首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil monoliths from an area exposed to acid precipitation and from an unpolluted area were used in a lysimeter experiment to study effects of different rain qualities on the chemical composition of the leachate from shallow soils rich in organic matter. The vegetation was either dominated by moorgrass [Molinia caerulea (L.) Moench] or heather [Calluna vulgaris (L.) Hull]. The lysimeters received either "acid rain" (pH 4.3) or "normal rain" (pH 5.3). High concentrations of dissolved organic carbon (DOC) were characteristic of the leachate. The different "rain" qualities had no significant influence on the DOC concentration. More DOC was, however, leached from lysimeters with heather vegetation. Roughly 50% of the aluminum (Al) was in complex with organic material and the Al charge was calculated to be between +1.4 and +2.0. Sulfate (SO4(2-)) was the only component that was significantly influenced by the treatment, as more was leached from lysimeters receiving "acid rain." Sulfate was poorly correlated with pH, suggesting that reduced SO4(2-) input would not necessarily lead to reduced acidity. Differences in the pH of the leachate due to the treatments were less than 0.15 pH units. Nitrate (NO3-) was only leached in very low concentrations and of little consequence for the leachate acidity. Some observations do, however, suggest that NO3- may contribute to acidification in episodes with high precipitation. High concentrations of Cl- in the leachate and a significant positive correlation between Cl-, H+, and base cations indicate that sea salt episodes may be important for soil acidification and acidity of the leachate.  相似文献   

2.
Grass vegetation has been recommended for use in the prevention and control of soil erosion because of its dense sward characteristics and stabilizing effect on the soil. A general assumption is that grassland environments suffer from minimal soil erosion and therefore present little threat to the water quality of surface waters in terms of sediment and sorbed contaminant pollution. Our data question this assumption, reporting results from one hydrological year of observations on a field-experiment monitoring overland flow, drain flow, fluxes of suspended solids, total phosphorus (TP), and molybdate-reactive phosphorus (<0.45 mum) in response to natural rainfall events. During individual rainfall events, 1-ha grassland lysimeters yield up to 15 kg of suspended solids, with concentrations in runoff waters of up to 400 mg L(-1). These concentrations exceed the water quality standards recommended by the European Freshwater Fisheries Directive (25 mg L(-1)) and the USEPA (80 mg L(-1)) and are beyond those reported to have caused chronic effects on freshwater aquatic organisms. Furthermore, TP concentrations in runoff waters from these field lysimeters exceeded 800 mug L(-1). These concentrations are in excess of those reported to cause eutrophication problems in rivers and lakes and contravene the ecoregional nutrient criteria in all of the USA ecoregions. This paper also examines how subsurface drainage, a common agricultural practice in intensively managed grasslands, influences the hydrology and export of sediment and nutrients from grasslands. This dataset suggests that we need to rethink the conceptual understanding of grasslands as non-erosive landscapes. Failure to acknowledge this will result in the noncompliance of surface waters to water quality standards.  相似文献   

3.
Land application of wastewater in the northern-tier United States during winter months has been suggested as a means to reduce cost of building storage lagoons. A study was initiated in 1996 to assess land application of potato-processing wastewater on a 120-ha field at Park Rapids, MN. One objective of this study was to evaluate the effects of soil P levels and temperature on P leaching in soil columns. In this paper, we report the P sorption, desorption, and leaching characteristics of a high-P (>200 mg kg(-1)) and a low-P (<25 mg kg(-1)) surface soil from the wastewater irrigation site. The leaching experiment was done with wastewater at 4 +/- 2 or 10 +/- 2 degrees C. The high-P soil resulted in an equilibrium P concentration of 8.0 mg L(-1) compared with 0.14 mg L(-1) for the low-P soil. When low-P wastewater was applied to the high-P soil, the soil acted as a P source, and the total phosphorus (TP) concentration in the leachate was 3.5 times higher than the input TP concentration (C0). When high-P wastewater was applied to the high-P soil, the soil acted as a P sink retarding the TP concentration in the leachate by 80%. Phosphorus desorption was higher at 10 degrees C compared with 4 degrees C. The results showed that depending on P levels of the soil and the wastewater, reduction or increase in leachate P will occur below the surface soil. However, further mobility of this P under field conditions will depend on the volume and rate of percolating water as well as the sorption-desorption characteristics of the subsoil.  相似文献   

