首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Treatment of liquid swine manure (LSM) offers opportunities to improve manure nutrient management. However, N2O fluxes and cumulative emissions resulting from application of treated LSM are not well documented. Nitrous oxide emissions were monitored following band-incorporation of 100 kg N ha(-1) of either mineral fertilizer, raw LSM, or four pretreated LSMs (anaerobic digestion; anaerobic digestion + flocculation: filtration; decantation) at the four-leaf stage of corn (Zea mays L.). In a clay soil, a larger proportion of applied N was lost as N2O with the mineral fertilizer (average of 6.6%) than with LSMs (3.1-5.0%), whereas in a loam soil, the proportion of applied N lost as N2O was lower with the mineral fertilizer (average of 0.4%) than with LSMs (1.2-2.4%). Emissions were related to soil NO3 intensity in the clay soil, whereas they were related to water-extractable organic C in the loam soil. This suggests that N2O production was N limited in the clay soil and C limited in the loam soil, and would explain the interaction found between N sources and soil type. The large N2O emission coefficients measured in many treatments, and the contradicting responses among N sources depending on soil type, indicate that (i) the Intergovernmental Panel on Climate Change (IPCC) default value (1%) may seriously underestimate N2O emissions from fine-textured soils where fertilizer N and manure are band-incorporated, and (ii) site-specific factors, such as drainage conditions and soil properties (e.g., texture, organic matter content), have a differential influence on emissions depending on N source.  相似文献   

2.
Phosphorus (P) runoff from fields fertilized with swine (Sus scrofa) manure has been implicated in eutrophication. Dietary modification and manure amendments have been identified as best management practices to reduce P runoff from manure. This study was conducted to compare the effects of dietary modification and aluminum chloride (AlCl3) manure amendments on reducing P in swine manure and runoff. Twenty-four pens of nursery swine were fed either a normal diet or a phytase-amended diet. Each pen was connected to a separate manure pit, which was treated with AlCl3 to give final concentrations in the liquid manure of 0 (control), 0.25, 0.50, or 0.75% (v/v). Manure was collected and applied to plots cropped with tall fescue (Festuca arundinacea Schreb.), and simulated rainfall was applied at 50 mm h(-1), sufficient to generate a minimum of 30 min of continuous runoff. Samples of manure and runoff were analyzed for P and Al concentrations. Phytase reduced manure soluble reactive phosphorus (SRP) by 17%, while AlCl3 reduced manure SRP by as much as 73% compared with normal manure. Phosphorus runoff was reduced from 5.7 to 2.6 mg P L(-1) (a 53% reduction) using AlCl3. The mean SRP concentration in runoff from phytase diets without AlCl3 was 7.1 mg P L(-1) during the first rainfall simulation. When phytase and AlCl3 were used together, both manure SRP and P runoff were reduced more than if either treatment were used without the benefit of the other. Use of AlCl3 did not increase soluble Al in manure or Al lost in runoff. Results from this study indicate that producers should use dietary manipulation with phytase and AlCl3 manure amendments to reduce potential P losses from fields fertilized with swine manure.  相似文献   

3.
The interactive effects of soil texture and type of N fertility (i.e., manure vs. commercial N fertilizer) on N(2)O and CH(4) emissions have not been well established. This study was conducted to assess the impact of soil type and N fertility on greenhouse gas fluxes (N(2)O, CH(4), and CO(2)) from the soil surface. The soils used were a sandy loam (789 g kg(-1) sand and 138 g kg(-1) clay) and a clay soil (216 g kg(-1) sand, and 415 g kg(-1) clay). Chamber experiments were conducted using plastic buckets as the experimental units. The treatments applied to each soil type were: (i) control (no added N), (ii) urea-ammonium nitrate (UAN), and (iii) liquid swine manure slurry. Greenhouse gas fluxes were measured over 8 weeks. Within the UAN and swine manure treatments both N(2)O and CH(4) emissions were greater in the sandy loam than in the clay soil. In the sandy loam soil N(2)O emissions were significantly different among all N treatments, but in the clay soil only the manure treatment had significantly higher N(2)O emissions. It is thought that the major differences between the two soils controlling both N(2)O and CH(4) emissions were cation exchange capacity (CEC) and percent water-filled pore space (%WFPS). We speculate that the higher CEC in the clay soil reduced N availability through increased adsorption of NH(4)(+) compared to the sandy loam soil. In addition the higher average %WFPS in the sandy loam may have favored higher denitrification and CH(4) production than in the clay soil.  相似文献   

