首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 609 毫秒
1.
壁面加热作用对街道峡谷污染物扩散的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
胡伟  钟秦 《中国环境科学》2009,29(9):908-913
采用CFD软件Fluent研究了不同壁面加热条件下街道峡谷内流场及污染物浓度分布情况.结果表明,当街道高宽比(H/W)为1.33时,在低风速(u=1m/s)条件下,当壁面与周围大气无温差时,街道峡谷内存在一个稳定的顺时针大漩涡,污染物在背风侧堆积.当背风面、地面和背风面分别被加热时,峡谷内流场分布与无温差时相似,此时峡谷内的湍流强度增强,导致污染物浓度降低.当迎风面被加热时,峡谷内流场由原来的单漩涡结构变为双漩涡结构,此时街道峡谷下部浓度较高,上部浓度相对较低.当地面和迎风面同时被加热,温差较小(?θ=2℃)时,街道峡谷内流场由单漩涡结构变为双漩涡结构; 温差增大为5℃,峡谷内由双漩涡分裂成了3个漩涡,此时污染物分布与迎风面被加热情况相似.通过实测值和模拟值的比较可知,Fluent软件对街道峡谷大气环境的模拟结果基本合理.  相似文献   

2.
屋顶形状对街道峡谷内污染物扩散的影响   总被引:4,自引:3,他引:1  
采用Spalart-Allmaras湍流模型,通过求解二维连续性方程,Navier-Stokes方程及污染物输运方程,模拟了具有不同屋顶形状的街道峡谷的流场及交通污染物浓度场.计算结果与风洞试验结果总体趋势一致.由于屋顶形状的不同,峡谷内的流场会形成顺时针或逆时针方向的旋涡,从而影响建筑物迎风面与背风面污染物浓度分布.在各种屋顶形状的街道峡谷中,壁面污染物浓度的相对大小与其附近的速度分布有直接关系.通过对街道峡谷建筑屋顶高度处垂直方向污染物通量的计算和比较,说明了不同屋顶形状的街道峡谷平均流扩散和湍流扩散的强弱,污染物湍流扩散通量值有可能为正或为负;同时,峡谷内剩余污染物浓度的大小表明了屋顶形状对污染物扩散出街道峡谷难易的影响.   相似文献   

3.
对带有隔声屏障的街道峡谷内流场和污染物浓度场进行了数值模拟,探讨了风速、隔声屏障高度及与建筑物间的距离对流场及污染物扩散的影响。模拟结果显示:街谷内由1个稳定的主涡及街角两侧隔声屏障所在区域的3个附属涡组成。隔声屏障改变了街谷底部的流型,提高了街谷内的x、y方向速度峰值,但在隔声屏障附近区域x方向速度场明显减弱,这也是污染物聚集原因之一。与无隔声屏障相比,隔声屏障的存在物理性阻隔了污染物扩散路径,提高了街道峡谷内污染物浓度峰值,其中行人高度处背风面污染物浓度升高27.51%~28.72%,迎风面污染物浓度升高11.64%~19.99%。街谷内污染物浓度的分布和峰值由风场、隔声屏障高度及与建筑物之间的距离共同决定。  相似文献   

4.
街道峡谷内不同车道污染物扩散的数值模拟   总被引:5,自引:2,他引:3  
为掌握不同位置车道污染物的扩散规律,提出降低街道峡谷内居民与行人交通源暴露水平的可能途径,采用二维k-ε两方程模型和组分输运方程对典型结构双车道街谷内的流场与不同车道污染物的扩散进行模拟,模拟结果与风洞试验结果相符合. 研究发现:迎风车道的污染物更易于向街道峡谷外部扩散;不同位置车道的污染物均在背风侧堆积,可使两侧人行道暴露水平相差5倍. 街道峡谷底部污染物分布对车道位置较敏感,车道位置向街道峡谷中部靠拢,将使得背风建筑物底部及人行道的污染物浓度明显降低;迎风侧污染物浓度对车道位置不敏感,但当车道位置处于迎风侧次级旋涡内时,将导致迎风建筑物底部及人行道的污染物浓度近乎成倍增长. 将车道位于街道峡谷中部,优先采用道路两侧绿化,是增加行人舒适度和减少行人交通源暴露水平,并改善大楼低层住宅及底部出入口、临街商铺等人群活动区空气质量的可行途径之一.   相似文献   

5.
X1692(X) 302555一个研究街道峡谷流场及浓度场特征的三维数值模式/吕萍(中科院寒区早区环境与工程研究所)…//四川环境/四川省环境保护科学研究院一双刃3,22(2)一麟一肠环图X一% 目前,研究街道峡谷内流场及机动车排放污染物的扩散行为特征所采用的主要方法为:采用野外测试法和物理模拟法,而采用三维数值模拟方法研究此问题的工作很少。本文创建了一个研究微尺度街道峡谷内流场及机动车排放污染物扩散特征的三维数值模式,即首次采用伪不定常方法,利用K一E闭合方案,建立了一个模拟城市街道峡谷内流场及污染物扩散特征与街道峡谷风场、街道…  相似文献   

