (NIP), respectively. Langmuir and Freundlich isotherms were used to describe the adsorption of U(VI) onto magnetic IIP and NIP. The adsorption capacity of U(VI) was determined to be 1.06 and 0.85 mg g?1 for the two isotherms, respectively. The order of selectivity was found to be U(VI) > Fe(III) > Pb(II). For six cycles of regeneration and reuse, the magnetic polymers maintained their stabilities with only a 4% loss in the extraction efficiency. The average extraction efficiencies of the magnetic polymers for the spiked acid mine drainage and sewage wastewater effluents were 71% and 58% for the magnetic IIP and NIP, respectively. From powder X-ray diffraction analysis, application of the Scherrer equation yielded magnetic nanoparticles of an average mean diameter of 11.9 nm. Thermo-gravimetric analysis revealed that the HCl-leached magnetic polymers had a magnetite residual weight of 5%.  相似文献   

8.
In the present article, a simple, rapid, sensitive and economical method has been developed for the simultaneous separation and preconcentration of the trace amounts of copper, nickel, cobalt and manganese in water samples by using modified XAD-4 resins. The sorption was quantitative in the pH range 6.0–9.0, whereas quantitative desorption occurred instantaneously with 5.0 mL of 2 M HNO3, and selected elements have been determined by using flame atomic absorption spectrometry. Dynamic ranges were 0.04–3.5, 0.1–6.0, 0.04–4.5 and 0.04–4.0 μg/mL for copper, nickel, cobalt and manganese, respectively. The detection limits were 9.2, 28.6, 12.3 and 5.7 ng/mL for Cu(II), Ni(II), Co(II) and Mn(II), respectively. The effects of the experimental parameters, including the sample pH, eluent type, interference ions and breakthrough volume, were studied for separation and preconcentration of Cu(II), Ni(II), Co(II) and Mn(II) ions. Determination of these ions in standard samples confirmed that the proposed method has good accuracy. The proposed method was used for the determination of these ions in water samples.  相似文献   

9.
The concentration of uranium was determined in 944 samples from stream water by the inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) method and represented on a color-shaded contour map. Uranium concentrations in surface water were determined to be between 0.007 μg/l and 43.7 μg/l with median of 0.33 μg/l. The regional distribution of uranium is influenced primarily by lithological and anthropogenic factors. In Mecklenburg, northern Brandenburg, and eastern Schleswig-Holstein, elevated uranium concentrations coincide with the extent of the last Weichselian ice sheet. The maximum concentrations are observed in the surface waters of the old mining districts in the western part of the Ore Mountains and in eastern Thuringia. Elevated concentrations are found in areas of agriculturally used loess soils. These concentrations correlate with the use of phosphate fertilizers. There is a zone of elevated concentrations up to 10.0 μg U/l in the Keuper Sandstone area south of the Thuringian Forest and from northwest of Stuttgart as far as Coburg. The distribution of elevated values in mineral water shows a clear correlation with the elevated values in surface water and the geology of those locations. Bunter and Keuper strata are the most important uranium source.  相似文献   

10.
Contents of total Hg and Hg fraction, organic matter, pH, grain size and chemical composition were measured to investigate the pollution characteristics and binding behavior of Hg in soils collected from the Chatian Hg mining deposit (CMD), southwestern China. The average concentration of Hg concentration in the CMD soils was 155 and 1,315 times higher than that in control soils and Chinese soils, respectively, suggesting that the CMD soils were heavily contaminated by the element. The finding was confirmed by Müller geoaccumulation index assessment with 75% very seriously polluted, 6.25% highly to very highly polluted and 18.75% moderately to highly polluted. Hg sources in the region were natural and anthropogenic: in addition to the pedogenic process and original geochemical situation, human mining–refining activities have also seriously impacted the redistribution of Hg in soils, especially in paddy soils. Based on the BCR protocol, soil Hg was divided into exchangeable (EXC), amorphous Fe–Mn oxides (AFe–MnOX), organic-crystalline iron oxides (OM-CFe) and residual (RES) fraction. The average percentage of the four fractions in the CMD followed the trend: RES (85.77%) > OM-CFe (12.44%) > AFe–MnOX (0.93%) ≥ EXC (0.86%), suggesting that the majority proportion of soil Hg in the study area remained of residual form inside the soil mineral matrix. However, their concentrations and percentages significantly varied among different locations and land use types. Soil physico-chemical parameters were key factors affecting the presence of Hg fraction. Generally, Hg fraction concentrations were positively correlated with the sand contents and soil pH values, which was presumably due to the basic anthropogenic input of Hg-containing materials and their similarity to sand in physical characteristics. However, organic matter caused adsorption–fixation and reduction–volatilization to coexist, which had opposite effects on Hg concentrations in soil, consequently exhibiting its dual nature.  相似文献   

