首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fringe-lipped bat, Trachops cirrhosus, is an eavesdropping predator that hunts frogs and katydids by approaching these preys' sexual advertisement calls. In captivity, bats can rapidly learn to associate novel acoustic stimuli with food rewards. It is unknown how this learning ability is related to foraging behavior in the wild where prey and the calls that identify them vary over space and time. In two bat populations that differ in available prey species (Soberanía, Panama, and La Selva, Costa Rica), we presented wild-caught bats with frog calls, katydid calls, and control stimuli. Bats in Soberanía were significantly more responsive to complex calls and choruses of the túngara frog, Physalaemus pustulosus, than were bats in La Selva. La Selva bats were significantly more responsive to katydid calls (Steirodon sp.) than Soberanía bats. We also examined seasonal variation in bat response to prey cues. Bats were captured in Soberanía in dry and wet seasons and presented with the calls of a dry season breeding frog (Smilisca sila), a wet season breeding frog (P. pustulosus), and four katydid species. Bats captured in the dry season were significantly more responsive to the calls of S. sila than bats captured in the wet season, but there were no seasonal differences in response to the calls of P. pustulosus or the katydid calls. We demonstrate plasticity in the foraging behavior of this eavesdropping predator but also show that response to prey cues is not predicted solely by prey availability.  相似文献   

2.
A soil–plant–air continuum multilayer model was used to numerically simulate canopy net assimilation (An), evapotranspiration (ET), and soil moisture in a deciduous teak plantation in a dry tropical climate of northern Thailand to examine the influence of soil drought on An. The timings of leaf flush and the end of the canopy duration period (CDP) were also investigated from the perspective of the temporal positive carbon gain. Two numerical experiments with different seasonal patterns of leaf area index (LAI) were carried out using above-canopy hydrometeorological data as input data. The first experiment involved seasonally varying LAI estimated based on time-series of radiative transmittance through the canopy, and the second experiment applied an annually constant LAI. The first simulation captured the measured seasonal changes in soil surface moisture; the simulated transpiration agreed with seasonal changes in heat pulse velocity, corresponding to the water use of individual trees, and the simulated An became slightly negative. However, in the second simulation, An became negative in the dry season because the decline in stomatal conductance due to severe soil drought limited the assimilation, and the simultaneous increase in leaf temperature increased dark respiration. Thus, these experiments revealed that the leaflessness in the dry season is reasonable for carbon gain and emphasized the unfavorable soil water status for carbon gain in the dry season. Examining the duration of positive An (DPA) in the second simulation showed that the start of the longest DPA (LDPA) in a year approached the timing of leaf flush in the teak plantation after the spring equinox. On the other hand, the end appeared earlier than that of all CDPs. This result is consistent with the sap flow stopping earlier than the complete leaf fall, implying that the carbon assimilation period ends before the completion of defoliation. The model sensitivity analysis in the second simulation suggests that a smaller LAI and slower maximum rate of carboxylation likely extend the LDPA because soil water from the surface to rooting depth is maintained longer at levels adequate for carbon gain by decreased canopy transpiration. The experiments also suggest that lower soil hydraulic conductivity and deeper rooting depth can postpone the end of the LDPA by increasing soil water retention and the soil water capacity, respectively.  相似文献   

3.
K. Ito  S. Goshima  S. Nakao 《Marine Biology》1996,126(3):395-401
The life history of Haloa japonica (Pilsbry), especially the seasonality of growth and reproduction, was investigated from 1992 to 1995 on a flat rocky shore exposed at low tide at Kattoshi, Hakodate Bay, Japan. To estimate the effect of environmental seasonality on growth rate, we conducted two sets of field cage experiments in which algal food was controlled. H. japonica was shown to have an annual life cycle. Spawning occurred from late April to mid-July. Recruitment occurred in June. Simultaneously, large adults disappeared from the habitat. A rapid increase in wet weight of H. japonica was observed in early spring, and coincided with the bloom of the membranous green alga, Monostroma angicava. Under field cage experiments, individuals feeding on both M. angicava and Polysiphonia japonica grew faster than those feeding on only P. japonica. Growth rates of H. japonica feeding on only P. japonica, however, did not vary from February to April. These results suggest that seasonal variation in the algal community limits the growth of H. japonica in early spring at Kattoshi. This factor is relatively more important as a limiting factor on the growth of H. japonica than the physical environment in this season.  相似文献   