6.
城市街道峡谷内机动车排放污染物的扩散规律   总被引:5,自引:1,他引:4  
街道峡谷中机动车排放污染物的扩散取决于屋顶风向和风速,并受街道峡谷宽高比、峡谷两侧街区建筑物高度的对称性和高度分布及街区形状等因素的影响.街道峡谷宽高比接近1时,递升型峡谷以及宽阔街道有利于污染物的扩散;可以通过改变街道线源附近街区内建筑物的高度来明显降低污染物浓度.城市建筑规划中若科学考虑上述影响可以减少街道峡谷内污染物的积聚.   相似文献   

7.
高架桥对街道峡谷内大气颗粒物输运的影响   总被引:1,自引:1,他引:0  
随着我国城市汽车保有量的迅速攀升,城市中心区域的空气质量与生态环境急剧恶化.利用计算流体力学(CFD)数值模拟,研究了3种H/W(街道建筑物高度/峡谷宽度)下高架桥对街道峡谷内颗粒物扩散的影响.建立了街道峡谷内机动车尾气中颗粒物扩散模型,并给出了边界条件.采用标准k-ε模型与离散相模型对街道峡谷内部气流运动、颗粒物扩散及浓度分布进行了模拟计算,并计算了高架桥对风场及颗粒物扩散的影响.结果表明:H/W越大,街道峡谷内颗粒物浓度越高,同时颗粒物平均滞留时间越长.相对于没有高架桥的街道峡谷,高架桥附近区域风场变化明显,但对建筑物墙壁、地面及峡谷顶层处影响较小.街道峡谷内存在高架桥时,在墙壁较低处颗粒物浓度增加.   相似文献   

8.
非孤立街道峡谷大气流动及污染物扩散特征   总被引:6,自引:5,他引:1  
实际城市街道皆为非孤立街道,采用数值模拟方法研究了等高与不等高非孤立街道峡谷的大气流动及汽车排放污染物扩散特征.通过与已有的风洞实验结果对比,发现二者较吻合,并且目标街道峡谷上下游建筑物的存在对目标峡谷内部的流场和浓度场有很大的影响.与孤立街道峡谷相比,非孤立街道峡谷中污染物的浓度要远高于孤立街道峡谷中污染物的浓度,而且随着上下游建筑物的增加,使到达目标街道峡谷的风速相对减弱,污染物在峡谷中难以扩散,造成了峡谷内部污染物浓度会随着峡谷数的增加而增大.并且发现不等高峡谷建筑物高度存在一个临界点.   相似文献   

9.
采用二维低Re数κ-ε模型和被动标量的湍流扩散方程,对双车道街道峡谷内的流场和气态污染物浓度场进行了研究.并应用风洞实验数据对模拟进行了验证,分析流场和浓度场的模拟结果表明,3种不同排放情况下,流场分布相同,且相同高度下,上风向污染物浓度均高于下风污染物浓度.由于流场导致浓度梯度分布的差异,相对于上风向车道情况,下风向车道上排放的污染物更易于向街道峡谷外扩散.  相似文献   

10.
通过CFD数值模拟方法研究了街道峡谷中斜屋顶建筑在不同风速、不同开窗率时污染物流动与扩散的规律。模拟结果表明,斜屋顶街道峡谷中的空气涡流主要集中在背风面和迎风面的顶部,迎风面的污染物浓度指数远小于背风面的污染物浓度指数。提高风速和增大开窗率整个峡谷流动旋涡有减小和消失的趋势,街道峡谷中背风面的污染物浓度指数下降明显。开窗和提高风速有利于污染物的移除。  相似文献   

11.
日光照射对街道峡谷污染物扩散影响的研究   总被引:1,自引:0,他引:1  
为了分析日光照射对城市街道峡谷机动车污染物扩散的影响.对街道峡谷日光照射的物理模型进行了简化.采用数值模拟技术对日光照射下的城市街道峡谷内气体流动和机动车污染物扩散规律进行了研究。结果表明.在一定条件下。日光照射是研究城市街道峡谷内污染物扩散必须考虑的因素。在污染物扩散受日光照射影响较大的街道峡谷内部.当街道地面或迎风面受日光照射时.街道峡谷内部将出现2个方向相反的漩涡,并导致迎风面建筑物一侧的污染物浓度升高.这与不计日光照射的特征有显著的不同。  相似文献   

