首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Degradation of trifluralin (alpha, alpha, alpha-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine) was investigated in soils taken from three different locations at Harran region of Turkey under laboratory conditions. Surface (0-10 cm) soils, which were taken from a pesticide untreated field Gürgelen, Harran-1 and Ikizce regions in the Harran Plain. were incubated in biometer flasks for 350 days at 25 degrees C. Ring-UL-14C-trifluralin was applied at the rate of 2 microg g(-1) with 78.7 kBq radioactivity per 100 g soil flask. Evolved (14)CO2 was monitored in KOH traps throughout the experiment. Periodically, soil sub-samples were removed and extracted by supercritical fluid extraction (SFE). Unextractable soil-bound 14C residues were determined by combustion. During the 350 days incubation period 6.6, 5.4, and 3.3/' of the applied radiocarbon was evolved as (14)CO2 from the Harran-1, Gürgelen, and Ikizce soil, respectively. At the end of 350 days the SFE-extractable and bound 14C-trifluralin residues were 39.0 and 29.2% of the initially applied herbicide in Gürgelen soil. The corresponding values for Harran-1 and Ikizce soils were 36.2, 28.4% and 41.6, 18.5% respectively.  相似文献   

2.
The dissipation of chlorpyrifos (20 EC) at environment-friendly doses in the sandy loam and loamy sand soils of two semi-arid fields and the presence of pesticide residues in the harvested groundnut seeds, were monitored. The movement of chlorpyrifos through soil and its binding in the loamy sand soil was studied using 14C chlorpyrifos. Chlorpyrifos was moderately stable in both loamy sand and sandy loam soils, with half-life of 12.3 and 16.4 days, respectively. With 20 EC treatments the dissipation was slower for standing crop than seed treatment, indicative of the high degradation rates in the bioactive rhizosphere. In soil, 3,5,6-trichloro-2-pyridinol (TCP) was the principal breakdown product. Presence of 3,5,6-trichloro-2-methoxypyridine (TMP), the secondary metabolite, detected in the rhizospheric samples during this study, has not been reported earlier in field soils. The rapid dissipation of the insecticide from the soil post-application might have resulted from low sorption due to the alkalinity of the soil and its low organic matter content, fast topsoil dissipation possibly by volatilization and photochemical degradation, aided by the low water solubility, limited vertical mobility due to confinement of residues to the upper 15 cm soil layers and microbial mineralization and nucleophilic hydrolysis. Contrary to the reports of relatively greater mobility of its metabolites in temperate soils, TMP and TCP remained confined to the top 15 cm soil. The formation of bound residues (half-life 13.4 days) in the loamy sand soil was little and not "irreversible." A decline in bound residues could be correlated to decreasing TCP concentration. Higher pod yields were obtained from pesticide treated soils in comparison to controls. Post-harvest no pesticide residues were detected in the soils and groundnut seeds.  相似文献   

3.
Abstract

The degradation of 14C‐chlorpyrifos and its hydrolysis product, 3,5,6‐trichloro‐2‐pyridinol (TCP), was investigated in soil in laboratory experiments. Between 12 and 57% of the applied chlorpyrifos persisted in a variety of agricultural soils after a 4‐week incubation. Concentrations of TCP present in these soils ranged from 1 to 34% of the applied dose. Two patterns of persistence were observed. In some soils, significant quantities of TCP and soil‐bound residues were produced, but little 14CO2. In other soils, neither TCP nor soil‐bound residues accumulated, but large quantities of 14CO2 were evolved. Direct treatment of fresh samples of each of these soils with 14C‐TCP resulted in rapid mineralization of TCP to 14CO2 only in those soils in which TCP had not accumulated after chlorpyrifos treatment. The rapid mineralization of TCP in these soils was microbially mediated, but populations of soil microorganisms capable of using TCP as a sole carbon‐energy source were not detected.  相似文献   