4.
Reproductive interaction between closely related taxa may leave a distinctive signature in which populations of interacting taxa are more dissimilar in sympatry than in allopatry. An ideal condition for such a pattern of reproductive character displacement (RCD) may occur when a population has limited gene flow and experiences strong selection pressure, exerted by an interacting taxon in areas of sympatry. In Korea, there are two closely related treefrog species: Hyla japonica, which is distributed widely throughout the country, and Hyla suweonensis, which occurs sympatrically in a narrow strip of western coastal plains. H. suweonensis is only found within the distribution of H. japonica. These two species have a similar single-note call structure. Here, we tested the possibility of RCD in H. japonica by examining geographic variation in advertisement calls. Although means of temporal and spectral characters were significantly different between the two species, sympatric populations of H. japonica and H. suweonensis overlapped in distributions of most characters. Furthermore, allopatric and sympatric H. japonica populations did not differ in all call characters. Weak genetic differentiation between sympatric and allopatric populations of H. japonica implied either substantial gene flow or recent genetic isolation. Possible explanations for no RCD in male advertisement calls of H. japonica include a difference in fine temporal characteristics between the two species, migration between sympatric and allopatric localities in H. japonica, RCD in female preferences in H. japonica, and weak selection pressure by H. suweonensis.  相似文献   

5.
Summary. As Salicaceous plants produce new leaves for a prolonged period of time, they expose a wide range of differentially aged leaves to herbivores during the growing season. In this work, I show that young leaves of three Salicaceous species, Populus tremula L., Salix phylicifolia L. and S. pentandra L., contain more nitrogen than conspecific old leaves. In P. tremula and S. pentandra young leaves also contained more low-molecular weight secondary compounds, phenolic glucosides. Leaves of S. phylicifolia did not contain phenolic glucosides in detectable amounts. Furthermore, in P. tremula and S. pentandra young leaves contained less polymeric digestability-reducing phenolics, condensed tannins, than old leaves. In S. phylicifolia, higher concentrations of condensed tannins were found in young leaves. In laboratory feeding trials with six leaf beetle species, young leaves of the studied plants were invariably preferred in all tested herbivore × host species combinations. In particular, it is remarkable that three leaf beetle species with known different overall relationships to phenolic glucosides equally preferred more glucoside-containing young S. pentandra leaves over conspecific old ones. Four beetle species were found to prefer young leaves of S. phylicifolia despite the higher content of condensed tannins in young leaves. These results indicate that the general preference of leaf beetles for young leaves of Salicaceous plants probably does not primarily result from variable distribution of secondary compounds. Apparently, the preference for young leaves is fundamentally due to variation in leaf nutritive traits, such as nitrogen content. Received 9 February 2001.  相似文献   

6.
Fourteen species of sergestid shrimps were collected in the Sargasso Sea between the surface and 1500 m near Bermuda on 4 cruises. The vertical distribution and feeding activity of the most abundant species are discussed in relation to interspecific competition and the adaptive significance of vertical migration. Each species lives within a narrow depth range and exhibits a diel vertical migration. Sergestes splendens migrated as much as 825 m, while S. japonicus migrated less than 100 m. Neither the seasonal nor permanent thermocline influenced the migration range. The only species which occurred together both day and night were S. pectinatus with S. vigilax and S. pectinatus with S. sargassi. Morphological differences in the third maxillipeds of these species suggest differences in feeding. Although most species eat a variety of organisms, the foreguts of S. grandis, S. corniculum, and S. splendens contained euphausiids more often than those of other species, and S. grandis and S. robustus fed more frequently on fishes. In contrast, S. japonicus appears to feed on detritus. Food was found in the foreguts of most species less frequently during the day than night, but no species fed only at night. S. sargassi and S. pectinatus fed equally day and night.  相似文献   