4.
提出实验室用电位滴定测定水中高锰酸盐指数的方法。在国标法的基础上研究及优化了标定方法和实验方法,用电位滴定仪测定水中高锰酸盐指数,方法的检出限约为0.15mg/L,测定下限为0.60mg/L。实验证明,标准样品测量值均在推荐值范围内,对0.6mg/L,5.0mg/L,8.0mg/L浓度的NaC2O4标准溶液进行5次测定,得到的相对标准偏差分别为1.59%,0.97%,0.73%。在做低浓度的水样时,高锰酸钾溶液的浓度可以选择0.005mol/L。  相似文献   

5.
ABSTRACT: At the Everglades Nutrient Removal project in south Florida, three lysimeters were installed to measure daily evapotranspiration (ET) rates from cattails (Typha domingensis), mixed marsh vegetation, and an open water/algae system. The cattail lysimeter began operation in February 1993. The mixed marsh vegetation lysimeter began operation in January 1994, and the open water lysimeter with occasional algae cover began operation in December 1993. The mean measured ET rate was 3.6 mm, 3.5 mm, and 3.7 mm per day for the cattail, mixed marsh vegetation, and open water/algae system, respectively. High resolution weather data were continuously measured at the site. Six models were applied to estimate daily ET rates of the three systems. The Penman-Monteith equation best estimated ET of cattail and mixed marsh vegetation, and the Penman Combination equation was most suitable for the open water/algae system. Empirical equations based on solar radiation and maximum temperature produced estimates of daily ET from the three systems that are comparable to models that require many more parameters. In cases where limited data is available, the calibrated simple models can be used to estimate ET from wetlands in south Florida.  相似文献   

6.
Biosolids are known to have a potential to restore degraded land, but the long-term impacts of this practice on the environment, including water quality, still need to be evaluated. The surface water chemistry (NO3-, NH4+, and total P, Cd, Cu, and Hg) was monitored for 31 yr from 1972 to 2002 in a 6000-ha watershed at Fulton County, Illinois, where the Metropolitan Water Reclamation District of Greater Chicago was restoring the productivity of strip-mined land using biosolids. The mean cumulative loading rates during the past 31 yr were 875 dry Mg ha(-1) for 1120-ha fields in the biosolids-amended watershed and 4.3 dry Mg ha(-1) for the 670-ha fields in the control watershed. Biosolids were injected into mine spoil fields as liquid fertilizer from 1972 to 1985, and incorporated as dewatered cake from 1980 to 1996 and air-dried solids from 1987 to 2002. The mean annual loadings of nutrients and trace elements from biosolids in 1 ha were 735 kg N, 530 kg P, 4.5 kg Cd, 30.7 kg Cu, and 0.11 kg Hg in the fields of the biosolids-amended watershed, and negligible in the fields of the control watershed. Sampling of surface water was conducted monthly in the 1970s, and three times per year in the 1980s and 1990s. The water samples were collected from 12 reservoirs and 2 creeks receiving drainage from the fields in the control watershed, and 8 reservoirs and 4 creeks associated with the fields in the biosolids-amended watershed for the analysis of NO3- -N (including NO2- N), NH4+-N, and total P, Cd, Cu, and Hg. Compared to the control (0.18 mg L(-1)), surface water NO3- -N in the biosolids-amended watershed (2.23 mg L(-1)) was consistently higher; however, it was still below the Illinois limit of 10 mg L(-1) for public and food-processing water supplies. Biosolids applications had a significant effect on mean concentrations of ammonium N (0.11 mg L(-1) for control and 0.24 mg L(-1) for biosolids) and total P (0.10 mg L(-1) for control and 0.16 mg L(-1) for biosolids) in surface water. Application of biosolids did not increase the concentrations of Cd and Hg in surface water. The elevation of Cu in surface water with biosolids application only occurred in some years of the first decade, when land-applied sludges contained high concentrations of trace metals, including Cu. In fact, following the promulgation of 40 CFR Part 503, the concentrations of all three metals fell below the method detection level (MDL) in surface water for nearly all samplings. Nitrate in the surface water tends to be higher in spring, and ammonium, total P, and total Hg in summer and fall. Mean nitrate, ammonium, and total phosphorus concentrations were found to be greater in creeks than reservoirs. The results indicate that application of biosolids for land reclamation at high loading rates from 1972 to 2002, with adequate runoff and soil erosion control, had only a minor impact on surface water quality.  相似文献   