4.
Abstract

Degradation of trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine) was investigated in soils taken from three different locations at Harran region of Turkey under laboratory conditions. Surface (0–10 cm) soils, which were taken from a pesticide untreated field Gürgelen, Harran-1 and Ikizce regions in the Harran Plain, were incubated in biometer flasks for 350 days at 25°C. Ring-UL-14C-trifluralin was applied at the rate of 2 µg g?1 with 78.7 kBq radioactivity per 100 g soil flask. Evolved 14CO2 was monitored in KOH traps throughout the experiment. Periodically, soil sub-samples were removed and extracted by supercritical fluid extraction (SFE). Unextractable soil-bound 14C residues were determined by combustion. During the 350 days incubation period 6.6, 5.4, and 3.3% of the applied radiocarbon was evolved as 14CO2 from the Harran-1, Gürgelen, and Ikizce soil, respectively. At the end of 350 days the SFE-extractable and bound 14C-trifluralin residues were 39.0 and 29.2% of the initially applied herbicide in Gürgelen soil. The corresponding values for Harran-1 and Ikizce soils were 36.2, 28.4% and 41.6, 18.5% respectively.  相似文献   

5.
Degradation and sorption/desorption are important processes affecting the leaching of pesticides through soil. This research characterized the degradation and sorption of imidacloprid (1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine) in Drummer (silty clay loam) and Exeter (sandy loam) surface soils and their corresponding subsurface soils using sequential extraction methods over 400 days. By the end of the incubation, approximately 55% of imidacloprid applied at a rate of 1.0 mg kg(-1) degraded in the Exeter sandy loam surface and subsurface soils, compared to 40% of applied imidacloprid within 300 days in Drummer surface and subsurface soils. At the 0.1 mg kg(-1) application rate, dissipation was slower for all four soils. Water-extractable imidacloprid in Exeter surface soil decreased from 98% of applied at day 1 to >70% of the imidacloprid remaining after 400 d, as compared to 55% in the Drummer surface soil at day 1 and 12% at day 400. These data suggest that imidacloprid was bioavailable to degrading soil microorganisms and sorption/desorption was not the limiting factor for biodegradation. In subsurface soils > 40% of (14)C-benzoic acid was mineralized over 21 days, demonstrating an active microbial community. In contrast, cumulative (14)CO(2) was less than 1.5% of applied (14)C-imidacloprid in all soils over 400 d. Qualitative differences in the microbial communities appear to limit the degradation of imidacloprid in the subsurface soils.  相似文献   

6.
An Indian sandy loam soil was initially treated with 1 kg a.i. ha(-1) of either [(14)C]-p,p'-DDT or [(14)C]-gamma-HCH during winter. DDT concentration after 30 days declined to 75.3%, which included 2.1% soil-bound residues. After 150 days, DDT levels further decreased to 42.4% with a concomitant increase in bound residues amounting to 5.9%. Identical treatment with HCH caused the residue levels to be reduced to 67.4 and 23.6%, after 30 and 150 days, respectively. During this period, the soil-bound residues of HCH increased from 5.2 to 12.8%. Repeat application to pre-treated soils in summer and subsequent field exposure for 30 days reduced the concentration of DDT to 52.1% and that of HCH to 42.4% of the total concentration following the second treatment. In parallel control experiments, which received only a single treatment, DDT levels declined to 61.3%, while HCH slumped to 45.3%, indicating a slower dissipation rate than in the corresponding repeated treatments. In repeat experiments, the soil-bound residues of DDT and HCH showed only a 1.07 to 1.08-fold increase in 30 days, as compared to three to ten-times increase in the control experiments. The results amply demonstrate that pre-treatment of tropical soils with DDT or HCH enhances their rate of dissipation and significantly reduce the formation of their soil-bound residues.  相似文献   

7.
Constructed wetlands offer promise for removal of nonpoint source contaminants such as herbicides from agricultural runoff. Laboratory studies assessed the potential of soils to degrade and sorb atrazine and fluometuron within a recently constructed wetland. The surface 3 cm of soil was sampled from two cells of a Mississippi Delta constructed wetland; one shallow area disturbed only hydrologically, and the second excavated to provide greater water-holding capacity. The excavated area was more acidic on average (pH 4.85 versus 5.21), but otherwise the physical properties and general microbial enzyme activities in the two areas were similar. Soils were treated with 84 and 68 microg kg(-1) soil (14)C-ring labeled atrazine and fluometuron, respectively, and incubated under either saturated (88% moisture, w:w) or flooded (1cm standing water) conditions. Soils were sampled over 32 days and extracted for herbicide and metabolite analysis. Under saturated conditions, fluometuron metabolized to desmethylfluometuron (DMF) with a half-life equal 25-27 days. However, under flooded conditions, the half-life of fluometuron was more than 175 days. Atrazine dissipated rapidly in saturated and flooded soil with a half-life of approximately 23 days, but only 10% of atrazine was mineralized to CO(2). The overall atrazine and fluometuron dissipation rates were similar between the two cells, but each area had a different pattern of metabolite accumulation. The major route of atrazine dissipation was incorporation of atrazine residues into methanol-nonextractable (soil-bound) components, with minimal extractable metabolite accumulation. A mixed-mode extractant (potassium phosphate:acetonitrile) recovered greater amounts of (14)C-residues from atrazine-treated soils, suggesting that hydrolysis of atrazine to hydroxylated metabolites was a major component of the bound residues. These studies indicate the potential for herbicide dissipation in wetland soils and a differential effect of flooding on the fate of these herbicides.  相似文献   

