首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Abstract: Studies comparing dispersal in fragmented versus unfragmented landscapes show that habitat fragmentation alters the dispersal behavior of many species. We used two complementary approaches to explore Florida Scrub‐Jay (Aphelocoma c?rulescens) dispersal in relation to landscape fragmentation. First, we compared dispersal distances of color‐marked individuals in intensively monitored continuous and fragmented landscapes. Second, we estimated effective dispersal relative to the degree of fragmentation (as inferred from two landscape indexes: proportion of study site covered with Florida Scrub‐Jay habitat and mean distance to nearest habitat patch within each study site) by comparing genetic isolation‐by‐distance regressions among 13 study sites having a range of landscape structures. Among color‐banded individuals, dispersal distances were greater in fragmented versus continuous landscapes, a result consistent with other studies. Nevertheless, genetic analyses revealed that effective dispersal decreases as the proportion of habitat in the landscape decreases. These results suggest that although individual Florida Scrub‐Jays may disperse farther as fragmentation increases, those that do so are less successful as breeders than those that disperse short distances. Our study highlights the importance of combining observational data with genetic inferences when evaluating the complex biological and life‐history implications of dispersal.  相似文献   

4.
5.
Abstract:  Habitat degradation alters the dynamics and composition of anuran assemblages in tropical forests. The effects of forest fragmentation on the composition of anuran assemblages are so far poorly known. We studied the joint influence of forest fragmentation and degradation on leaf-litter frogs. We specifically asked whether the processes structuring leaf-litter anuran assemblages in fragmented forests are the same as those in continuous forests. We analyzed anuran assemblages with respect to habitat characteristics, including fragmentation and degradation parameters. In comparison with continuous forests, species richness and diversity were lower and assemblage composition was altered in forest fragments. These changes seemed to be mainly caused by habitat degradation rather than forest fragmentation. Availability of aquatic sites for breeding, vegetation structure (including those variables indicating degradation), and leaf-litter cover had the most influence on the presence of single species. The comparatively small impact of fragmentation on anurans might be due to the location of the study area; it still possessed large tracts of continuous forest. These forest blocks may stabilize the regional rainforest climate and thus weaken the effects of fragmentation .  相似文献   

6.
7.
Abstract:  The area of Caricion davallianae alliance in Switzerland has been considerably reduced and fragmented during the last 150 years. We assessed the genetic variability, inbreeding level, and among-population differentiation of two common habitat-specific plant species, Carex davalliana SM. and Succisa pratensis Moench, in 18 Caricion davallianae fen meadows subjected to fragmentation. We used a spatial field design of fen systems (six systems total), each consisting of one large habitat island and two small habitat islands. We used allozyme electrophoresis to derive standard genetic parameters ( A, P, HO, HE, FIS, FST ). In Carex we identified a consistently lower A in isolated habitat islands; furthermore, HE was lower in small habitat islands than in large habitat islands. In Succisa we identified a lower HO in small habitat islands than in larger ones. Small habitat islands were marginally significantly differentiated (  FST ) from large islands for Succisa . For both species, no effects were evident for FIS ; therefore, we argue that genetic drift rather than inbreeding is the main cause of the observed differences. The genetic structure of Carex and Succisa in small habitat islands differed from that in large habitat islands, but differences were small. It appears that the observed differences in genetic variability among fen meadows correspond to observed differences in fitness and demographic traits. We show that habitat fragmentation affects not only the rare species in an ecosystem but also reduces the survival probabilities of common species. One of the main goals of conservation should be to mitigate fragmentation of natural habitats in order to increase population sizes and connectivity.  相似文献   