7.
Many source and transport factors control P loss from agricultural landscapes; however, little information is available on how these factors are linked at a watershed scale. Thus, we investigated mechanisms controlling P release from soil and stream sediments in relation to storm and baseflow P concentrations at four flumes and in the channel of an agricultural watershed. Baseflow dissolved reactive phosphorus (DRP) concentrations were greater at the watershed outflow (Flume 1; 0.042 mg L(-1)) than uppermost flume (Flume 4; 0.028 mg L(-1)). Conversely, DRP concentrations were greater at Flume 4 (0.304 mg L(-1)) than Flume 1 (0.128 mg L(-1)) during stormflow. Similar trends in total phosphorus (TP) concentration were also observed. During stormflow, stream P concentrations are controlled by overland flow-generated erosion from areas of the watershed coincident with high soil P. In-channel decreases in P concentration during stormflow were attributed to sediment deposition, resorption of P, and dilution. The increase in baseflow P concentrations downstream was controlled by channel sediments. Phosphorus sorption maximum of Flume 4 sediment (532 mg kg(-1)) was greater than at the outlet Flume 1 (227 mg kg(-1)). Indeed, the decrease in P desorption between Flumes 1 and 4 sediment (0.046 to 0.025 mg L(-1)) was similar to the difference in baseflow DRP between Flumes 1 and 4 (0.042 to 0.028 mg L(-1)). This study shows that erosion, soil P concentration, and channel sediment P sorption properties influence streamflow DRP and TP. A better understanding of the spatial and temporal distribution of these processes and their connectivity over the landscape will aid targeting remedial practices.  相似文献   

8.
Timing of manure application affects N leaching. This 3-yr study quantified N losses from liquid manure application on two soils, a Muskellunge clay loam and a Stafford loamy sand, as affected by cropping system and timing of application. Dairy manure was applied at an annual rate of 93 800 L ha(-1) on replicated drained plots under continuous maize (Zea mays L.) in early fall, late fall, early spring, and as a split application in early and late spring. Variable rates of supplemental sidedress N fertilizer were applied as needed. Manure was applied on orchardgrass (Dactylis glomerata L.) in split applications in early fall and late spring, and early and late spring, with supplemental N fertilizer topdressed as NH4NO3 in early spring at 75 kg N ha(-1). Drain water was sampled at least weekly when lines were flowing. Three-year FWM (flow-weighted mean) NO3-N concentrations on loamy sand soil averaged 2.5 times higher (12.7 mg L(-1)) than those on clay loam plots (5.2 mg L(-1)), and those for fall applications on maize-cropped land averaged >10 mg L(-1) on the clay loam and >20 mg L(-1) on the loamy sand. Nitrate-N concentrations among application seasons followed the pattern early fall > late fall > early spring = early + late spring. For grass, average NO3-N concentrations from manure application remained well below 10 mg L(-1). Fall manure applications on maize show high NO3-N leaching risks, especially on sandy soils, and manure applications on grass pose minimal leaching concern.  相似文献   