7.
Histological and electron microscopical studies were made on the fusion reaction between homogeneic stolons of the colonial ascidians Perophora japonica Oka and P. sagamiensis Tokioka. When two stolons make a tip-to-side contact, the epidermal cells of the lateral portion of one stolon become thick and form a protrusion. In the fusion reaction of P. japonica, epidermal cells of each stolon at the contact area extend cell processes immediately after contact. After an occurrence of degenerated epidermal cells, blood interchange between the two stolons is initiated by a partial elimination of the epidermal cells. Even after the establishment of blood interchange, the cuticlelike structure is often observed to remain at the contact area. In the fusion reaction of P. japonica, many amoebocytes are attached to the epidermal cells until the complete elimination of epidermal cells. In the fusion reaction of P. sagamiensis, many lymphocytes as well as amoebocytes are attached to the epidermal cells at the contact area.Contribution No. 461 of the Shimoda Marine Research Center  相似文献   

8.
The fate of mercury in decomposing leaf litter and soil is key to understanding the biogeochemistry of mercury in forested ecosystems. We quantified mercury dynamics in decomposing leaf litter and measured fluxes and pools of mercury in litterfall, throughfall, and soil in two forest types of the Adirondack region, New York, USA. The mean content of total mercury in leaf litter increased to 134% of its original mass during two years of decomposition. The accumulation pattern was seasonal, with significant increases in mercury mass during the growing season (+4.9% per month). Litterfall dominated mercury fluxes into the soil in the deciduous forest, whereas throughfall dominated fluxes into the coniferous forest. The increase in mercury mass in decomposing deciduous litter during the growing season was greater than could be accounted for by throughfall inputs during the growing season (P < 0.05), suggesting translocation of mercury from the soil to the decomposing deciduous litter. This internal recycling mechanism concentrates mercury in the organic horizons and retards transport through the soil, thereby increasing the residence time of mercury in the forest floor. A mass balance assessment suggests that the ultimate fate of mercury in the landscape depends upon forest type and associated differences in the delivery and incorporation of mercury into the soil. Our results show that incorporation of mercury into decaying leaf litter increases its residence time in the landscape and may further delay the recovery of surface waters, fish, and associated biota following control of mercury emissions to the atmosphere.  相似文献   

9.
The photoacclimation capacity of the seagrass Cymodocea nodosa was evaluated considering temporal (i.e. seasonal) and spatial (i.e. depth and within-leaf position) factors of variation. Changes along the leaf were measured in a population growing along a depth gradient (from intertidal to subtidal) in Cadiz Bay (Southern Spain) from 2004 to 2005. Photoacclimation was evaluated by photosynthesis (PE curves), pigment content and leaf morphology. Plants of Cymodocea nodosa showed large physiological and morphological plasticity (mean %CV = 35.8 ± 3.4) according to the three factors considered. Seasonal patterns appeared for photosynthesis, respiration, pigment content and morphology. Nevertheless, seasonal patterns were not consistent with depth or leaf portions. The resulting data set offered different information depending on the analysis conducted; when only one factor (season, depth or leaf portion) was considered, some tendencies observed in the 3-way full design were masked. Accordingly, considering spatio–temporal variability is crucial when describing photoacclimation and estimating productivity in seagrass meadows.  相似文献   

10.
S. Ohtsuka  T. Onbé 《Marine Biology》1991,111(2):213-225
Pontellid copepods were collected from the surface waters of a tidal front region in the Bungo Channel (the Inland Sea of Japan) in June 1986 to examine the relationship between the morphology of cephalic appendages and gut contents. In particular, two dominant species,Labidocera japonica Mori andPontellopsis yamadae Mori, were compared in detail. Large setae on the second maxillae ofL. japonica possessed two rows of setules at right angles to each seta along its inner margin except a terminal part which was serrated, whereas the inner margin of those setae ofP. yamadae was entirely serrated. Judging from the structure of the mouthparts, especially the second maxillae, the former species seems to employ both suspension and raptorial feeding modes, in contrast to the latter, which may use only the raptorial mode of feeding. InP. yamadae, the first maxilla and the maxilliped are also modified for carnivory. Gut content analysis supported the morphological evidence for feeding differences, and revealed thatP. yamadae is a carnivore preying mainly on copepodids whileL. japonica feeds omnivorously on copepod nauplii and phytoplankton particles. Since the mouthpart structures of congeners are quite similar to each other, the feeding behavior and habits might also be similar. Within the family Pontellidae, the generaAnomalocera, Calanopia, Epilabidocera, andPontella have mouthpart structures similar to those ofLabidocera, whereas the genusPontellina resemblesPontellopsis. Morphological similarities would suggest that the first group of genera employs both suspension and raptorial feeding modes, and thatPontellina is a carnivore likePontellopsis.  相似文献   