4.
Treatments to reduce solids content in liquid manure have been developed, but little information is available on gaseous N emissions and plant N uptake after application of treated liquid swine manure (LSM). We measured crop yield, N uptake, and NH3 and N2O losses after the application of mineral fertilizer (NH4 NO3), raw LSM, and LSM that was decanted, filtered, anaerobically digested, or chemically flocculated. The experiment was conducted from 2001 to 2003 on a loam and a sandy loam cropped to timothy (Phleum pratense L.) with annual applications equivalent to 80 kg N ha(-1) in spring and 60 kg N ha(-1) after the first harvest. Raw LSM resulted in NH3 emissions three to six times larger (P < 0.05) than mineral fertilizer. The LSM treatments reduced NH3 emissions by an average of 25% compared with raw LSM (P < 0.05). The N2O emissions tended to be higher with raw LSM than with mineral fertilizer. The LSM treatments had little effect on N2O emissions, except for anaerobic digestion, which reduced emissions by >50% compared with raw LSM (P < 0.05). Forage yield with raw LSM was >90% of that with mineral fertilizer. The LSM treatments tended to increase forage yield and N uptake relative to raw LSM. We conclude that treated or untreated LSM offers an alternative to mineral fertilizers for forage grass production but care must be taken to minimize NH3 volatilization. Removing solids from LSM by mechanical, chemical, and biological means reduced NH3 losses from LSM applied to perennial grass.  相似文献   

5.
Poultry operations are associated with emissions of aerial ammonia (NH3), volatile organic compounds (VOCs), and odor, and the magnitude of emissions is influenced by manure management practices. As a manure treatment additive, zeolites have been shown to have the potential to control NH3. Because of their properties it is also expected that zeolites could effectively adsorb VOCs and odor. The effectiveness of zeolite in controlling odor and VOCs was qualitatively evaluated in this controlled laboratory study involving simulated poultry manure storage. In the first two trials, zeolite was topically applied on nearly fresh laying hen manure at the rates of 0, 2.5, 5, and 10% (by weight). In the third trial, zeolite was topically applied at 5% with each addition of fresh manure into the storage vessel. Headspace samples from the emission vessels were collected with solid phase microextraction (SPME) and analyzed on a multidimensional-gas chromatograph-mass spectrometry-olfactometry (MDGC-MS-O) system for identification and prioritization of poultry manure odorants. Acetic acid, butanoic acid, isovaleric acid, indole, and skatole were consistently controlled in the headspace, with the reduction rate being proportional to the zeolite application rate. Dimethyl trisulfide and phenol were consistently generated, and with a few exceptions, the rate of generation was proportional to the application rate. Average reduction of the odor caused by all odorants evaluated with SPME-GC-O was 67% (+/-12%) and 51% (+/-26%) for the two topical applications, respectively, while no significant reduction of VOCs and odor was detected for the layered application.  相似文献   

