首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
ABSTRACT

Designing air quality management strategies is complicated by the difficulty in simultaneously considering large amounts of relevant data, sophisticated air quality models, competing design objectives, and unquantifiable issues. For many problems, mathematical optimization can be used to simplify the design process by identifying cost-effective solutions. Optimization applications for controlling nonlinearly reactive pollutants such as tropospheric ozone, however, have been lacking because of the difficulty in representing nonlinear chemistry in mathematical programming models.

We discuss the use of genetic algorithms (GAs) as an alternative optimization approach for developing ozone control strategies. A GA formulation is described and demonstrated for an urban-scale ozone control problem in which controls are considered for thousands of pollutant sources simultaneously. A simple air quality model is integrated into the GA to represent ozone transport and chemistry. Variations of the GA formulation for multiobjective and chance-constrained optimization are also presented. The paper concludes with a discussion of the practicality of using more sophisticated, regulatory-scale air quality models with the GA. We anticipate that such an approach will be practical in the near term for supporting regulatory decision-making.  相似文献   

2.
Abstract

The management of tropospheric ozone (O3) is particularly difficult. The formulation of emission control strategies requires considerable information including: (1) emission inventories, (2) available control technologies, (3) meteorological data for critical design episodes, and (4) computer models that simulate atmospheric transport and chemistry. The simultaneous consideration of this information during control strategy design can be exceedingly difficult for a decision-maker. Traditional management approaches do not explicitly address cost minimization. This study presents a new approach for designing air quality management strategies; a simple air quality model is used conjunctively with a complex air quality model to obtain low-cost management strategies. A simple air quality model is used to identify potentially good solutions, and two heuristic methods are used to identify cost-effective control strategies using only a small number of simple air quality model simulations. Subsequently, the resulting strategies are verified and refined using a complex air quality model. The use of this approach may greatly reduce the number of complex air quality model runs that are required. An important component of this heuristic design framework is the use of the simple air quality model as a screening and exploratory tool. To achieve similar results with the simple and complex air quality models, it may be necessary to “tweak” or calibrate the simple model. A genetic algorithm-based optimization procedure is used to automate this tweaking process. These methods are demonstrated to be computationally practical using two realistic case studies, which are based on data from a metropolitan region in the United States.  相似文献   

3.
The management of tropospheric ozone (O3) is particularly difficult. The formulation of emission control strategies requires considerable information including: (1) emission inventories, (2) available control technologies, (3) meteorological data for critical design episodes, and (4) computer models that simulate atmospheric transport and chemistry. The simultaneous consideration of this information during control strategy design can be exceedingly difficult for a decision-maker. Traditional management approaches do not explicitly address cost minimization. This study presents a new approach for designing air quality management strategies; a simple air quality model is used conjunctively with a complex air quality model to obtain low-cost management strategies. A simple air quality model is used to identify potentially good solutions, and two heuristic methods are used to identify cost-effective control strategies using only a small number of simple air quality model simulations. Subsequently, the resulting strategies are verified and refined using a complex air quality model. The use of this approach may greatly reduce the number of complex air quality model runs that are required. An important component of this heuristic design framework is the use of the simple air quality model as a screening and exploratory tool. To achieve similar results with the simple and complex air  相似文献   

4.
It is widely accepted that the ozone concentrations experienced during photochemical episodes over large areas of Europe may exceed levels at which adverse environmental effects could be expected. These peak ozone concentrations can be reduced by controlling atmospheric emissions of the hydrocarbon and nitrogen oxide precursors. For ozone control to be successful over the spatial scale of Europe, long term international cooperation is required in the formulation of emission abatement strategies. A significant barrier to rapid progress has been the complexity of the processes that describe ozone formation. Highly sophisticated computer models of chemistry and transport have, up to now, been the only means to study the impact of abatement strategies. An alternative approach has been adopted here involving the development of a simplified long range transport model for ozone based on the analysis of over 60 experimental runs of a photochemical trajectory model applied to a wide range of hydrocarbon-nitrogen oxide emission combinations. Using the ozone-precursor relationship obtained, it has been possible to examine various policy options in the European context. Although taken together, three illustrative emission control scenarios reduce NO(x) and hydrocarbon emissions substantially through controls on motor vehicle exhaust, large combustion plant and solvent usage, a significant potential for photochemical ozone formation and long range transport may still remain after their implementation. The extents of precursor emission abatement that will be required, if the potential for ozone formation is to be reduced below published air quality criteria guidelines or critical levels, have been determined for each European country. The implied reductions in NO(x) and hydrocarbons relative to current levels amount to between 50 and 90%.  相似文献   