11.
R. R. Seapy 《Marine Biology》1974,24(3):243-250
The distribution and abundance of the heteropod mollusk Carinaria japonica Okutani is described from midwater trawl records off Southern California (USA) and northern Baja California (Mexico). Maximal numbers of individuals were recorded during August in oceanic waters off Southern California. In oceanic waters near Guadalupe Island, Baja California, low population levels were recorded irrespective of season. In neritic waters over the continental shelf off Southern California, C. japonica were present in low numbers, mainly between July and December when conditions seemed most favorable for their entry into the Southern California Eddy.  相似文献   

12.
Five species of the marine insect Halobates share similar ecology but have distinct biogeographic ranges in the eastern tropical Pacific, a region from approximately 75°W–160°W and 10°S–35°N. Between 2001 and 2010, the Sea Education Association collected Halobates from 682 neuston tows (surface net 1 m × 0.5 m, 335-μm mesh) during fifteen cruises between San Diego, USA, Mexico and Tahiti. Total Halobates spp. densities varied substantially from year to year, but our data do not show a sustained change from a data set collected 40 years earlier from 1967 to 1968 (Cheng and Shulenberger in Fish Bull 78(3):579–591, 1980). Halobates are sensitive to sea surface temperature and we observed significant differences in species distributions over time, but these were not due to differences in water temperature or climate change. Our analyses show that the patterns observed are attributable to substantial but previously undescribed seasonal shifts that occur each year in the ranges for both Halobates sobrinus and Halobates micans. There is substantial overlap in ranges during seasonal shifts, but very little co-occurrence of H. sobrinus and H. micans in individual net tows, suggesting biological mechanisms rather than physical factors are restricting distribution and co-occurrence of these two species.  相似文献   

13.
14.
S. Y. Lee 《Marine Biology》1997,129(1):183-193
The phenology and primary productivity of a population of Zostera japonica (Aschers. & Graebn.) threatened by the construction of Hong Kong's new international airport were studied over a 12-month period. The need to conserve the population, and the small leaf size of Z. japonica rendered traditional destructive or marking techniques inapplicable for percentage cover and biomass estimation. A nondestructive method based on image analysis techniques was therefore devised for repeated estimation of percentage cover, biomass and leaf area index. This technique, which involved random quadrat sampling, photographic recording and image analysis, was able to provide data on the three parameters with acceptable precision and was cost-effective in the field. Z. japonica demonstrated a strongly seasonal cycle of vegetative growth, with different patterns for leaf density (peak in March) and overall bed area (peak in June). Total (above- and below-ground) net primary productivity was estimated at between 344 and 688 g AFDW m−2 yr−1. Percentage cover of Z. japonica was negatively correlated with total suspended solids (TSS) in the water column while total bed area was negatively correlated with water salinity. Increased sedimentation associated with the new airport project was identified as one important factor affecting the growth of the seagrass, as TSS reached the high level of ≈1 g DW l−1 during the first half of the study period. Sediment traps set in the beds also recorded potential sedimentation rates at between 2.89 and 14.5 mg cm−2 d−1. This high turbidity resulted in a sharp decrease in the density of Clithon spp., the dominant grazers of epiphytic algae on Z. japonica. Effects of sedimentation and shading on growth of Z. japonica were investigated by field manipulative experiments. Experimental increase of sedimentation rate and shade both resulted in larger decreases in percentage cover and above-ground AFDW compared with the control. Received: 3 March 1997 / Accepted: 14 March 1997  相似文献   