8.
The fate of (14)C atrazine was investigated using microcosms and an undisturbed Red-Yellow Latossol (Oxisol) under simulated rainfall conditions of 200 mm water month(-1). Experiments were carried out using microcosm cores, the first with an uncovered surface soil; the second set with uncovered subsurface soil; the third with subsurface soil covered with 3 cm of cow manure and the last with subsurface soil covered with 5 cm of grass straw. Average values for the amount of atrazine leached after 60 days were as follows: surface soil 1.6%; subsurface 47.3%; subsurface plus manure 17.3% and subsurface plus straw 24.8%. In the surface soil, 53% of the (14)C atrazine remained within the upper 1 cm, while in the subsurface microcosms the atrazine was more evenly distributed. The authors report that surface soil was retained atrazine and its metabolites for 60 days. The addition of a straw or manure covering to exposed subsoil helped to retard atrazine leaching.  相似文献   

9.
Degradation and sorption/desorption are important processes affecting the leaching of pesticides through soil. This research characterized the degradation and sorption of imidacloprid (1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine) in Drummer (silty clay loam) and Exeter (sandy loam) surface soils and their corresponding subsurface soils using sequential extraction methods over 400 days. By the end of the incubation, approximately 55% of imidacloprid applied at a rate of 1.0 mg kg?1 degraded in the Exeter sandy loam surface and subsurface soils, compared to 40% of applied imidacloprid within 300 days in Drummer surface and subsurface soils. At the 0.1 mg kg?1 application rate, dissipation was slower for all four soils. Water-extractable imidacloprid in Exeter surface soil decreased from 98% of applied at day 1 to > 70% of the imidacloprid remaining after 400 d, as compared to 55% in the Drummer surface soil at day 1 and 12% at day 400. These data suggest that imidacloprid was bioavailable to degrading soil microorganisms and sorption/desorption was not the limiting factor for biodegradation. In subsurface soils > 40% of 14C-benzoic acid was mineralized over 21 days, demonstrating an active microbial community. In contrast, cumulative 14CO2 was less than 1.5% of applied 14C-imidacloprid in all soils over 400 d. Qualitative differences in the microbial communities appear to limit the degradation of imidacloprid in the subsurface soils.  相似文献   

10.
The fate of 14C atrazine was investigated using microcosms and an undisturbed Red-Yellow Latossol (Oxisol) under simulated rainfall conditions of 200 mm water month?1. Experiments were carried out using microcosm cores, the first with an uncovered surface soil; the second set with uncovered subsurface soil; the third with subsurface soil covered with 3 cm of cow manure and the last with subsurface soil covered with 5 cm of grass straw. Average values for the amount of atrazine leached after 60 days were as follows: surface soil 1.6%; subsurface 47.3%; subsurface plus manure 17.3% and subsurface plus straw 24.8%. In the surface soil, 53% of the 14C atrazine remained within the upper 1 cm, while in the subsurface microcosms the atrazine was more evenly distributed. The authors report that surface soil was retained atrazine and its metabolites for 60 days. The addition of a straw or manure covering to exposed subsoil helped to retard atrazine leaching.  相似文献   

11.
Abstract

Movement and degradation of 14C‐atrazine (2‐chloro 4‐(ethylamino)‐6‐(isopropylamino)‐s‐triazine, was studied in undisturbed soil columns (0.50m length × 0.10m diameter) of Gley Humic and Deep Red Latosol from a maize crop region of Sao Paulo state, Brazil. Atrazine residues were largely confined to the 0–20cm layers over a 12 month period Atrazine degraded to the dealkylated metabolites deisopropylatrazine and deethylatrazine, but the major metabolite was hydroxyatrazine, mainly in the Gley Humic soil. Activity detected in the leachate was equivalent to an atrazine concentration of 0.08 to 0.11μg/1.