12.
城市化进程导致在城市中出现通风条件较差的深街谷,建设于深街谷内的高架桥会加重周边街谷内空气污染.用计算流体力学模拟方法(CFD)探索在不同环境风速下的深街谷中,高架桥的高度和宽度对街谷内气流组织与污染物扩散的影响.结果表明:高架宽度小于0.8倍街谷宽度时的高架桥不会抑制桥下空间的流动;桥宽增加会改变桥下空间的涡旋结构和涡旋方向,近地面流动方向由之前的从右至左流动变为从左至右流动,因而桥下空间污染分布也发生明显改变;高架桥宽度的增加导致两侧低层住户受到较大影响,对背风面住户的影响更为明显;但高架宽度为0.5倍街谷宽度的高架桥能对迎风面中层住户造成影响;增加高架桥的高度,其下方污染物浓度增加;当高架桥位于街谷冠层时,下部空间的污染物浓度急剧增加;冠层处及涡旋交界面高架桥对两侧住户产生较大影响,而其他高度高架桥对两侧住户影响不大;随着环境风速的增加,高架桥对近地面源污染物扩散的阻碍作用逐渐减弱.研究显示,深街谷中增加高架桥的宽度、高度都会导致街谷内空气质量的恶化,而高架桥会阻碍因环境风速增加对街谷内空气质量的改善.   相似文献   

13.
动态风场及交通流量下街道峡谷内污染物扩散模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
王乐  张云伟  顾兆林 《中国环境科学》2012,32(12):2161-2167
根据现场实测数据,应用标准k-ε模型研究了动态风场及交通流量下三维街道峡谷内的污染物扩散规律,数值模拟利用CFD软件FLUENT,其中动态风场和车流量变化信息通过用户自定义编程实现.结果发现,动态风场下空气在街道内部不断经历膨胀和压缩的过程,街道峡谷内部流场形态时刻都在变化;当风速由大变小时,空气膨胀出街谷,流型呈近似椭圆形分布;当风速由小变大时,空气压缩在街谷内部,流型呈近似圆形分布.风速的不断变化引起街谷内、外大气的压缩和膨胀过程,这种过程能够改善街谷内污染物的扩散情况.背风面行人高度处,动态来流下的平均污染物浓度要比定常来流下低17.7%;迎风面行人高度处,动态来流下的平均污染物浓度要比定常来流下低27.1%.动态环境下污染物浓度的分布和峰值由风场和车流量变化共同决定.  相似文献   

14.
利用数值模拟方法研究了不同的上游阻挡建筑布局下,行列式和错列式街谷内气流速度和污染物浓度场特征.结果指出,阻挡建筑的存在改变了街谷内的二次流,从而对流场和浓度场均有明显影响.在行列式街谷中,无论上游建筑以何种布局存在,都会减小街谷内污染物浓度.若不考虑上游建筑的存在,将会过高估计行列式街谷内污染程度;在错列式街谷中,与街谷建筑并列的上游阻挡建筑会减小街谷内污染物浓度,而与街谷建筑错列布置的阻挡建筑会增大街谷内污染物浓度;数值模拟结果还表明,街谷内污染物的扩散和清除效果受气流速度和涡流特性的共同作用.  相似文献   

15.
城市街道峡谷中气态污染物扩散数值计算方法研究   总被引:1,自引:3,他引:1  
选用不同的差分格式(Upwind, Hybrid, Hquick)对城市街道峡谷内部汽车污染物排放浓度进行了预测,并于风洞实验结果对比。研究表明,三种格式的计算结果和实验结果总体趋势一致,即背风面建筑物附近浓度远高于迎风面建筑物附近的浓度,地面附近浓度高于峡谷上方的浓度。相比之下,Hquick格式的预测性能最佳,应为首选。  相似文献   

16.
A stable finite element method for the time dependent Navier-Stokes equations was used for studying the wind flow and pollutant dispersion within street canyons. A three-step fractional method was used to solve the velocity field and the pressure field separately from the governing equations. The Streamline Upwind Petrov-Galerkin(SUPG) method was used to get stable numerical results. Numerical oscillation was minimized and satisfactory results can be obtained for flows at high Reynolds numbers. Simulating the flow over a square cylinder within a wide range of Reynolds numbers validates the wind field model. The Strouhal numbers obtained from the numerical simulation had a good agreement with those obtained from experiment. The wind field model developed in the present study is applied to simulate more complex flow phenomena in street canyons with two different building configurations. The results indicated that the flow at rooftop of buildings might not be assumed parallel to the ground as some numerical modelers did. A counter-clockwise rotating vortex may be found in street canyons with an inflow from the left to right. In addition, increasing building height can increase velocity fluctuations in the street canyon under certain circumstances, which facilitate pollutant dispersion. At high Reynolds numbers, the flow regimes in street canyons do not change with inflow velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号