8.
Abstract:  Habitat fragmentation causes extinction of local animal populations by decreasing the amount of viable "core" habitat area and increasing edge effects. It is widely accepted that larger fragments make better nature reserves because core-dwelling species have a larger amount of suitable habitat. Nevertheless, fragments in real landscapes have complex, irregular shapes. We modeled the population sizes of species that have a representative range of preferences for or aversions to habitat edges at five spatial scales (within 10, 32, 100, 320, and 1000 m of an edge) in a nation-wide analysis of forest remnants in New Zealand. We hypothesized that the irregular shapes of fragments in real landscapes should generate statistically significant correlations between population density and fragment area, purely as a "geometric" effect of varying species responses to the distribution of edge habitat. Irregularly shaped fragments consistently reduced the population size of core-dwelling species by 10–100%, depending on the scale over which species responded to habitat edges. Moreover, core populations within individual fragments were spatially discontinuous, containing multiple, disjunct populations that inhabited small spatial areas and had reduced population size. The geometric effect was highly nonlinear and depended on the range of fragment sizes sampled and the scale at which species responded to habitat edges. Fragment shape played a strong role in determining population size in fragmented landscapes; thus, habitat restoration efforts may be more effective if they focus on connecting disjunct cores rather than isolated fragments.  相似文献   

9.
Abstract: Fragmentation and isolation of plant populations are thought to affect demographic processes such as seed production and cause reductions in fitness. I followed seed set over a 3-year period in eight populations of the endangered Rutidosis leptorrhynchoides (Asteraceae) that differed in population size from 13 to over 5000 flowering plants. Germinability of the resultant seed was also examined to determine whether small populations had lower fitness than large populations. Seed set was significantly associated with population size in 2 of the 3 years. Small populations (<30 flowering plants) produced significantly fewer seeds per head in 1994 and 1995 than did large populations (500 to over 5000 flowering plants), which did not differ significantly from one another. There was, however, substantial variation within populations. In 1993 seed production did not follow any simple relationship with population size, possibly because environmental stress from low rainfall had an overriding impact. Differences in seed germinability between populations were largely not evident, suggesting that this aspect of fitness has not declined substantially in small populations relative to large populations. This study suggests that nongenetic, demographic factors are of immediate importance to the persistence of small populations of R. leptorrhynchoides because of their potential impacts on seedling recruitment.  相似文献   

10.
11.
Effects of Forest Fragmentation on a Dung Beetle Community in French Guiana   总被引:4,自引:0,他引:4  
Abstract:  Fragmentation is the most common disturbance induced by humans in tropical forests. Some insect groups are particularly suitable for studying the effects of fragmentation on animal communities because they are taxonomically and ecologically homogenous. We investigated the effects of forest fragmentation on a dung beetle species community in the forest archipelago created in 1994–1995 by the dam of Petit Saut, French Guiana. We set and baited an equal number of pitfall traps for dung beetles on three mainland sites and seven island sites. The sites ranged from 1.1 to 38 ha. In 250 trap days, we captured 50 species in 19 genera. Diversity indices were high (2.18–4.06). The lowest diversity was on the small islands and one mainland site. Species richness and abundance were positively related to fragment area but not to distance from mainland or distance to the larger island. The islands had lower species richness and population than mainland forest, but rarefied species richness was relatively invariant across sites. There was a marked change in species composition with decreasing fragment that was not caused by the presence of a common fauna of disturbed-area species on islands. Small islands differed from larger islands, which did not differ significantly from mainland sites. Partial correlation analyses suggested that species richness and abundance of dung beetle species were positively related to the number of species of nonflying mammals and the density index of howler monkeys ( Alouatta seniculus ), two parameters positively related to fragment area.  相似文献   