The persistence of 14C‐atrazine in a maize‐bean crop rotation was evaluated in lysimeters, using Gley Humic and Deep Red Latosol soils. Uptake of the radiocarbon by maize plants after 14‐days growth was equivalent to a herbicide concentration of 3.9μg/g fresh tissue and was similar in both soils. High atrazine degradation to hydroxyatrazine was detected by tic of maize extracts. After maize harvest, when beans were sown the Gley Humic soil contained an atrazine concentration of 0.29 μg/g soil and the Deep Red Latosol, 0.13 μg/g soil in the 0–30 cm layer. Activity detected in bean plants corresponded to a herbicide concentration of 0.26 (Gley Humic soil) and 0.32μg/g fresh tissue (Deep Red Latossol) after 14 days growth and 0.43 (Gley Humic soil) and 0.50 μg/g fresh tissue (Deep Red Latossol) after 97 days growth. Traces of activity equivalent to 0.06 and 0.02μg/g fresh tissue were detected in bean seeds at harvest. Non‐extractable (bound) residues in the soils at 235 days accounted for 66.6 to 75% (Gley Humic soil and Deep Red Latossol) of the total residual activity.  相似文献   

12.
The degradation of the herbicide acetochlor, in a neoluvisol and in a calcosol were studied as a function of depth (0-25cm and 25-50cm) and temperature (25 degrees C and 15 degrees C) under controlled laboratory conditions during 58 and 90 days, respectively. The surface and sub-surface soil samples were respectively spiked with 1 and 0.01mgkg(-1) of 14C-acetochlor, the concentrations observed in previous field monitoring. The half-lives (DT50) varied from 1.4 to 14.9 days depending on the soil, temperature and applied concentration. The maximal mineralization (24%) was observed for the surface calcosol at 25 degrees C. The comparison of results obtained for sterilized and non-sterilized soils, the decrease of DT50 with the increase of temperature, the shape of CO2 emissions and the increase of number of aerobic endogenous microflora through the experiment suggested that biological process are dominant in degradation. A particular attention was paid to the formation and dissipation of metabolites ESA (ethanesulphonic acid) and OA (oxanilic acid) during the whole experiment. At 25 degrees C, ESA and OA were observed after three days, but as ESA concentration decreased over time in surface calcosol, it remained constant in surface neoluvisol. A difference in ESA/OA ratio depends on the soil with a predominance of OA in surface neoluvisol and a disappearance of OA in surface calcosol.  相似文献   

13.
给水厂残泥(WTR)是给水厂混凝过程产生的安全废弃物,是一种高效低廉的毒死蜱吸附材料。为评估将WTR作为吸附材料添加于土壤中缓解毒死蜱危害的可行性,探究了添加WTR对稻田土壤中毒死蜱环境赋存、厌氧降解及其代谢产物TCP形成的影响。实验结果表明:毒死蜱首要厌氧降解途径是快速水解为TCP,添加WTR显著降低了土壤中毒死蜱与TCP的生物有效性(P<0.05)。72 d厌氧培养时间内,未添加WTR土壤中高达79%的毒死蜱主要以生物可利用态存在;在WTR添加土壤中,72%~95%的毒死蜱以稳定的残渣态存在,但毒死蜱在土壤中的降解速度因此减慢,TCP生成量随之减少。在未添加WTR土壤中,92%以上的TCP以水溶态为主,添加WTR可有效减少其水溶态所占比例,WTR添加量为10%时,其水溶态含量降至47%。随着WTR添加量增加,毒死蜱与TCP由土壤向上覆水迁移的量显著减少(P<0.05)。未添加WTR的土壤水溶液体系上覆水中毒死蜱和TCP浓度分别高达537 μg·L-1和1 750 μg·L-1,添加2%WTR可使其最高浓度分别降低50%。在厌氧滞水的稻田土壤中,WTR主要金属元素(Fe、Al和Mn)稳定性强,二次污染风险较低。综合以上研究结果,WTR适于作为土壤添加物应用于毒死蜱与TCP污染控制。  相似文献   