9.
In some high-fertility, high-stocking-density grazing systems, nitrate (NO(3)) leaching can be great, and ground water NO(3)-N concentrations can exceed maximum contaminant levels. To reduce high N leaching losses and concentrations, alternative management practices need to be used. At the North Appalachian Experimental Watershed near Coshocton, OH, two management practices were studied with regard to reducing NO(3)-N concentrations in ground water. This was following a fertilized, rotational grazing management practice from which ground water NO(3)-N concentrations exceeded maximum contaminant levels. Using four small watersheds (each approximately 1 ha), rotational grazing of a grass forage without N fertilizer being applied and unfertilized grass forage removed as hay were used as alternative management practices to the previous fertilized pastures. Ground water was sampled at spring developments, which drained the watershed areas, over a 7-yr period. Peak ground water NO(3)-N concentrations before the 7-yr study period ranged from 13 to 25.5 mg L(-1). Ground water NO(3)-N concentrations progressively decreased under each watershed and both management practices. Following five years of the alternative management practices, ground water NO(3)-N concentrations ranged from 2.1 to 3.9 mg L(-1). Both grazing and haying, without N fertilizer being applied to the forage, were similarly effective in reducing the NO(3)-N levels in ground water. This research shows two management practices that can be effective in reducing high NO(3)-N concentrations resulting from high-fertility, high-stocking-density grazing systems, including an option to continue grazing.  相似文献   

10.
The effectiveness of sewage purification by aquatic plants, such as water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes), was tested on laboratory and pilot scales. Cascade and semi-continuous pilot experiments verified that the plants are capable of decreasing all tested indicators of water quality to levels that permit the use of the purified water for irrigation of tree crops. This applies to biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), and turbidity. The laboratory-scale tests confirm the capacity of the plants to reach and hold reasonably low levels of BOD (5-7 mg L(-1)) and COD (40-50 mg L(-1)) and very low levels of TSS (3-5 mg L(-1)) and turbidity (1-2 NTU). In the experimental pilot setup, with circulation, COD decreased from 460 to 100 mg L(-1) after 2.5-4 days of treatment, while 6-7 days were required to this end without circulation. This doubled the active pond area and provided a two-level hydraulic loading (8 and 12 L min(-1)) with circulation that proved to be effective during the summer as well as the winter season. The outflow concentrations were 50-85 mg L(-1) of COD and 4-6 mg L(-1) of BOD. The results show that the use of this free water surface flow system (FWS) and its low maintenance system for treatment of urban and agricultural sewage is a viable option.  相似文献   

11.
Phosphorus leaching from cow manure patches on soil columns   总被引:2,自引:0,他引:2  
The loss of P in overland flow or leachate from manure patches can impair surface water quality. We studied leaching of P from 10-cm-high lysimeters filled with intact grassland soil or with acid-washed sand. A manure patch was created on two grassland and two sand-filled lysimeters, and an additional two grass lysimeters served as blanks. Lysimeters were leached in the laboratory during 234 d with a diluted salt solution, and column effluent was passed through a 0.45-microm filter, analyzed for pH, dissolved reactive P (DRP), and total dissolved P (TDP). At the end of the experiment lysimeter soil was sampled and analyzed for pH, available P, and oxalate-extractable P, Fe, and Al. The concentration of TDP in the effluent from the sand column increased to 25 mg L-1 during the first weeks and remained above 10 mg L-1 during the rest of the percolation. In effluent from grass + patch lysimeters TDP gradually increased to 4 mg L-1. Both in the manure and in the effluent of the sand lysimeter P was found mainly in the form of DRP, but in the effluent from the grass lysimeters was found mainly as dissolved unreactive P (DUP=TDP-DRP). Earthworm activity was responsible for decomposition of the manure patch on the grass lysimeters. Manure patches and their remains were found to be a long-term source of high concentrations of P in leachates. Spreading of patches after a grazing period could reduce their possible negative impacts on the environment.  相似文献   