5.
In order to define efficient air quality plans, Regional Authorities need suitable tools to evaluate both the impact of emission reduction strategies on pollution indexes and the costs of such emission reductions. The air quality control can be formalized as a two-objective nonlinear mathematical problem, integrating source–receptor models and the estimate of emission reduction costs. Both aspects present several complex elements. In particular the source–receptor models cannot be implemented through deterministic modelling systems, that would bring to a computationally unfeasible mathematical problem. In this paper we suggest to identify source–receptor statistical models (neural network and neuro-fuzzy) processing the simulations of a deterministic multi-phase modelling system (GAMES). The methodology has been applied to ozone and PM10 concentrations in Northern Italy. The results show that, despite a large advantage in terms of computational costs, the selected source–receptor models are able to accurately reproduce the simulation of the 3D modelling system.  相似文献   

6.
Kirk Hatfield 《Chemosphere》1992,25(12):1753-1762
Land use regulations and air quality standards can be effective tools to control air pollution. Atmospheric transport/chemistry simulation models could be used to develop suitable regulations and standards; however, these models are not as efficient as air quality management models developed from embedding governing equations for atmospheric transport/chemistry into an optimization framework. Formulations of two steady-state air quality management models are presented to facilitate the development or evaluation of land use strategies to protect regional air quality from pollution generated from distributed point or nonpoint sources. Both models are linear programs constructed with equations that describe steady-state atmospheric pollutant fate and transport. The first model determines feasible pollutant loading patterns for multiple land use activities to accommodate the greatest regional population. The second model ascertains patterns of expanded land use which have a minimum impact on air quality. The primary goal of this paper is to explain how air pollution and land use modeling may be coupled to create an effective management tool to aid scientists and engineers with decisions affecting air quality and land use. The secondary goal is to show the types of air quality and regulatory information which could be obtained from these models. This latter goal is attained with general conclusions as consequence of applying ‘duality theory.’  相似文献   

7.
It is important to understand the effects of emission controls on concentrations of ozone, fine particulate matter (PM2.5), and hazardous air pollutants (HAPs) simultaneously, to evaluate the full range of health, ecosystem, and economic effects. Until recently, the capability to simultaneously evaluate interrelated atmospheric pollutants ("one atmosphere" analysis) was unavailable to air quality managers. In this work, we use an air quality model to examine the potential effect of three emission reductions on concentrations of ozone, PM2.5, and four important HAPs (formaldehyde, acetaldehyde, acrolein, and benzene) over a domain centered on Philadelphia for 12-day episodes in July and January 2001. Although NO(x) controls are predicted to benefit PM2.5 concentrations and sometimes benefit ozone, they have only a small effect on formaldehyde, slightly increase acetaldehyde and acrolein, and have no effect on benzene in the July episode. Concentrations of all pollutants except benzene increase slightly with NO(x) controls in the January simulation. Volatile organic compound controls alone are found to have a small effect on ozone and PM2.5, a less than linear effect on decreasing aldehydes, and an approximately linear effect on acrolein and benzene in summer, but a slightly larger than linear effect on aldehydes and acrolein in winter. These simulations indicate the difficulty in assessing how toxic air pollutants might respond to emission reductions aimed at decreasing criteria pollutants such as ozone and PM2.5.  相似文献   