14.
Studies on degradation of 14C-chlorpyrifos in the marine environment.   总被引:2,自引:0,他引:2  
Degradation of 14C-chlorpyrifos was studied in a marine ecosystem for 60 days and in marine sediment under moist and flooded conditions using a continuous flow system allowing a total 14C-mass balance for a period of 40 days. In the marine ecosystem, 14C-chlorpyrifos underwent rapid degradation and very little (1-2%) 14C-residues of the applied activity were detected after two months in sediments. Clams were major component of the ecosystem and played a significant role in degradation of the insecticide. In the continuous flow system chlorpyrifos did not undergo substantial mineralization. Volatilization accounted for 0.8-1% loss during first ten days of application. The amounts of extractable 14C-activity were higher in flooded sediments than in moist sediment. More bound residues were formed under moist conditions. TCP (3,5,6-trichloro-2-pyridinol) was the major degradation product formed under both moist and flooded conditions, its formation being higher in the latter conditions. These studies underline the role of clams in degradation of chlorpyrifos and lack of microbial degradation. In absence of clams, chlorpyrifos underwent abiotic degradation in marine sediment with formation of bound residues.  相似文献   

15.
[1-(13)C]-labelled phenanthrene was incubated in a closed bioreactor to study the flux and biotransformation of polycyclic aromatic hydrocarbon (PAH) in contaminated soils on a bulk and molecular level. The degradation of extractable phenanthrene was observed by GC-MS measurements and the mineralisation was monitored by (13)CO(2) production. The transformation of the (13)C-label into non-extractable soil-bound residues was determined by carbon isotopic measurements. With these data we were able to calculate a carbon budget of the (13)C-label. Moreover, the chemical structure of non-extractable bound residues was characterised by applying selective chemical degradation reactions to cleave xenobiotic subunits from the macromolecular organic soil matrix. The obtained low molecular weight products yielded (13)C-labelled compounds which were identified using IRM (isotope ratio monitoring)-GC-MS and structurally characterised with GC-MS. Most of the (13)C-labelled products obtained by chemical degradation of non-extractable bound residues are well-known metabolites of phenanthrene. Thus, metabolites of [1-(13)C]phenanthrene formed during biodegradation appear to be reactive components which are subsequently involved in the bound residue formation. Hydrolysable amino acids of the soil residues were significantly labelled with (13)C as confirmed by IRM-GC-MS measurements. Therefore, phenanthrene-derived carbon was transformed by anabolic microbial processes into typical biologically derived compounds. These substances are likely to be incorporated into humic-like material after cell death.  相似文献   

16.
Aerobic biodegradation of dichloroethylenes in surface and subsurface soils   总被引:5,自引:0,他引:5  
Klier NJ  West RJ  Donberg PA 《Chemosphere》1999,38(5):1175-1188
Laboratory studies were conducted to examine the aerobic biodegradation of dichloroethylenes (cis-1,2-DCE, trans-1,2-DCE and 1,1-DCE) in soil and groundwater. Authentic surface and subsurface materials with no reported DCE exposure history were used. All DCE isomers were observed to biodegrade to varying degrees in the soils examined. Use of radiolabeled [14C] test chemicals allowed correlation of DCE disappearance with mineralization to 14CO2. Study results indicate that naturally occurring microorganisms in soil and groundwater are capable of degrading cis-1,2-, trans-1,2- and 1,1-DCE without laboratory supplementation of exogenous organic nutrients, or previous exposure history. The data further suggest that degradative potential may vary with soil type, DCE isomer structure, and concentration.  相似文献   

17.
The fate of (14)C-labeled sulfadiazine ((14)C-SDZ) residues was studied in time-course experiments for 218 days of incubation using two soils (A(p) horizon of loamy sand, orthic luvisol; A(p) horizon of silt loam, cambisol) amended with fresh and aged (6 months) (14)C-manure [40 g kg(-1) of soil; 6.36 mg of sulfadiazine (SDZ) equivalents per kg of soil], which was derived from two shoats treated with (14)C-SDZ. Mineralization of (14)C-SDZ residues was below 2% after 218 days depending little on soil type. Portions of extractable (14)C (ethanol-water, 9:1, v/v) decreased with time to 4-13% after 218 days of incubation with fresh and aged (14)C-manure and both soils. Non-extractable residues were the main route of the fate of the (14)C-SDZ residues (above 90% of total recovered (14)C after 218 days). These residues were high immediately after amendment depending on soil type and aging of the (14)C-manure, and were stable and not remobilized throughout 218 days of incubation. Bioavailable portions (extraction using CaCl(2) solution) also decreased with increasing incubation period (5-7% after 218 days). Due to thin-layer chromatography (TLC), 500 microg of (14)C-SDZ per kg soil were found in the ethanol-water extracts immediately after amendment with fresh (14)C-manure, and about 50 microg kg(-1) after 218 days. Bioavailable (14)C-SDZ portions present in the CaCl(2) extracts were about 350 microg kg(-1) with amendment. Higher concentrations were initially detected with aged (14)C-manure (ethanol-water extracts: 1,920 microg kg(-1); CaCl(2) extracts: 1,020 microg kg(-1)), probably due to release of (14)C-SDZ from bound forms during storage. Consistent results were obtained by extraction of the (14)C-manure-soil samples with ethyl acetate; portions of N-acetylated SDZ were additionally determined. All soluble (14)C-SDZ residues contained in (14)C-manure contributed to the formation of non-extractable residues; a tendency for persistence or accumulation was not observed. SDZ's non-extractable soil residues were associated with the soluble HCl, fulvic acids and humic acids fractions, and the insoluble humin fraction. The majority of the non-extractable residues appeared to be due to stable covalent binding to soil organic matter.  相似文献   