12.
Concern over eutrophication has directed attention to manure management effects on phosphorus (P) loss in runoff. This study evaluates the effects of manure application rate and type on runoff P concentrations from two, acidic agricultural soils over successive runoff events. Soils were packed into 100- x 20- x 5-cm runoff boxes and broadcast with three manures (dairy, Bos taurus, layer poultry, Gallus gallus; swine, Sus scrofa) at six rates, from 0 to 150 kg total phosphorus (TP) ha(-1). Simulated rainfall (70 mm h(-1)) was applied until 30 min of runoff was collected 3, 10, and 24 d after manure application. Application rate was related to runoff P (r2 = 0.50-0.98), due to increased concentrations of dissolved reactive phosphorus (DRP) in runoff; as application rate increased, so did the contribution of DRP to runoff TP. Varied concentrations of water-extractable phosphorus (WEP) in manures (2-8 g WEP kg(-1)) resulted in significantly lower DRP concentrations in runoff from dairy manure treatments (0.4-2.2 mg DRP L(-1)) than from poultry (0.3-32.5 mg DRP L(-1)) and swine manure treatments (0.3-22.7 mg DRP L(-1)). Differences in runoff DRP concentrations related to manure type and application rate were diminished by repeated rainfall events, probably as a result of manure P translocation into the soil and removal of applied P by runoff. Differential erosion of broadcast manure caused significant differences in runoff TP concentrations between soils. Results highlight the important, but transient, role of soluble P in manure on runoff P, and point to the interactive effects of management and soils on runoff P losses.  相似文献   

13.
The sensitivity of Scenedesmus subspicatus against potassium dichromate is positively correlated to the photon flux density during the algal growth inhibition test. Low photon flux densities led to significantly reduced maximum effects and higher EC50 levels. To improve the testing of colored substances, we distinguished between the toxic effect (chemical part, represented by potassium dichromate) and the shading effect (physical part, simulated by reduced light intensities during the test) of a hypothetical light absorbing substance. The contribution of these single effects to the total inhibition varied greatly. At high concentrations of potassium dichromate (1.6 and 3.2 mg L(-1)) the physical part never exceeded 25% of the total inhibition, not even at strongest light reduction, while at low concentrations (0.2 and 0.4 mg L(-1)) the physical effect became more prominent when halving the amount of available light. Further, the combination effect of the chemical and the physical effect could be calculated well only by using the concept of independent action. Thus, if chemical and physical effects are measured in combination, as is the case in tests with dye-stuffs, the current test protocol for the algal growth inhibition test may lead to incorrect estimations of the toxic potential.  相似文献   

14.
Polycyclic aromatic hydrocarbons (PAHs) have earned considerable attention due to their widespread environmental distribution and toxicity. In the environment, PAHs decompose by a variety of biotic and abiotic pathways. In both polar and nonpolar environments, phenanthrene (Phe, a common, three-ring PAH) is converted by sunlight to more polar products such as 9,10-phenanthrenequinone (PheQ) and subsequent oxidation products such as the corresponding open-ring dicarboxylic acid product. Biodegradation of phenanthrene also usually leads to oxidative metabolites, and eventually ends in mineralization. Our experimental objective was to investigate the photodegradation of phenanthrene and determine the effect of reaction products such as PheQ on microbial biodegradation of two- and three-ring PAHs. Abiotic experiments were performed to examine the photolytic breakdown of Phe; Phe was converted to PheQ, which catalyzed its own formation. In biodegradation experiments PheQ (0.04-4 mg/L) caused marked inhibition of naphthalene (Nap) biodegradation by a Burkholderia species; Phe did not. Only 20% of the naphthalene was degraded in the presence of PheQ compared with 75% in the control culture with no PheQ added. No PAH-degrading cultures were able to use PheQ as sole carbon source; however, the Phe-degrading enrichment culture dominated by a Sphingomonas species was able to degrade PheQ cometabolically in the presence of Phe. These results may explain why photooxidized phenanthrene-containing mixtures can resist biodegradation.  相似文献   