11.
Leachates from the El Fraile tailings impoundment (Taxco, Mexico) were monitored every 2 months from October 2001 to August 2002 to assess the geochemical characteristics. These leachates are of interest because they are sometimes used as alternative sources of domestic water. Alternatively, they drain into the Cacalotenango creek and may represent a major source of metal contamination of surface water and sediments. Most El Fraile leachates show characteristics of Ca–SO4, (Ca+Mg)–SO4, Mg–SO4 and Ca–(SO4+HCO3) water types and are near-neutral (pH=6.3–7.7). Some acid leachates are generated by the interaction of meteoric water with tailings during rainfall events (pH=2.4–2.5). These contain variable levels of SO4 2− (280–29,500 mg l−1) and As (<0.01–12.0 mg l−1) as well as Fe (0.025–2352 mg l−1), Mn (0.1–732 mg l−1), Zn (<0.025–1465 mg l−1) and Pb (<0.01–0.351 mg l−1). Most samples show the highest metal enrichment during the dry seasons. Leachates used as domestic water typically exceed the Mexican Drinking Water Guidelines for sulfate, hardness, Fe, Mn, Pb and As, while acidic leachates exceed the Mexican Guidelines for Industrial Discharge Waters for pH, Cu, Cd and As. Speciation shows that in near-neutral solutions, metals exist mainly as free ions, sulfates and bicarbonates, while in acidic leachates they are present as sulfates and free ions. Arsenic appears as As(V) in all samples. Thermodynamic and mineralogical evidence indicates that precipitation of Fe oxides and oxyhydroxides, clay minerals and jarosite as well as sorption by these minerals are the main processes controlling leachate chemistry. These processes occur mainly after neutralization by interaction with bedrock and equilibration with atmospheric oxygen.  相似文献   

12.
Concentrations of Fe, Mn, Cu, dissolved organic matter (DOM), and pH were synthesized from 30 publications to determine the factors regulating concentrations and behavior of metals in freshwater systems. Results from the review suggest that contrasting watershed land use can directly (erosion and runoff) and indirectly (in-lake processes including metal–DOM–pH interactions) affect the metal concentrations in freshwater systems. Among the watershed land uses considered here, concentrations of Fe, Mn, and Cu were observed in the following order: arctic lakes < forested < agricultural < urbanized < mined. A drastic difference in mean metal concentrations has been observed when undisturbed or low impact watersheds (arctic and forested) were changed by agricultural, urban, and mining developments. Relationships between metal concentrations and pH revealed that metals precipitate at high pH (pH > 5). Additionally, at pH < 5, metal concentrations were significantly correlated with DOM due to metal–DOM complexation. High ratios of metal: DOM occur only at low DOM concentrations. Collectively, two general conclusions can be drawn from this review. First, lakes, rivers, and streams with urbanized watersheds are the most susceptible to increased concentrations of metals. Secondly, these results also suggest that regardless of high or low DOM in the water column, pH would affect metal concentrations in freshwater systems. Nonetheless, free metal ions would be higher in freshwater systems with acidic water and low DOM.  相似文献   

13.
Uranium is a very toxic and radioactive element. Removal of uranium from wastewaters requires remediation technologies. Actual methods are costly and ineffective when uranium concentration is very low. Little is known about the enhancement of sorption of uranyl ions by phosphate ions on aluminosilicates. Here, we studied sorption of uranyl acetate on red clay in the presence of phosphates. The concentration of U(VI) ranged 0.0001–0.001 mol/L, whereas the concentration of PO4 3? was constant at 0.0001 mol/L. We designed a new method for the analysis of ternary surface complexes. We observed for the first time a remarkable improvement of U(VI) sorption on red clay under the influence of phosphates. We also found that at least two different ternary surface complexes U(VI)–phosphate–clay are formed in the sorbent phase. The complexation of UO2 2+ cations by phosphate ligands in the sorbent phase was confirmed by the X-ray photoelectron spectra of U 4f electrons.  相似文献   