6.
Excess crude protein (CP) in dairy cow diets is excreted mostly as urea nitrogen (N), which increases ammonia (NH) emissions from dairy farms and heightens human health and environmental concerns. Feeding less CP and more tannin to dairy cows may enhance feed N use and milk production, abate NH emissions, and conserve the fertilizer N value of manure. Lab-scale ventilated chambers were used to evaluate the impacts of CP and tannin feeding on slurry chemistry, NH emissions, and soil inorganic N levels after slurry application to a sandy loam soil and a silt loam soil. Slurry from lactating Holstein dairy cows (Bos taurus) fed two levels of dietary CP (low CP [LCP], 155 g kg; high CP [HCP], 168 g kg) each fed at four levels of dietary tannin extract, a mixture from red quebracho (Schinopsis lorentzii) and chestnut (Castanea sativa) trees (0 tannin [0T]; low tannin [LT], 4.5 g kg; medium tannin [MT], 9.0 g kg; and high tannin [HT], 18.0 g kg) were applied to soil-containing lab-scale chambers, and NH emissions were measured 1, 3, 6, 12, 24, 36, and 48 h after slurry application. Emissions from the HCP slurry were 1.53 to 2.57 times greater ( < 0.05) than from the LCP slurry. At trial's end (48 h), concentrations of inorganic N in soils were greater ( < 0.05) in HCP slurry-amended soils than in LCP slurry-amended soils. Emissions from HT slurry were 28 to 49% lower ( < 0.05) than emissions from 0T slurry, yet these differences did not affect soil inorganic N levels. Emissions from the sandy loam soil were 1.07 to 1.15 times greater ( < 0.05) than from silt loam soil, a result that decreased soil inorganic N in the sandy loam compared with the silt loam soil. Larger-scale and longer-term field trails are needed to ascertain the effectiveness of feeding tannin extracts to dairy cows in abating NH loss from land-applied slurry and the impact of tannin-containing slurry on soil N cycles.  相似文献   

7.
Ten commercially available manure odor control agents were evaluated in bench-scale laboratory microcosms for their ability to inhibit or kill Escherichia coli, a commonly used indicator of fecal pollution and a potential pathogen. At manufacturer recommended rates, none of the agents reduced viable populations of E. coli in pure cultures or in swine manure slurry. However, at rates 10-fold higher than those recommended by the manufacturer, EnviroPur rapidly reduced viable populations of E. coli. Accelerated death of E. coli was observed at temperatures as low as 4 degrees C. Chemical analysis of EnviroPur indicated that it contains alkylphenol polyethoxylates, common industrial surfactants. These results suggest that at manufacturer-recommended rates, the odor-controlling agents would not be effective at suppressing E. coli in stored swine manure slurry.  相似文献   

8.
Enzymatic hydrolysis of organic phosphorus in swine manure and soil   总被引:5,自引:0,他引:5  
Organic phosphorus (Po) exists in many chemical forms that differ in their susceptibility to hydrolysis and, therefore, bioavailability to plants and microorganisms. Identification and quantification of these forms may significantly contribute to effective agricultural P management. Phosphatases catalyze reactions that release orthophosphate (Pi) from Po compounds. Alkaline phosphatase in tris-HCl buffer (pH 9.0), wheat (Triticum aestivum L.) phytase in potassium acetate buffer (pH 5.0), and nuclease P1 in potassium acetate buffer (pH 5.0) can be used to classify and quantify Po in animal manure. Background error associated with different pH and buffer systems is observed. In this study, we improved the enzymatic hydrolysis approach and tested its applicability for investigating Po in soils, recognizing that soil and manure differ in numerous physicochemical properties. We applied (i) acid phosphatase from potato (Solanum tuberosum L.), (ii) acid phosphatases from both potato and wheat germ, and (iii) both enzymes plus nuclease P1 to identify and quantify simple labile monoester P, phytate (myo-inositol hexakis phosphate)-like P, and DNA-like P, respectively, in a single pH/buffer system (100 mM sodium acetate, pH 5.0). This hydrolysis procedure released Po in sequentially extracted H2O, NaHCO3, and NaOH fractions of swine (Sus scrofa) manure, and of three sandy loam soils. Further refinement of the approach may provide a universal tool for evaluating hydrolyzable Po from a wide range of sources.  相似文献   

9.
Solids and nutrient removal from flushed swine manure using polyacrylamides   总被引:1,自引:0,他引:1  
Most of the organic nutrient elements (nitrogen and phosphorus) and carbon compounds in liquid swine are contained in fine suspended particles. Flocculation treatment with polyacrylamide (PAM) followed by screening is one the best methods to separate the liquid fraction from the solid fraction in swine manure, and thus to eliminate nutrient elements associated with solids. In this study, the efficiency of a synthetic polyacrylamide to treat swine manure was evaluated. After polymer treatment samples were sieved and the filtrated liquid was analyzed. TSS, VSS and COD concentrations in the liquid fraction were 2.17, 1.93 and 16.42 g/L respectively, accounting for 94, 94 and 77% removal percentages for TSS, VSS and COD using 30 mg/L of PAM.  相似文献   

