首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
In this study, potassium iodide (KI) was found to be capable of reducing selenium(VI) to selenium(IV). When KI was added to Se(VI) solution, the Se(VI) concentration rapidly decreased with an increase in the KI/Se(VI) molar ratio. By using the potential-pH equilibrium diagram for the selenium/water system, we confirmed that Se(VI) reduced to Se(IV) because the potential of the solution shifted to the stable Se(IV) region upon the addition of KI. This reduction accompanies the oxidation of I to I3. The reduction of Se(VI) by KI was found to be effective for concentrated Se(VI) solutions.  相似文献   

2.
Hexavalent chromium-tolerant (1500?mg/L) bacterium MW1 was isolated from harbour water of Paradip Port and evaluated for Cr(VI) reduction potential. The isolate was identified as Exiguobacterium indicum by biochemical and 16S rRNA gene sequence methods. Salt tolerance of the bacterium was evaluated in a wide range of NaCl concentrations (0.5–13%, w/v). The Cr(VI) reduction of the strain was evaluated and optimised with varied Cr(VI) concentrations (100–1000?mg/L), pH (5.0–9.0), temperature (30–40°C) and shaking velocity (100–150?rpm) in two different minimal media (M9 and Acetate). Under optimised conditions, after 192?h of incubation nearly 92%, 50% and 46% reduction in the M9 minimal medium and 91%, 47% and 40% reduction in the acetate minimal medium were observed for 100, 500 and 1000?mg/L of Cr(VI), respectively. The exponential rate equation for Cr(VI) reduction yielded higher rate constant value, that is, 1.27?×?10?2?h?1 (M9) and 1.17?×?10?2?h?1 (Acetate) in case of 100?mg/L and became lower for 500 and 1000?mg/L Cr(VI) concentrations. Further, the association of bacterial cells with reduced product was ascertained by Fourier transform infrared spectrometer, UV–Vis–DRS and field-emission scanning electron microscope–energy-dispersive X-ray analyses. The above study suggests that the higher reducing ability of the marine bacterium E. indicum MW1 will be suitable for Cr(VI) reduction from saline effluents.  相似文献   

3.
The effect of selenium on the vegetative reproduction of cultured Lemna minor was investigated. Cultures were grown for 28 days at a temperature of 23 ± 3°C and under a constant (24 h) light cycle. Growth was monitored every seven days. The growth of L. minor was inhibited at high concentrations (>5mg/L [Se]), but stimulated at low concentrations (0.2—2mg/L [Se]). This stimulation of growth at low selenium concentrations has significant implications for the use of selenium enriched superphosphate fertilisers on selenium deficient pastures.  相似文献   

4.
The kinetics of Cr(VI) reduction to Cr(III) by metallic iron (Fe0) was studied in batch reactors for a range of reactant concentrations, pH and temperatures. Nearly 86.8% removal efficiency for Cr(VI) was achieved when Fe0 concentration was 6 g/L (using commercial iron powder (< 200 mesh) in 120 min). The reduction of hexavalent chromium took place on the surface of the iron particles following pseudo-first order kinetics. The rate of Cr(VI) reduction increased with increasing Fe0 addition and temperature but inversely with initial pH. The pseudo-first-order rate coefficients (k obs) were determined as 0.0024, 0.010, 0.0268 and 0.062 8 min?1 when iron powder dosages were 2, 6, 10 and 14 g/L at 25°C and pH 5.5, respectively. According to the Arrehenius equation, the apparent activation energy of 26.5 kJ/mol and pre-exponential factor of 3 330 min?1 were obtained at the temperature range of 288–308 K. Different Fe0 types were compared in this study. The reactivity was in the order starch-stabilized Fe0 nanoparticles > Fe0 nanoparticles > Fe0 powder > Fe0 filings. Electrochemical analysis of the reaction process showed that Cr(III) and Fe(III) hydroxides should be the dominant final products.  相似文献   