14.
Phosphate removal from aqueous solution was explored using granular ferric hydroxide (GFH) as an inorganic adsorbent. Adsorption, desorption and kinetic studies were conducted on laboratory scale to evaluate the performance of GFH as an adsorbent for low concentrations of phosphate solution. The effect of pH on adsorption was investigated, and phosphate uptake was shown to decrease with an increase in solution pH, with maximum removal seen to occur at pH 3. The experimental data best fit the Temkin isotherm at both pH 3 and 4. Uptake of phosphate by GFH follows second-order kinetics, with the small particle range (76–200 μm) removing phosphate from the solution more rapidly than the larger particle range (710–850 μm). The kinetic results suggest that intra-particle diffusion is an important factor in phosphate adsorption onto GFH. Thermodynamic parameters (ΔG°, ΔH°, ΔS°) were evaluated, and the results indicated that the adsorption process was endothermic and spontaneous. This study demonstrates that GFH has potential to be used as a cost-effective adsorbent for phosphate removal from aqueous solution.  相似文献   

15.
The mineralogical and chemical characteristics of As solid phases in arsenic-rich mine tailings from the Nakdong As–Bi mine in Korea was investigated. The tailings generated from the ore roasting process contained 4.36% of As whereas the concentration was up to 20.2% in some tailings from the cyanidation process for the Au extraction. Thin indurated layers and other secondary precipitates had formed at the surfaces of the tailings piles and the As contents of the hardened layers varied from 2.87 to 16.0%. Scorodite and iron arsenate (Fe3AsO7) were the primary As-bearing crystalline minerals. Others such as arsenolamprite, bernardite and titanium oxide arsenate were also found. The amorphous As–Fe phases often showed framboidal aggregates and gel type textures with desiccation cracks. Sequential extraction results also showed that 55.7–91.1% of the As in tailings were NH4-oxalate extractable As, further confirmed the predominance of amorphous As–Fe solid phases. When the tailings were equilibrated with de-ionized water, the solution exhibited extremely acidic conditions (pH 2.01–3.10) and high concentrations of dissolved As (up to 29.5 mg L−1), indicating high potentials for As to be released during rainfall events. The downstream water was affected by drainage from tailings and contained 12.7–522 μg L−1 of As. The amorphous As–Fe phases in tailings have not entirely been stabilized through the long term natural weathering processes. To remediate the environmental harms they had caused, anthropogenic interventions to stabilize or immobilize As in the tailings pile should be explored.  相似文献   

16.
The activity of chitobiase, also known as N-acetyl-β-glucosaminidase, in the epidermis and hepatopancreas of the fiddler crab Uca pugilator (Bosc, 1802), during the molting cycle, was investigated. A pH optimum of 5 to 6 was found for the enzymatic activity in both the epidermis and hepatopancreas. The temperature optimum for epidermal and hepatopancreatic chitobiase activities was 50 to 60 °C. The K m values for epidermal and hepatopancreatic chitobiase activities at 19 °C were 0.190 ± 0.027 and 0.203 ± 0.016 mM 4-methylumbelliferyl-N-acetyl-β-glucosaminide, respectively. Hepatopancreatic chitobiase activity was significantly higher than epidermal enzymatic activity in all the molt cycle stages tested except Postmolt Stage A-B. Chitobiase activity varied significantly during the molting cycle, with the epidermal enzymatic activity in Premolt Stage D3–4 significantly higher than in Stage C (intermolt) and Premolt Stage D0, whereas hepatopancreatic chitobiase activity in Premolt Stage D3–4 was significantly higher than in all other molt stages tested. The patterns of chitobiase activity in the epidermis and hepatopancreas correlate well with the hemolymph titer of ecdysteroids in U. pugilator during the molting cycle; this suggests that chitobiase activity in both tissues is regulated at least in part by the steroid molting hormones. Received: 6 May 1998 / Accepted: 12 September 1998  相似文献   