18.
A method capable of simultaneously detecting residues of three sulfonylurea herbicides at microgram/l and microgram/kg level in water and alkaline soils has been described. The method is based on solid phase extraction and HPLC with UV detection. In alkaline soils especially those containing low organic carbon it was possible to extract the herbicides with de-ionised water and no clean up step was needed. Soil samples spiked with technical grade triasulfuron, metsulfuron-methyl and chlorsulfuron were extracted twice by shaking with de-ionised water for one hour and centrifuging at 10,000 rpm for 15 minutes. Supernatants filtered through glass micro-fibre filters were passed through C18 cartridges previously pre-conditioned with methanol and de-ionised water at a flow rate of < 20 ml/min. Residues of the herbicides retained on the cartridge were eluted with acidified methanol. The eluate was analysed by HPLC. A C18 column was used with a mobile phase of methanol/water (40 + 60, V/V for for the herbicide residues were 1.0 microgram/l and 3 micrograms/kg in water and soil, respectively. The average recoveries for water samples ranged from 73-94%, while for soil samples recoveries were 77-97% for the three compounds studied.  相似文献   

19.
The persistence and fate of chlorpyrifos and its two metabolites, chlorpyrifos-oxon and the 3, 5, 6-trichloro-2-pyridinol (TCP) break-down product were investigated on kale and collard leaves under field conditions. A simultaneous extraction and quantification procedure was developed for chrorpyrifos and its two main metabolites. Residues of chlorpyrifos, chlorpyrifos oxon, and TCP were determined using a gas chromatograph (GC) equipped with an electron capture detector (GC/ECD). Chlorpyrifos metabolites were detectable up to 23 days following application. Residues were confirmed using a GC equipped with a mass selective detector (GC/MSD) in total ion mode. Initial residues of chlorpyrifos were greater on collard (14.5 µg g?1) than kale (8.2 µg g?1) corresponding to half-lives (T1/2) values of 7.4 and 2.2 days, respectively. TCP, the hydrolysis product, was more persistent on collards with an estimated T1/2 of 6.5 days compared to kale (T1/2 of 1.9 days).  相似文献   

20.
Behaviour of forchlorfenuron residues in grape,soil and water   总被引:3,自引:0,他引:3  
Sharma D  Awasthi MD 《Chemosphere》2003,50(5):589-594
Persistence of forchlorfenuron residues in grape berries at harvest following its dip application as single or split doses to grape berry clusters and periodic dissipation of forchlorfenuron residues in grape berries following foliar spray application were studied. Periodic dissipation of forchlorfenuron residues following its fortification in soil and water were also studied. Splitting the dip application concentration of forchlorfenuron to grape berries reduced its residues in the berries at harvest, which persisted for more than 65 days from all treatments. In case of foliar application, however, the residues of forchlorfenuron in/on the grape berries persisted for 15-20 days only from three treatment concentrations of 2, 3 and 4 ml/l and dissipated with half-lives of 3.4-4.5 days. The residues of forchlorfenuron dissipated faster in soils maintained at field capacity moisture condition than in air dry soils. There was wide variation in its residue persistence in soil (DT50 = 15.1-121.3 days) depending on soil type and moisture condition. Forchlorfenuron residues persisted for more than 30 days in water and its dissipation was fastest at a water salinity level of 3.85 mmho/ cm although the rate of dissipation was not significantly affected by the change in salinity level from <0.04 to 5.90 mmho/cm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号