10.
The effect of dietary non-phytin phosphorus (NPP) and phytase (PHY) concentration on total phosphorus (TP) and water-soluble phosphorus (WSP) excretion was determined. Diets tested in broiler experiments were: National Research Council nutrient requirements for non-phytin phosphorus (NRC), NRC + PHY, reduced non-phytin phosphorus (RED), and RED + PHY. Turkey and swine experiment diets included NRC, RED, and RED + PHY. For all experiments, except broiler Experiment 1, excreta were: (i) boiled, antibiotic added, then frozen; (ii) boiled, antibiotic added, incubated (37 degrees C for 72 h), then frozen; and (iii) incubated, boiled, antibiotic added, then frozen. In Experiment 1, excreta were collected and frozen or incubated for 24 or 48 h. In broiler Experiment 1, WSP was not affected by phytase but increased with post-excretion incubation. In a broiler Experiment 2, reducing NPP resulted in reduced excreta TP and WSP (11.3 to 8.3 and 5.3 to 2.7 g kg(-1)). Feeding RED + PHY diets resulted in less TP and WSP (7.6 and 0.6 g kg(-1)) as compared with NRC + PHY (11.2 and 3.9 g kg(-1), Experiment 3). Incubation resulted in increased WSP, irrespective of phytase addition such that WSP as a percent of TP was similar among treatments. Addition of antibiotics before incubation prevented the increase in WSP. Similar results were observed with turkey and swine. Therefore, when phytase is used properly (i.e., with a simultaneous reduction of NPP), WSP or WSP as a percent of TP are not affected. The increase in WSP as a percent of TP post-excretion is a function of excreta microbial activity and not dietary phytase addition.  相似文献   

11.
Swine manure contains considerable amounts of total (P) and soluble phosphorus (PO(4)-P) which may increase the soil P content when applied in excess to crop requirements and, consequently, risk water eutrophication. The feasibility of using magnesium (Mg) from the by-product of electrolysis and foundries (BPEF) for the removal of P from liquid swine manure was studied by adding up to 3 g of Mg as BPEF per liter of nursery (NU) and grower-finisher (GF) swine manure in 25-L plastic buckets. Changes in P and other elements were monitored for up to 360 h. Small amounts of Mg as BPEF (0.5 and 1.0 g Mg L(-1) manure) reduced the total P concentration of the liquid fraction by 70 to 95% of both manure types with respect to the control treatment of mixed raw manure. A settling period of 8 h or more was necessary to significantly reduce the liquid fraction's total P concentration for both manure types. Reduction of PO(4)-P varied from 96 to 100% in the liquid fractions for both manure types, which along with natural settling, explains most of the total P reduction in that fraction. The addition of BPEF did not influence the N content of manure. The low P liquid fraction can be safely applied to saturated P soils whereas the high P solid fraction offers the opportunity of transporting manure to agricultural soils deficient in P. Since N is conserved, both liquid and solid fractions could be valuable fertilizer manure by-products.  相似文献   

12.
Composting may be a viable on-farm option for disposal of cattle carcasses. This study investigated greenhouse gas emissions during co-composting of calf mortalities with manure. Windrows were constructed that contained manure + straw (control compost [CK]) or manure + straw + calf mortalities (CM) using two technologies: a tractor-mounted front-end loader or a shredder bucket. Composting lasted 289 d. The windrows were turned twice (on Days 72 and 190), using the same technology used in their creation. Turning technology had no effect on greenhouse gas emissions or the properties of the final compost. The CO2 (75.2 g d(-1) m(-2)), CH4 (2.503 g d(-1) m(-2)), and N2O (0.370 g d(-1) m(-2)) emissions were higher (p < 0.05) in CM than in CK (25.7, 0.094, and 0.076 g d(-1) m(-2) for CO2, CH4, and N2O, respectively), which reflected differences in materials used to construct the compost windrows and therefore their total C and total N contents. The final CM compost had higher (p < 0.05) total N, total C, and mineral N content (NO3*+ NO2* + NH4+) than did CK compost and therefore has greater agronomic value as a fertilizer.  相似文献   