12.
Abstract: Habitat fragmentation has the potential to affect plant reproduction by changing the community of pollinators and natural enemies, the neighborhood of potential mates, the availability of resources, and microclimate. I examined the effect of habitat fragmentation on reproduction of four species found in mallee woodlands of central New South Wales, Australia: Acacia brachybotrya , Senna artemisioides , Eremophila glabra , and Dianella revoluta . At six sites I surveyed plants in a reserve and in a nearby linear strip of vegetation. Two additional sites were established in a large reserve. Many effects were apparent at the extreme end of fragmentation, revealed by two-way analysis of covariance comparing reserves and linear strips at each site. The nature of the response differed among species. Flower production was greater in most linear strip fragments for S. artemisioides and E. glabra . Fruit set efficiency was significantly greater in linear strips for S. artemisioides and significantly lower for A. brachybotrya , E. glabra , and D. revoluta . Fruit predation was lower in most linear strips for E. glabra . For A. brachybotrya , fruit predation was significantly lower in linear strips. The net effect of these changes was a significant increase in whole-plant seed production for S. artemisioides , a significant decrease in whole-plant seed production for A. brachybotrya and in whole-plant fruit production for D. revoluta , and no consistent effect on whole-plant fruit production for E. glabra . In contrast, the only pattern apparent when the effect of fragment size was considered over a range from linear strips <40 m wide to a reserve> 140,000 ha was a positive correlation between the fragment size and fruit-set efficiency of A. brachybotrya . These results suggest that habitat fragmentation can significantly alter important reproductive functions of species, by changing both the plant's physical environment and its interactions with animals.  相似文献   

13.
Although the genetic and ecological effects of population declines in endangered species have been well studied, little is known of the social consequences. Changes in signaling behavior may result in disrupted communication and affect both reproductive and conflict‐resolution activities. The North Island Kōkako (Callaeas wilsoni) is an endangered, duetting (i.e., alternating, coordinated singing by mated pairs) songbird endemic to New Zealand temperate rain forests. Scattered populations (approximately 1500 individuals in 13 surviving and 11 translocated populations) in isolated conservation areas of different sizes have been rescued from extirpation and are currently recovering. We examined key song attributes of the Kōkako to assess whether population size or growth rate are related to song complexity, the reduction of which may compromise effective communication. We analyzed song repertoire size and phrase‐type sharing (i.e., Jaccard index of similarity), vocal performance (singing rates, song switching rates, and diversity of phrase types), and song syntactical characteristics (i.e., unpredictability in sequences of phrase types) in surviving and translocated populations (populations of approximately 19–250 territorial individuals). Population size was positively correlated with a population's song repertoire, song diversity, and switching of song phrase types and negatively correlated with shared phrase types and variation in syntactical structure of songs. Population growth rate correlated positively with pair repertoire size, population repertoire size, and singing rates during song bouts. As for solo‐singing species in fragmented landscapes, songs in the fragmented populations of Kōkako appear to be undergoing microevolution as occurs in island colonization events. Our results suggest that vocal changes in small populations could affect population establishment and growth, particularly in multiple‐source translocations. We believe measurement of vocal behavior could be used as a supplement to periodic population censuses to allow more frequent monitoring of population size. Efectos de la Conducta de Canto sobre el Tamaño Poblacional de una Ave Canora Rara  相似文献   

14.
Abstract:  The Mesa Central of Mexico is of special conservation interest due to its high richness of freshwater fish species, of which the goodeines are one of the most representative groups. Through an integrated approach, we determined conservation priorities for goodeine populations. We based our recommendations on the genetic diversity (variation in five microsatellite DNA loci) in 10 populations of Zoogoneticus quitzeoensis and on an analysis of ecological (e.g., presence of exotic species), social (e.g., political situation), and environmental (e.g., pollution) information for 52 historical occurrence points for species in the genus Zoogoneticus . Patterns of genetic erosion and genetic diversity indices were closely associated with human impact. Recent bottleneck events were most evident in the populations from remnants of the lakes drained at the beginning of the twentieth century. We identified seven operational conservation units (OCUs), all of which should be conserved because they contain unique portions of the total variation of the species. Special attention needs to be given to increase genetic variability, recover population sizes, and reestablish contact among populations within OCUs. It is imperative to create an integrative and effective approach for the recovery and conservation of the freshwater fish diversity of Central Mexico that is based on social and natural sciences.  相似文献   