15.
园林植物滞留不同粒径大气颗粒物的特征及规律   总被引:2,自引:0,他引:2  
为研究常用园林植物滞留大气颗粒物的能力,本文以北京市常用园林植物为例,应用直接采样、电镜分析和统计分析的方法,对选定园林植物滞留不同粒径大气颗粒物的特征及规律进行了系统分析。结果表明:(1)园林植物滞留的颗粒物形状为不规则块体、球体和聚合体,通过对比分析得出,滞留大气颗粒物能力由高到低的微形态结构依次是蜡质结构〉绒毛〉沟槽〉条状突起,并且这些微形态结构越密集、深浅差别越大,越有利于滞留大气颗粒物。(2)以园林植物叶片滞留颗粒物的数量进行统计时,得出园林植物叶片表面大部分为PM10(Dp≤10μm),均在98%以上,而PM2.5(Dp≤2.5μm)均在90%以上,粗颗粒物(Dp〉10μm)的数量对总体数量的贡献非常小,均在2%以下;以体积进行统计时,得出PM10的体积在总体积中的比例在50%以上,对颗粒物总体积贡献最大,滞留的PM2.5体积占总体积8.5%-17.6%,粗颗粒物(Dp〉10μm)体积占总体积20%以上。(3)对园林植物滞留颗粒物累积规律分析得出:在相同观测叶面积下,园林植物滞尘10 d的叶表面颗粒物数量较滞尘5 d的叶表面颗粒物数量均有所增加,增幅最大的是小叶黄杨(Buxus microphylla),增幅最小的是月季(Rosa chinensis),通过方差分析得出绦柳(Salix matsudana f.pendula)叶表面颗粒物数量显著低于除银杏(Ginkgo biloba)之外的其它7种树种,大叶黄杨(Euonymus japonicus)、小叶黄杨和国槐( Sophora japonica)叶表面滞留颗粒物的数量较多,并且显著高于月季、银杏和绦柳叶表面滞留的颗粒物数量;滞尘10 d后园林植物叶表面滞留的颗粒物的总面积均未超过观测叶面积的25%,至于叶片持续滞留颗粒物多少天后达到饱和状态仍需进一步研究。  相似文献   

16.
Summary. The effects of artificially added flavonoid aglycones to birch leaf surfaces on the larval performance of six species of leaf-chewing sawflies were investigated. Significantly negative effects of increased contents of both total flavonoid and individually fed flavonoid compounds were found for the larval performance of certain mid to late and late, but not early season, sawfly species. Species-specific variations in the quantity of faecal flavonoid glycosides, which were examined to investigate whether effective glycosylation of foliar flavonoid aglycones in larvae correlated with varying tolerance to these compounds, also yielded significant species-specific differences between early and late season species. The results suggest seasonal adaptations in host plant use by sawflies feeding on mountain birch, such that phenologically earlier species are better adapted to coping with leaf surface flavonoid aglycones, which occur in the highest concentrations in young leaves.  相似文献   

17.
Two zooxanthellate, scleractinian species present in the equatorial eastern Pacific, Psammocora stellata and Psammocora profundacella, were examined in terms of their reproductive biology and ecology at four study sites, non-upwelling (Ca?o Island, Costa Rica, and Uva Island, Panamá), upwelling (Gulf of Panamá, Panamá), and seasonally varying thermal environments (Galápagos Islands). Both species were gonochoric broadcast spawners lacking zooxanthellae in mature ova. Mature gametes and spawned gonads are present around full moon; however, no spawning was observed naturally or in outdoor aquaria. Mature gametes occurred in P. stellata at Ca?o Island for nearly 6?months, and year round at Uva Island, both non-upwelling sites. Reproductively active colonies occurred mostly in the warmer months in the Gulf of Panamá and Galápagos Islands. In the Galápagos Islands, where collecting effort was greatest for P. profundacella, mature gametes were also most prevalent during the warm season. Annual fecundity was high in both species, 1.3–1.8?×?104?ova?cm?2?year?1 in P. stellata and 1.2–2.0?×?104?ova?cm?2?year?1 in P. profundacella. Compared to other eastern Pacific corals, P. stellata was relatively resistant to ENSO-related bleaching and mortality, especially populations inhabiting deep (12–20?m) coral communities. Rapid recovery and persistence of Psammocora spp. can be attributed to several factors: (a) relative resistance to bleaching, (b) deep refuge populations, (c) broadcast spawning, (d) protracted seasonal reproduction, (e) high fecundity, and (f) asexual propagation.  相似文献   