13.
Odor and gas release from anaerobic lagoons for treating swine waste affect air quality in neighboring communities but rates of release are not well documented. A buoyant convective flux chamber (BCFC) was used to determine the effect of lagoon loading rate on measured odor and gas releases from two primary lagoons at a simulated wind speed of 1.0 m s(-1). Concentrations of ammonia (NH3), hydrogen sulfide (H2S), carbon dioxide (CO2), sulfur dioxide (SO2), and nitric oxide (NO) in 50-L air samples were measured. A panel of human subjects, whose sensitivity was verified with a certified reference odorant, evaluated odor concentration, intensity, and hedonic tone. Geometric mean odor concentrations of BCFC inlet and outlet samples and of downwind berm samples were 168 +/- 44 (mean +/- 95% confidence interval), 262 +/- 60, and 114 +/- 38 OU(E) m(-3) (OU(E), European odor unit, equivalent to 123 microg n-butanol), respectively. The overall geometric mean odor release was 2.3 +/- 1.5 OU(E) s(-1) m(-2) (1.5 +/- 0.9 OU s(-1) m(-2)). The live mass specific geometric mean odor release was 13.5 OU(E) s(-1) AU(-1) (animal unit = 500 kg live body mass). Overall mean NH3, H2S, CO2 and SO2 releases were 101 +/- 24, 5.7 +/- 2.0, 852 +/- 307, and 0.5 +/- 0.4 microg s(-1) m(-2), respectively. Nitric oxide was not detected. Odor concentrations were directly proportional to H2S and CO2 concentrations and odor intensity, and inversely proportional to hedonic tone and SO2 concentration (P < 0.05). Releases of NH3, H2S, and CO2 were directly proportional (P < 0.05) to volatile solids loading rate (VSLR).  相似文献   

14.
Excessive fertilization with organic and/or inorganic P amendments to cropland increases the potential risk of P loss to surface waters. The objective of this study was to evaluate the effects of soil test P level, source, and application method of P amendments on P in runoff following soybean [Glycine max (L.) Merr.]. The treatments consisted of two rates of swine (Sus scrofa domestica) liquid manure surface-applied and injected, 54 kg P ha(-1) triple superphosphate (TSP) surface-applied and incorporated, and a control with and without chisel-plowing. Rainfall simulations were conducted one month (1MO) and six months (6MO) after P amendment application for 2 yr. Soil injection of swine manure compared with surface application resulted in runoff P concentration decreases of 93, 82, and 94%, and P load decreases of 99, 94, and 99% for dissolved reactive phosphorus (DRP), total phosphorus (TP), and algal-available phosphorus (AAP), respectively. Incorporation of TSP also reduced P concentration in runoff significantly. Runoff P concentration and load from incorporated amendments did not differ from the control. Factors most strongly related to P in runoff from the incorporated treatments included Bray P1 soil extraction value for DRP concentration, and Bray P1 and sediment content in runoff for AAP and TP concentration and load. Injecting manure and chisel-plowing inorganic fertilizer reduced runoff P losses, decreased runoff volumes, and increased the time to runoff, thus minimizing the potential risk of surface water contamination. After incorporating the P amendments, controlling erosion is the main target to minimize TP losses from agricultural soils.  相似文献   