5.
• Separate reduction and sintering cannot be effective for Cr stabilization. • Combined treatment of reduction and sintering is effective for Cr stabilization. • Almost all the Cr in the reduced soil is residual form after sintering at 1000°C. This study explored the effectiveness and mechanisms of high temperature sintering following pre-reduction with ferric sulfate (FeSO4), sodium sulfide (Na2S), or citric acid (C6H8O7) in stabilizing hexavalent chromium (Cr(VI)) in highly contaminated soil. The soil samples had an initial total Cr leaching of 1768.83 mg/L, and Cr(VI) leaching of 1745.13 mg/L. When FeSO4 or C6H8O7 reduction was followed by sintering at 1000°C, the Cr leaching was reduced enough to meet the Safety Landfill Standards regarding general industrial solid waste. This combined treatment greatly improved the stabilization efficiency of chromium because the reduction of Cr(VI) into Cr(III) decreased the mobility of chromium and made it more easily encapsulated in minerals during sintering. SEM, XRD, TG-DSC, and speciation analysis indicated that when the sintering temperature reached 1000°C, almost all the chromium in soils that had the pre-reduction treatment was transformed into the residual form. At 1000°C, the soil melted and promoted the mineralization of Cr and the formation of new Cr-containing compounds, which significantly decreased subsequent leaching of chromium from the soil. However, without reduction treatment, chromium continued to leach from the soil even after being sintered at 1000°C, possibly because the soil did not fully fuse and because Cr(VI) does not bind with soil as easily as Cr(III).  相似文献   

6.
The kinetics of ferrate(VI) (FeVIO4 2−, Fe(VI)) oxidation of an antiphlogistic drug, ibuprofen (IBP), as a function of pH (7.75–9.10) and temperature (25–45°C) were investigated to see the applicability of Fe(VI) in removing this drug from water. The rates decrease with an increase in pH and the rates are related to protonation of ferrate(VI). The rates increase with an increase in temperature. The E a of the reaction at pH 9.10 was calculated as 65.4±6.4 kJ mol−1. The rate constant of the HFeO4 with ibuprofen is lower than with the sulphur drug, sulfamethoxazole. The use of Fe(VI) to remove ibuprofen is briefly discussed.  相似文献   

7.
The kinetics of the oxidation of endocrine disruptor nonylphenol (NP) by potassium ferrate(VI) (K2FeO4) in water as a function of pH 8.0–10.9 at 25°C is presented. The observed second-order rate constants, k obs, decrease with an increase in pH 269–32 M?1 s?1. The speciation of Fe(VI) (HFeO 4 ? and FeO 4 2? ) and NP (NP–OH and NP–O?) species was used to explain the pH dependence of the k obs values. At a dose of 10 mg L?1 (50 μM) K2FeO4, the half-life for the removal of NP by Fe(VI), under water treatment conditions, is less than 1 min.  相似文献   

8.
Oceans are warming and becoming more acidic. While higher temperature and lower pH can have negative effects on fertilisation and development of marine invertebrates, warming may partially ameliorate the negative effect of lower pH. This study determined the effect of warming (3 °C) and decreased pH (0.3, 0.5, 1.1 units below ambient) on fertilisation and development in two populations of the sea urchin Centrostephanus rodgersii, one at its northern range limit (Coffs Harbour, New South Wales NSW, 30°27′S, 153°14′E) and the other one in New Zealand where the species may be a recent arrival (Mokohinau Islands, 35°56′S, 175°9′E). Both populations were sampled in August 2011. The two populations exhibited a differential response to temperature, while pH affected them similarly. Fertilisation was robust to pH levels forecast for 2100, and it was only slightly reduced at pH values forecast for 2300 (i.e. ≈5 and ≈8 % for the northern NSW and the New Zealand populations, respectively). Decreased pH (pH = 7.6) reduced the percentage of succeeding developmental stages. Progression through cleavage and hatching stages was faster at +3 °C in the New Zealand population but not in northern NSW urchins, while for the NSW population, there was a positive interaction between temperature and pH at hatching. Gastrulation was negatively affected by an extreme pH 7.0 treatment (60–80 % reduction) and least affected by increased temperature. The percentage of abnormal embryos at gastrulation increased significantly at +3 °C treatment in the northern NSW population. Predicted future increases in temperature may facilitate further expansion of the geographical range of C. rodgersii in New Zealand, with a minimal effect of concurrent reduced pH.  相似文献   