15.
Abstract: Determining the permeability of different types of landscape matrices to animal movement is essential for conserving populations in fragmented landscapes. We evaluated the effects of habitat patch size and matrix type on diversity, isolation, and dispersal of ithomiine butterflies in forest fragments surrounded by coffee agroecosystems in the Colombian Andes. Because ithomiines prefer a shaded understory, we expected the highest diversity and abundance in large fragments surrounded by shade coffee and the lowest in small fragments surrounded by sun coffee. We also thought shade coffee would favor butterfly dispersal and immigration into forest patches. We marked 9675 butterflies of 39 species in 12 forest patches over a year. Microclimate conditions were more similar to the forest interior in the shade‐coffee matrix than in the sun‐coffee matrix, but patch size and matrix type did not affect species richness and abundance in forest fragments. Furthermore, age structure and temporal recruitment patterns of the butterfly community were similar in all fragments, independent of patch size or matrix type. There were no differences in the numbers of butterflies flying in the matrices at two distances from the forest patch, but their behavior differed. Flight in the sun‐coffee matrix was rapid and directional, whereas butterflies in shade‐coffee matrix flew slowly. Seven out of 130 recaptured butterflies immigrated into patches in the shade‐coffee matrix, and one immigrated into a patch surrounded by sun coffee. Although the shade‐coffee matrix facilitated movement in the landscape, sun‐coffee matrix was not impermeable to butterflies. Ithomiines exhibited behavioral plasticity in habitat use and high mobility. These traits favor their persistence in heterogeneous landscapes, opening opportunities for their conservation. Understanding the dynamics and resource requirements of different organisms in rural landscapes is critical for identifying management options that address both animals’ and farmers’ needs.  相似文献   

16.
Abstract:  We used a species-distribution modeling approach, ground-based climate data sets, and newly available remote-sensing data on vegetation from the MODIS and Quick Scatterometer sensors to investigate the combined effects of human-caused habitat alterations and climate on potential invasions of rainforest by 3 savanna snake species in Cameroon, Central Africa: the night adder (Causus maculatus) , olympic lined snake (Dromophis lineatus) , and African house snake (Lamprophis fuliginosus) . Models with contemporary climate variables and localities from native savanna habitats showed that the current climate in undisturbed rainforest was unsuitable for any of the snake species due to high precipitation. Limited availability of thermally suitable nest sites and mismatches between important life-history events and prey availability are a likely explanation for the predicted exclusion from undisturbed rainforest. Models with only MODIS-derived vegetation variables and savanna localities predicted invasion in disturbed areas within the rainforest zone, which suggests that human removal of forest cover creates suitable microhabitats that facilitate invasions into rainforest. Models with a combination of contemporary climate, MODIS- and Quick Scatterometer-derived vegetation variables, and forest and savanna localities predicted extensive invasion into rainforest caused by rainforest loss. In contrast, a projection of the present-day species-climate envelope on future climate suggested a reduction in invasion potential within the rainforest zone as a consequence of predicted increases in precipitation. These results emphasize that the combined responses of deforestation and climate change will likely be complex in tropical rainforest systems.  相似文献   

17.
18.
19.
Abstract: Disruption of gene flow among demes after landscape fragmentation can facilitate local adaptation but increase the effect of genetic drift and inbreeding. The joint effects of these conflicting forces on the mean fitness of individuals in a population are unknown. Through simulations, we explored the effect of increased isolation on the evolution of genetic load over the short and long term when fitness depends in part on local adaptation. We ignored genetic effects on demography. We modeled complex genomes, where a subset of the loci were under divergent selection in different localities. When a fraction of the loci were under heterogeneous selection, isolation increased mean fitness in larger demes made up of hundreds of individuals because of improved local adaptation. In smaller demes of tens of individuals, increased isolation improved local adaptation very little and reduced overall fitness. Short‐term improvement of mean fitness after fragmentation may not be indicative of the long‐term evolution of fitness. Whatever the deme size and potential for local adaptation, migration of one or two individuals per generation minimized the genetic load in general. The slow dynamics of mean fitness following fragmentation suggests that conservation measures should be implemented before the consequences of isolation on the genetic load become of concern.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号