15.
Storage of manure makes a significant contribution to global methane (CH4) emissions. Anaerobic digestion of pig and cattle manure in biogas reactors before outside storage might reduce the potential for CH4 emissions. However, manure pre-stored at 15 to 20 degrees C in buildings before anaerobic digestion may be a significant source of CH4 and could reduce the potential CH4 production in the biogas reactor. Degradation of energy-rich organic components in slurry and emissions of CH4 and carbon dioxide (CO2) from aerobic and anaerobic degradation processes during pre-storage were examined in the laboratory. Newly mixed slurry was added to vessels and stored at 15 and 20 degrees C for 100 to 220 d. During storage, CH4 and CO2 emissions were measured with a dynamic chamber technique. The ratio of decomposition in the subsurface to that at the surface indicated that the aerobic surface processes contributed significantly to CO2 emission. The measured CH4 emission was used to calculate the methane conversion factor (MCF) in relation to storage time and temperature, and the total carbon-C emission was used to calculate the decrease in potential CH4 production by anaerobic digestion following pre-storage. The results show substantial methane and carbon dioxide production from animal manure in an open fed-batch system kept at 15 to 20 degrees C, even for short storage times, but the influence of temperature was not significant at storage times of <30 d. During long-term storage (90 d), a strong influence of temperature on the MCF value, especially for pig manure, was observed.  相似文献   

16.
Influences on dust emissions from livestock operations are number, weight, and kind of animals and characteristics of the housing system. Differences between facilities cannot be explained solely by mechanistic input variables. The objective of this study was to characterize the main input variables for modeling emissions of particulate matter with a mass median diameter < or = 10 microm (PM10) from swine facilities using a data-based model. Investigations were performed in mechanically ventilated facilities for weaning, growing-finishing, and sows in Italy and Germany. The measurements included inside and outside concentration of airborne PM10 particles (scatter light photometry), ventilation rate (calibrated measuring fans), indoor air climate at a measuring frequency of 60 s, feeding times, and animal-related data such as weight and animal activity. Dust concentration and emission were simulated using a dynamic transfer function. The results indicated that the average PM10 emission rate was influenced considerably by housing system. The simulation of the PM10 emission rate resulted in a mean percentage error per data set of 21 to 39%, whereas the average simulated and measured emission rate per data set differed by about 4 to 19%. High prediction errors occurred especially during situations in which the absolute level and spatial location of the measured activity peaks did not correspond with the measured dust peaks. Further recommendations of the study were to improve continuous and accurate measurements of input variables, such as the activity level in animal houses, and to optimize the amount of measuring days in relation to the model accuracy.  相似文献   

17.
Phosphorus (P) runoff from fields fertilized with swine (Sus scrofa domesticus) manure may contribute to eutrophication. The objective of this study was to evaluate the effect of aluminum sulfate (alum) and aluminum chloride applications to swine manure on P runoff from small plots cropped to tall fescue (Festuca arundinacea Shreb.). There were six treatments in this study: (i) unfertilized control plots, (ii) untreated manure, (iii) manure with alum at 215 mg Al L(-1), (iv) manure with aluminum chloride at 215 mg Al L(-1), (v) manure with alum at 430 mg Al L(-1), and (vi) manure with aluminum chloride at 430 mg Al L(-1). Manure application rates were equivalent to approximately 125 kg N ha(-1). Alum and aluminum chloride additions lowered soluble reactive phosphorus (SRP) levels from about 130 mg P L(-1) to approximately 30 mg P L(-1) at low rates. At high rates, SRP levels in swine manure were around 1 mg P L(-1). Soluble reactive P concentrations in runoff were 5.50, 3.66, 3.00, 0.87, 0.87, and 0.55 mg P L(-1), for normal manure, low alum, low aluminum chloride, high alum, high aluminum chloride, and unfertilized control plots, respectively. Hence, high alum and aluminum chloride reduced SRP concentrations in runoff by 84% and were not statistically different from SRP concentrations in runoff from unfertilized control plots. These data indicate that treating swine manure with alum or aluminum chloride could result in significant reductions in nonpoint-source P runoff.  相似文献   