15.
Forestland application of poultry manure offers an alternative to the conventional practice of pastureland application. Before such a practice is considered viable, however, it must be demonstrated that the forest ecosystem is capable of absorbing the nutrients contained in poultry manure, especially nitrogen (N) and phosphorus (P). From the forestry perspective, it must also be demonstrated that tree growth is not diminished. We investigated these questions using loblolly pine (Pinus taeda L.) stands growing in central Mississippi in an area of high poultry production. Stockpiled broiler litter was applied to newly thinned, 8-yr-old stands at 0, 4.6, and 18.6 dry Mg ha-1, supplying 0, 200, and 800 kg N ha-1 and 0, 92, and 370 kg P ha-1, respectively. Levels of nitrate in soil water, monitored at a 50-cm depth with porous cup tension lysimeters, exceeded 10 mg N L-1 during the first two years after application in the 18.6 Mg ha-1 rate but only on two occasions in the first year for the lower rate of application. Phosphate was largely absent from lysimeter water in all treatments. Other macronutrients (K, Ca, Mg, S) were elevated in lysimeter water in proportion to litter application rates. Soil extractable nitrate showed similar trends to lysimeter water, with substantial elevation during the first year following application for the 18.6 Mg ha-1 rate. Mehlich III-extractable phosphate peaked in excess of 100 microg P g-1 soil during the third year of the study for the 18.6 Mg ha-1 rate. The 4.6 Mg ha-1 rate did not affect extractable soil P. Tree growth was increased by the poultry litter. Total stem cross-sectional area, or basal area, was approximately 20% greater after 2 yr for both rates of litter application. Overall, the nutrients supplied by the 4.6 Mg ha-1 rate were contained by the pine forest and resulted in favorable increases in tree growth. The higher rate, by contrast, did pose some risk to water quality through the mobilization of nitrate. These results show that, under the conditions of this study, application of poultry litter at moderate rates of approximately 5 Mg ha-1 to young stands of loblolly pine offers an alternative disposal option with minimal impacts to water quality and potential increases in tree growth.  相似文献   

16.
研究一般地下水弱碱性水溶液中,高铁酸钾对低浓度石油烃类污染物的氧化去除率.采用0#柴油模拟石油类污染物试验水样,氧化反应在200mL烧杯中模拟完全混合状态完成.实验分析浓度分别为5.02mg/L、2.05mg/L、1.01mg/L和0.52mg/L4个水样石油类污染物氧化去除率.实验研究显示,石油类污染浓度与高铁酸钾浓...  相似文献   

17.
Determination of polyacrylamide (PAM) concentration in soil waters is important in improving the efficiency of PAM application and understanding the environmental fate of applied PAM. In this study, concentrations of anionic PAM with high molecular weight in soil waters containing salts and dissolved organic matter (DOM) were determined quantitatively by size exclusion chromatography (SEC) with ultraviolet (UV) absorbance detection. Polyacrylamide was separated from interferential salts and DOM on a polymeric gel column eluted with an aqueous solution of 0.05 M KH2PO4 and then detected at a short UV wavelength of 195 nm. Analysis of PAM concentrations in soil sorption supernatants, soil leachates, and water samples from irrigation furrow streams showed that SEC is an effective approach for quantifying low concentrations (0-10 mg L(-1)) of PAM in waters containing soil DOM and salts. The method has a lower detection limit of 0.02 microg and a linear response range of 0.2 to 80 mg L(-1). Precision studies gave coefficients of variation of < 1.96% (n = 4) for > 10 mg L(-1) PAM and < 12% (n = 3) for 0.2 to 3 mg L(-1) PAM.  相似文献   