17.
Above and below-ground biomass and nitrogen and carbon composition ofSpartina maritima, Halimione portulacoides andArthrocnemum perenne, dominating species in plant communities of the lower, middle and higher salt marsh, respectively, were compared in an estuarine salt marsh in Portugal. Plant and soil nitrogen and carbon pools were estimated. For all three species root biomass was significantly higher (70–92% of total biomass) than above-ground biomass. The percentage of root biomass was related to the location of the plants in the marsh: higher values were found in plants growing in the lower salt marsh where the sediment was more unstable and subject to tidal action, which stresses the role of the roots as an anchor. For all three species nitrogen concentrations were highest in leaves, reflecting the photosynthetic role of the tissue. For carbon higher concentrations were found in the stems, with the exception ofS. maritima. In general, lower nitrogen concentrations were found in summer, which can be explained by dilution processes due to plant growth. For both nitrogen and carbon, higher concentrations were found in the soil surface layers. Higher soil nitrogen and carbon levels were associated with higher organic matter contents. Most of the nitrogen in the salt marsh occurred in the sediments (0–40 cm) and only ca. 5.7–13.3% of the total was found in the plants. The greater portion (76.5%–86%) of carbon was found in the sediment.  相似文献   

18.
The levels of extractable aluminum (Al) in soils of tea plantations, Al concentrations in tea leaves and the impact of nitrogen fertilization on these two parameters were investigated. In addition, the properties of soils from tea plantations were compared to those from soils of adjacent non-tea fields to evaluate the effect of land use conversion (from non-tea soils to tea soils). Exchangeable Al (extracted in 1 mol l−1 KCl) ranged from 0.03 to 7.32 cmolc kg−1 in 94 tea fields and decreased rapidly with increasing soil pH. In comparison with non-tea soils, tea soils had a significantly lower pH and exchangeable Mg2+ concentration but higher organic matter contents and exchangeable K+ concentration. Contents of extractable Al were not different (P > 0.05) between these two soils. The concentrations of Al in mature tea leaves correlated significantly with exchangeable Al in soil samples taken at a depth of 20–40 cm and with exchangeable Al saturations in soil sampled at␣depths of 0–20 and 20–40 cm. In the pot experiment, nitrogen fertilization significantly increased extractable Al levels but decreased soil pH and the levels of exchangeable base cations. Nevertheless, the levels of Al in mature leaves and young shoots were significantly reduced by the application of large amounts of N fertilizer.  相似文献   

19.
Application of magnetic U(VI) ion imprinted polymers (IIPs) coated on magnetic nanoparticles was investigated for pre-concentration and determination of U(VI) ions in aqueous solutions. The scanning electron micrographs revealed the microporosity of the adsorbent. Uranium leaching was successful as the energy-dispersive X-ray spectra showed. The Brunauer–Emmett–Teller (BET) surface area improved by more than 13-fold (83.1 and 6.2 m2 g?1 for the leached and unleached magnetic IIP, respectively). U(VI) uptake was optimized using batch experiments with parameters affecting the uptake performance, such as initial uranium concentration, pH, contact time, and adsorbent dose investigated. Pseudo-second-order kinetics and the Langmuir isotherm model best fitted the experimental data. The maximum adsorption capacity of uranium onto the activated magnetic IIP reached 5.4 mg g?1. The selectivity order was determined to be U(VI) > Ni(II) > Th(IV).  相似文献   

20.
A field method is reported for the speciation of arsenic in water samples that is simple, rapid, safe to use beyond laboratory environments, and cost effective. The method utilises solid-phase extraction cartridges (SPE) in series for selective retention of arsenic species, followed by elution and measurement of eluted fractions by inductively coupled plasma mass spectrometry (ICP-MS) for “total” arsenic. The method is suitable for on-site separation and preservation of arsenic species from water. Mean percentage accuracies (n = 25) for synthetic solutions of arsenite (AsIII), arsenate (AsV), monomethylarsonic acid (MA), and dimethylarsinic acid (DMA) containing 10 μg l−1 As, were 98, 101, 94, and 105%, respectively. Data are presented to demonstrate the effect of pH and competing anions on the retention of the arsenic species. The cartridges were tested in the UK and Argentina at sites where arsenic was known to be present in surface and groundwaters, respectively, at elevated concentrations and under challenging matrix conditions. In Argentinean groundwater, 4–20% of speciated arsenic was present as MA and 20–73% as AsIII. In UK surface waters, speciated arsenic was measured as 7–49% MA and 12–42% DMA. Comparative data from the field method using SPE cartridges and the laboratory method using liquid chromatography coupled to ICP-MS for all water samples provided a correlation of greater than 0.999 for AsIII and DMA, 0.991 for MA, and 0.982 for AsV (P < 0.01).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号