9.
A new adsorbent (ABS) with amidoxime functional group was prepared through graft polymerization of acrylonitrile onto banana stem (BS) using ceric ammonium nitrate (CAN)/HNO3 initiator system, followed by treatment with hydroxylamine hydrochloride in alkaline solution. Infrared spectroscopy, surface area analyzer, thermogravimetry, and potentiometric titration were used for the characterization of the adsorbent. Effective removal of U(VI) ions was demonstrated at the pH range 4.0–6.0. The mechanism for the removal of U(VI) ions by ABS was based on complexation adsorption model. Equilibrium was achieved in approximately 3 h. The experimental kinetic data were analyzed using first-order, second-order, and Elovich kinetic models, and are well fitted with second-order kinetics. The temperature dependence indicates an exothermic process. U(VI) adsorption was found to decrease with increase of ionic strength. The Freundlich isotherm model fitted the experimental equilibrium data well. The adsorption efficiency was tested using synthetic nuclear industry effluents. The maximum adsorption capacity for U(VI) removal was found to be 80 mg g-1 at 20°C. Adsorbed U(VI) ions were desorbed effectively, about 99% by 0.2 M HCl. Repeated adsorption/desorption cycles show the feasibility of the ABS for the removal of U(VI) ions from water and nuclear industry effluents.  相似文献   

10.
Cr(VI) represents an environmental challenge in both soil and water as it is soluble and bioavailable over a wide range of pH. In previous investigations, Portulaca oleracea (a plant local to the United Arab Emirates (UAE)) demonstrated particular ability for the phytoextraction of Cr(VI) from calcareous soil of the UAE. In this publication, the results of the evaluation of P. oleracea phytoextraction of Cr(VI) from UAE soil at higher concentrations are reported. P. oleracea was exposed to nine different concentrations of Cr(VI) in soil from 0 to 400 mg kg?1. The uptake of Cr(VI) increased as its concentration in soil increased between 50 and 400 mg kg?1, with the most efficient removal in the range from 150 to 200 mg kg?1. The total chromium concentrations exceeded 4600 mg kg?1 in roots and 1400 mg kg?1 in stems, confirming the role of P. oleracea as an effective Cr(VI) accumulator. More than 95% of the accumulated Cr(VI) was reduced to the less toxic Cr(III) within the plant.  相似文献   

11.
The purpose of the research was to estimate optimal conditions for wet oxidation (WO) of debarking water from the paper industry. The WO experiments were performed at various temperatures, partial oxygen pressures and pHs. The experiments showed that lignin degradation and organics removal are affected remarkably by temperature and pH. At different WO conditions (pH 12, T 130–200°C), 78–97% of lignin reduction was detected. pH value of 12 caused faster removal of tannins/lignin content; pH value of five was more effective for removal of total organics, represented by chemical oxygen demand (COD) and total organic carbon. The highest biodegradability [biological oxygen demand (BOD)/COD] of 0.72 was obtained at a pH of ten and temperature of 200°C.  相似文献   

12.
Microwave-hydrothermal treatment of persistent and bioaccumulative perfluorooctanoic acid (PFOA) in water with persulfate (S2O 8 2? ) has been found effective. However, applications of this process to effectively remediate PFOA pollution require a better understanding on free-radical scavenging reactions that also take place. The objectives of this study were to investigate the effects of pH (pH = 2.5, 6.6, 8.8, and 10.5), chloride concentrations (0.01?C0.15 mol·L?1), and temperature (60°C, 90°C, and 130°C) on persulfate oxidation of PFOA under microwave irradiation. Maximum PFOA degradation occurred at pH 2.5, while little or no degradation at pH 10.5. Lowering system pH resulted in an increase in PFOA degradation rate. Both high pH and chloride concentrations would result in more scavenging of sulfate free radicals and slow down PFOA degradation. When chloride concentrations were less than 0.04 mol·L?1 at 90°C and 0.06 mol·L?1 at 60°C, presence of chloride ions had insignificant impacts on PFOA degradation. However, beyond these concentration levels, PFOA degradation rates reduced significantly with an increase in chloride concentrations, especially under the higher temperature.  相似文献   

13.
This study investigated whether selenium species in wheat grains could be altered by exposure to different combinations of nitrogen (N) and sulphur (S) fertilisers in an agronomic biofortification experiment. Four Australian wheat cultivars (Mace, Janz, Emu Rock and Magenta) were grown in a glasshouse experiment and exposed to 3 mg Se kg?1 soil as selenate (SeVI). Plants were also exposed to 60 mg N kg?1 soil as urea and 20 mg S kg?1 soil as gypsum in a factorial design (N + S + Se; N + Se; S + Se; Se only). Plants were grown to maturity with grain analysed for total Se concentrations via ICP-MS and Se species determined via HPLC-ICP-MS. Grain Se concentrations ranged from 22 to 70 µg Se g?1 grain (dry mass). Selenomethionine (SeMet), Se-methylselenocystine (MeSeCys), selenohomolanthionine (SeHLan), plus a large concentration of uncharacterised Se species were found in the extracts from grains. SeMet was the major Se species identified accounting for between 9 and 24 µg Se g?1 grain. Exposure to different N and S fertiliser combinations altered the SeMet content of Mace, Janz and Emu Rock grain, but not that of Magenta. MeSeCys and SeHLan were found in far lower concentrations (<4 µg Se g?1 grain). A large component of the total grain Se was uncharacterisable (>30 % of total grain Se) in all samples. When N fertiliser was applied (with or without S), the proportion of uncharacterisable Se increased between 60 and 70 % of the total grain Se. The data presented here indicate that it is possible to alter the content of individual Se species in wheat grains via biofortification combined with manipulation of N and S fertiliser regimes. This has potential significance in alleviating or combating both Se deficiency and Se toxicity effects in humans.  相似文献   