18.
Agriculture is a major nonpoint source of phosphorus (P) in the Midwest, but how surface runoff and tile drainage interact to affect temporal concentrations and fluxes of both dissolved and particulate P remains unclear. Our objective was to determine the dominant form of P in streams (dissolved or particulate) and identify the mode of transport of this P from fields to streams in tile-drained agricultural watersheds. We measured dissolved reactive P (DRP) and total P (TP) concentrations and loads in stream and tile water in the upper reaches of three watersheds in east-central Illinois (Embarras River, Lake Fork of the Kaskaskia River, and Big Ditch of the Sangamon River). For all 16 water year by watershed combinations examined, annual flow-weighted mean TP concentrations were >0.1 mg L(-1), and seven water year by watershed combinations exceeded 0.2 mg L(-1). Concentrations of DRP and particulate P (PP) increased with stream discharge; however, particulate P was the dominant form during overland runoff events, which greatly affected annual TP loads. Concentrations of DRP and PP in tiles increased with discharge, indicating tiles were a source of P to streams. Across watersheds, the greatest DRP concentrations (as high as 1.25 mg L(-1)) were associated with a precipitation event that followed widespread application of P fertilizer on frozen soils. Although eliminating this practice would reduce the potential for overland runoff of P, soil erosion and tile drainage would continue to be important transport pathways of P to streams in east-central Illinois.  相似文献   

19.
在实验室及中试条件下研究了臭氧-活性炭技术对石油微污染地下水的处理效果。通过石油类和高锰酸盐指数两个指标,考察了臭氧投加量、pH值、过滤速率等操作参数对污染物的去除效果。结果表明:臭氧投加量和活性炭过滤速率是最主要的影响因素,pH值对处理效果影响不显著。中试条件下适宜的臭氧投加量应为8mg/L左右,最佳过滤速率在10m/h附近。采用臭氧氧化与活性炭过滤组合工艺,当进水石油类浓度在1.5mg/L以下时,出水石油类低于0.3mg/L,高锰酸盐指数低于3.0mg/L。  相似文献   

20.
Runoff losses of dissolved and particulate phosphorus (P) may occur when rainfall interacts with manures and biosolids spread on the soil surface. This study compared P levels in runoff losses from soils amended with several P sources, including 10 different biosolids and dairy manure (untreated and treated with Fe or Al salts). Simulated rainfall (71 mm h(-1)) was applied until 30 min of runoff was collected from soil boxes (100 x 20 x 5 cm) to which the P sources were surfaced applied. Materials were applied to achieve a common plant available nitrogen (PAN) rate of 134 kg PAN ha(-1), resulting in total P loading rates from 122 (dairy manure) to 555 (Syracuse N-Viro biosolids) kg P ha(-1). Two biosolids produced via biological phosphorus removal (BPR) wastewater treatment resulted in the highest total dissolved phosphorus (13-21.5 mg TDP L(-1)) and total phosphorus (18-27.5 mg TP L(-1)) concentrations in runoff, followed by untreated dairy manure that had statistically (p = 0.05) higher TDP (8.5 mg L(-1)) and TP (10.9 mg L(-1)) than seven of the eight other biosolids. The TDP and TP in runoff from six biosolids did not differ significantly from unamended control (0.03 mg TDP L(-1); 0.95 mg TP L(-1)). Highest runoff TDP was associated with P sources low in Al and Fe. Amending dairy manure with Al and Fe salts at 1:1 metal-to-P molar ratio reduced runoff TP to control levels. Runoff TDP and TP were not positively correlated to TP application rate unless modified by a weighting factor reflecting the relative solubility of the P source. This suggests site assessment indices should account for the differential solubility of the applied P source to accurately predict the risk of P loss from the wide variety of biosolids materials routinely land applied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号