18.
We evaluated the importance of seagrass and algae to two species of tiger prawns (Penaeus semisulcatus and P. esculentus) by detailed sampling at four sites (two seagrass, two algae) in the Embley River estuary, and through sampling 26 sites in 7 adjacent estuaries at one time of year. Samples of tiger prawns were collected in the Embley River estuary with a small beam trawl at night every 2 wk from September to May for 2 yr (1990 to 1992). The two seagrass sites, which were 11 and 13 km from the river mouth, showed less seasonal variation in salinity than the two algal sites, which were 15 and 20 km from the river mouth. The algal beds at the two upstream sites almost disappeared during the wet season, but the biomass of seagrass did not change significantly between the wet and dry seasons. The grooved tiger prawn (P. semisulcatus), the main species at all sites, comprised 88% of the total tiger prawn catch over the two years. They were found at all sites during the pre-wet season, but after the onset of the wet season, they disappeared along with the algae, from the upstream sites. The brown tiger prawn (P. esculentus) was found almost exclusively (97% of the total catch) on the seagrass sites downstream. In the study of several estuaries, juvenile P. semisulcatus were caught at all 26 sites, and P. esculentus were caught in much smaller numbers, at 16 sites. Approximately equal numbers of P. semisulcatus were caught in seagrass and algal beds in the pre-wet season. Very few individuals >10 mm carapace length of either species, were caught. The results from this study highlight the importance of algal beds during the pre-wet season as nursery areas for one species of tiger prawn (P. semisulcatus).  相似文献   

19.
植物叶片汞浓度与大气气态单质汞(GEM/Hg0)浓度的线性关系表明叶片汞浓度大小可用于指示植物生长区内GEM浓度的高低水平.通过分析上海市绿地公园(25座)中常见落叶树木樱花、水杉、法桐叶片汞浓度的时空变化特征,探究区域内GEM含量水平及分布特征.2017年5-10月对7座公园中这3种树木叶汞浓度进行连续监测,结果显示...  相似文献   

20.
C.A. Ng  K.A. Gray 《Ecological modelling》2009,220(9-10):1266-1273
We have developed a dynamic model to track the evolution of contaminant concentration in an aquatic organism as a function of season and ontogeny throughout its life cycle. We have focused our analysis on the round goby (Apollonia melanostoma), a globally distributed invasive forage fish. By integrating bioenergetics with a bioaccumulation model, we illustrate how life history characteristics interact to influence contaminant accumulation. We use uncertainty and sensitivity analyses to assess how the model output is affected by uncertainty and variability in model parameters. We then demonstrate the influence of important physiological characteristics on contaminant accumulation with two scenarios. First, we probe the influence of sexual dimorphism by comparing gender-specific accumulation of a standard polychlorinated biphenyl congener, PCB153, in male and female round gobies. We hypothesize that lipid loss in female gobies during spawning season leads to a decrease in the PCB body burden compared to male gobies. Second, we compare PCB accumulation in the round goby and in the mottled sculpin (Cottus bairdi), the native forage fish that the round goby displaced in southern Lake Michigan, to determine whether the invasive species has an intrinsically different bioaccumulation potential than the native one. Our non-intuitive findings from these simulations illustrate how the interaction of growth rate with other life history characteristics lead to unexpected bioaccumulation patterns. The model we present is a flexible tool that integrates complex and dynamic interactions among environmental parameters, thus providing a means to better assess the potential for chemical accumulation in human and wildlife populations, and aiding the development of ecological forecasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号