14.
The reduction of hexavalent chromium by scrap iron was investigated in continuous long-term fixed bed system. The effects of pH, empty bed contact time (EBCT), and initial Cr(VI) concentration on Cr(VI) reduction were studied. The results showed that the pH, EBCT, and initial Cr(VI) concentration significantly affected the reduction capacity of scrap iron. The reduction capacity of scrap iron were 4.56, 1.51, and 0.57 mg Cr(VI)·g-1 Fe0 at pH 3, 5, and 7 (initial Cr(VI) concentration 4 mg·L-1, EBCT 2 min, and temperature 25°C), 0.51, 1.51, and 2.85 mg Cr(VI)·g-1 Fe0 at EBCTs of 0.5, 2.0, and 6.0 min (initial Cr(VI) concentration 4 mg·L-1, pH 5, and temperature 25°C), and 2.99, 1.51, and 1.01 mg Cr(VI)·g-1 Fe0 at influent concentrations of 1, 4, and 8 mg·L-1 (EBCT 2 min, pH 5, and temperature 25°C), respectively. Fe(total) concentration in the column effluent continuously decreased in time, due to a decrease in time of the iron corrosion rate. The fixed bed reactor can be readily used for the treatment of drinking water containing low amounts of Cr(VI) ions, although the hardness and humic acid in water may shorten the lifetime of the reactor, the reduction capacity of scrap iron still achieved 1.98 mg Cr6+·g-1 Fe. Scanning electron microscope equipped with energy dispersion spectrometer and X-ray diffraction were conducted to examine the surface species of the scrap iron before and after its use. In addition to iron oxides and hydroxide species, iron-chromium complex was also observed on the reacted scrap iron.  相似文献   

15.
Removal of cadmium(II), lead(II), and chromium(VI) from aqueous solution using clay, a naturally occurring low-cost adsorbent, under various conditions, such as contact time, initial concentration, temperature, and pH has been investigated. The sorption of these metals follows both Langmuir and Freundlich adsorption isotherms. The magnitude of Langmuir and Freundlich constants at 30°C for cadmium, lead, and chromium indicate good adsorption capacity. The kinetic rate constants (K ad) indicate that the adsorption follows first order. The thermodynamic parameters: free energy change (ΔG o), enthalpy change (ΔH o), and entropy change (ΔS o) show that adsorption is an endothermic process and that adsorption is favored at high temperature. The results reveal that clay is a good adsorbent for the removal of these metals from wastewater.  相似文献   

16.
Background, aim, and scope Determination of the rates of microbial alkylation are of interest with respect to natural attenuation of harmful selenium concentrations or selenium charges in contaminated ecosystems. Materials and methods Landfill gas and the headspace of microbial microcosm incubation vessels were sampled in Tedlar® bags. On-line hyphenation of an efficient enrichment method (cryotrapping-cryofocusing), a gaschromatographic separation technique, and the sensitive ICP-MS detection system was used for speciation of volatile organoselenium compounds. A detection limit at the ultra trace level (pg Se) was achieved with this CT-CF-GC-ICP-MS technique. Results Incubation of landfill leachate with Alternata alternata as an active methylating organism showed a production of volatile selenium compounds (DMSe, DMDSe, EMDSe, DEDSe) over the whole range of applied inorganic selenium concentrations (10?µg?L–1 to 10?mg?L–1), with volatilization rates of up to 10?mg m–3?d–1. For selenium concentrations of 1?mg?L–1 in the nutrient broth, up to 7?% of the inorganic selenium was volatilized after one week. The same volatile selenium compounds were observed in landfill gas. Discussion The amount of volatilized selenium was comparable to that found in other studies with microbial pure cultures as well as isolates from waters or soils, but at much lower initial concentrations used in the incubations. Conclusions The alkylation of selenium in the enriched mixed culture from landfill leachate at environmentally relevant concentrations indicates that the organoselenium compounds of same species composition and distribution determined in landfill gas are produced by microorganisms. Recommendations and perspectives The microbial alkylation of toxic inorganic selenium species to less toxic or non-toxic, volatile compounds is an efficient method for bioremediation of contaminated sites even at relatively low Se concentrations.  相似文献   