18.
Phosphorus (P) added to soil from fertilizer or manure application could pose a threat to water quality due to its role in eutrophication of fresh water resources. Incorporating such amendments into the soil is an established best management practice (BMP) for reducing soluble P losses in runoff water, but could also lead to higher erosion. The objective of this study was to test whether incorporation of manure or fertilizer 24 h before an intense rain could also reduce sediment-bound and total phosphorus (TP) losses in runoff. A rainfall simulation study was conducted on field plots (sandy loam with 6-7% slope, little surface residue, recently cultivated) that received two application rates of liquid swine manure or liquid ammonium polyphosphate fertilizer, using either surface-broadcast or incorporated methods of application. Incorporation increased the total suspended solids (TSS) concentrations in runoff but mass losses were not affected. Incorporation also reduced flow-weighted concentrations and losses of dissolved reactive phosphorus (DRP) and TP by as much as 30 to 60% depending on source (fertilizer vs. manure) and application rate. Phosphorus is moved below the mixing zone of interaction on incorporation, and thus the effect of the amount and availability of P in this zone is more important than cultivation on subsequent P losses in runoff. Incorporating manure or fertilizer in areas of intense erosive rain, recent extensive tillage, and with little or no surface residue is therefore a best management practice that should be adhered to in order to minimize contamination of surface water. Results also show comparatively lower P losses from manure than fertilizer.  相似文献   

19.
Traditional corn (Zea mays L.) (TC), the primary grain used in swine (Sus scrofa) diets, stores a majority of its P as phytate, which is largely unavailable for digestion by nonruminant animals. Low-phytate corn (LPC) contains similar amounts of total P but a smaller percentage of P as phytate. When fed to swine, LPC increases P utilization and reduces P content of manure. While differences in P content between manure from animals fed TC and LPC diets have been documented, solubility and lability of manure P have not been compared. Manure P was characterized in manure from swine fed either LPC or TC diets in 2000 and 2001. Total P was lower (20 vs. 34 g kg(-1)) and N to P ratio was higher (4.5 vs. 3.3) in LPC manure than in TC manure. Manures were sequentially extracted with deionized water, 0.5 M NaHCO3, 0.1 M NaOH, and 1.0 M HCl. Extracts were analyzed for inorganic and total P. Most P (approximately 80%) in the extracts was in the inorganic form. Concentration of P in the water-extractable fraction was lower for LPC manure (10.2 g kg(-1) in 2000 and 9.7 g kg(-1) in 2001) than for TC manure (13.6 g kg(-1) in 2000 and 17.0 g kg(-1) in 2001). Percentage of total P in each extract was in the order of: H2O (60%), HCl (22%), NaHCO3 (12%), NaOH (8%), and residue (<1%). Total P and distribution of P in extracts indicates swine are able to utilize more P contained in LPC feed but the composition of P excreted in LPC manure is similar to TC manure. Solubility, crop availability, and lability of P in LPC manure should be similar to that of TC manure.  相似文献   

20.
Gaseous emissions from animal manure storage facilities can contribute to global greenhouse gas inventories. Biogas fluxes were measured for one year from a 2-ha anaerobic lagoon that received waste from a 10500-head swine (Sus scrofa) finishing operation in southwestern Kansas. During 2001, ebullition of biogas was measured continuously by using floating platforms equipped with gas-collection domes. Periodically, the composition of the biogas was determined by using gas chromatography. Detailed records of feed quality and quantity and animal weights and gains also were obtained to determine the carbon budget of the facility (barns and lagoon). Flux of biogas was very seasonal, with peak emission (18.7 mol m(-2) d(-1)) occurring in early June. Nearly 50% of the annual biogas losses occurred during a 30-d period beginning on day of year (DOY) 146. Flux patterns suggest that the start of the high biogas production period was governed by temperature, while the decline in production in mid-June was caused by substrate limitations. Average biogas composition was 0.71 L CH4 L(-1). The quantity of CH4 released from the lagoon was 86.3 Mg yr(-1), which represents about 38 g of CH4 per kg of animal weight gain. The average flux density of biogas from the lagoon was 382 mol m(-2) yr(-1) or 728 mol yr(-1) per resident animal where the resident animal population was 10500. Flux rates of CH4 were 1.7 to 3.4 times less than predictions made with Intergovernmental Panel on Climate Change (IPCC) models. Additional research is needed on the carbon budgets of other animal feeding operations so that better estimates of greenhouse gas emissions can be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号