17.
初步研究了含有Fe(III)及丙酮酸盐的溶液在高压汞灯照射下对铬(VI)的光还原反应.考察了溶液pH值、Fe(III)浓度、丙酮酸钠浓度、Cr(VI)浓度对反应的影响.分析了光还原反应的动力学及反应机制.结果表明:铁丙酮酸盐体系能光还原Cr(VI);最佳pH为3.0;Cr(VI)光还原的初始速率随着加入的铁(III)、丙酮酸盐、Cr(VI)初始浓度的增加而增加;实验条件下的表观动力学方程为:-dCCr(VI)/dt=0.021[Cr(VI)]0.39[Fe(III)]1.05[CH3COCOONa]0.39;Fe(III)-丙酮酸盐配合物光解产生的Fe(II)是Cr(VI)的主要还原剂.  相似文献   

18.
A laboratory scale, undivided electrolysis cell with platinum anode and cathode was used for electrochemical oxidation of the azo dye Acid Red 73 in simulated wastewater. The influence of the supporting electrolyte, applied voltage, pH, initial dye concentration and temperature was studied, and decolorization was monitored by UV/Vis spectroscopy. Energy consumption, current efficiency and the electric energy per order have been also determined. With NaCl (1.5 g L?1) as supporting electrolyte, at a voltage of 6 V, at neutral pH (6.9) and at 25 °C, the solution of the dye (50 mg L?1) was completely decolorized within 15 min. The apparent activation energy for electrochemical decolorization was determined as ?1.9 kJ mol?1.  相似文献   

19.
The fate of the benthic bacterial biomass is a topic of major importance in understanding how soft-bottom environments function. Because of their high abundance, production and nutritional value, benthic bacteria may constitute an important food resource for benthic fauna. The trophic role of bacteria for a nematode community on the Brouage mudflat (Marennes-Oléron-France), dominated by three species: Chromadora macrolaima (64% of the abundance), Daptonema oxycerca (15%) and Ptycholaimellus jacobi (8%), was determined in grazing experiments using 15N pre-enriched bacteria. On intertidal flats, seasonal, tidal and circadian cycles induce strong variations in environmental conditions. Grazing experiments were performed in order to measure the effects of abiotic (temperature, salinity and luminosity) and biotic (bacterial and algal abundances) factors on assimilation rates of bacteria by nematodes. In order to assess simultaneously bacteria and algal assimilation rates, algal abundances were modified adding 13C pre-enriched Navicula phyllepta. Assimilation rate was significantly lower at 5°C; moreover, general trend shows a prominent temperature effect with an optimum around 30°C. Assimilation at salinity 18 was not significantly different from the assimilation at salinity 31. Assimilation was higher under light conditions than in the dark. Above 109 bacteria ml−1, assimilation of bacteria remained unaffected by bacterial abundance. However, assimilation of algae increased with the algal concentration. Nematode kept feeding under conditions of stress, which are typical of the surficial sediment habitat and they appeared to be principally dependent on the algal resource.  相似文献   

20.
Removal of selenite [Se (IV)] from aqueous solution on to industrial solid ‘waste’ Fe(III)/Cr(III) hydroxide as adsorbent was investigated in the present article. Maximum adsorption was found to be at pH 4.0. Pretreated Fe(III)/Cr(III) hydroxide was found to be more efficient for the removal of selenite compared to untreated adsorbent. Langmuir and Freundlich isotherms have been studied. The Langmuir adsorption capacity (Q 0) of the pretreated and untreated adsorbents was found to be 15.63 and 6.04?mg?g?1, respectively. The adsorption process fit into the second-order kinetics. Thermodynamic parameters show that the adsorption process is spontaneous and endothermic in the temperature range 32 to 60°C. Coexisting anions vanadate and phosphate significantly affect the adsorption of selenite for both the pretreated and untreated adsorbents. Molybdate, thiocyanate, sulphate, nitrate and chloride do not significantly affect the removal of selenite for pretreated adsorbent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号