8.
High ozone concentrations, often in excess of the national ambient air quality standard for photochemical oxidants, have been measured simultaneously in urban and rural areas of New York State. Average daily rural ozone concentrations were found to correlate well with daily maximum urban ozone concentrations suggesting a common source. Estimations of the quantity of ozone advectively transported into New York State are more than an order of magnitude greater than estimations of the potential photochemical generation of ozone from hydrocarbon emissions within New York State. It is suggested thai the high rural ozone levels are not primarily due to the transport of ozone and ozone precursors from olher urban areas, but are rather due to natural phenomena such as photochemical generation from naturally occurring precursors or transport of ozone from the stratosphere to the troposphere. The effectiveness of a hydrocarbon control strategy for New York State to meet the ambient air quality standard for photochemical oxidants when background levels themselves may be above the standard is questioned.  相似文献   

9.
Abstract

It is important to understand the effects of emission controls on concentrations of ozone, fine particulate matter (PM2.5), and hazardous air pollutants (HAPs) simultaneously, to evaluate the full range of health, ecosystem, and economic effects. Until recently, the capability to simultaneously evaluate interrelated atmospheric pollutants (“one atmosphere” analysis) was unavailable to air quality managers. In this work, we use an air quality model to examine the potential effect of three emission reductions on concentrations of ozone, PM2.5, and four important HAPs (formaldehyde, acetaldehyde, acrolein, and benzene) over a domain centered on Philadelphia for 12-day episodes in July and January 2001. Although NOx controls are predicted to benefit PM2.5 concentrations and sometimes benefit ozone, they have only a small effect on formaldehyde, slightly increase acetaldehyde and acrolein, and have no effect on benzene in the July episode. Concentrations of all pollutants except benzene increase slightly with NOx controls in the January simulation. Volatile organic compound controls alone are found to have a small effect on ozone and PM2.5, a less than linear effect on decreasing aldehydes, and an approximately linear effect on acrolein and benzene in summer, but a slightly larger than linear effect on aldehydes and acrolein in winter. These simulations indicate the difficulty in assessing how toxic air pollutants might respond to emission reductions aimed at decreasing criteria pollutants such as ozone and PM2.5.  相似文献   

10.
The development of ozone control strategies requires analysing the sensitivity of the dispersion model used to changes in emissions of nitrogen oxides (NOX) and volatile organic compounds. The ozone response to variations in road traffic and total anthropogenic emissions is evaluated for two different summer ozone episodes in the Greater Madrid Area (GMA). This study uses the TVM model and a transport/chemistry module in which different chemical mechanisms (EMEP, RACM) are implemented. The results show that the areas of maximum impact and ozone responses are notably influenced by the different transport and dispersion patterns established in the area. However, the contribution of anthropogenic sources other than road traffic is patent in both episodes. Strategies based only on decreasing road traffic emissions were not sufficient for an effective control of the air quality in the GMA. Moreover, certain discrepancies observed in the predicted trends, as a response to these control strategies posed, reflect the importance of variations in the precursors balance. The ozone production regime associated to these ozone episodes and the sensitivity of the ozone response to changes in this balance has been investigated. A chemical indicator has been used to deepen in that evaluation.  相似文献   

11.
Twenty-four to forty-eight-hour ozone air quality forecasts are increasingly being used in metropolitan areas to inform the public about potentially harmful air quality conditions. The forecasts are also behind "ozone action day" programs in which the public and private sectors are encouraged or mandated to alter activities that contribute to the formation of ground-level ozone. Presented here is a low-cost application of the Urban Airshed Model (UAM), an Eulerian 3-dimensional photochemical-transport grid model for generating next-day peak ozone concentration forecasts. During the summer of 1997, next-day peak ozone concentrations in Atlanta, GA, were predicted both by a team of eight forecasters and by the Urban Airshed Model in Forecast Mode (UAM-FM). Results are presented that compare the accuracy of the team and the UAM-FM. The results for the summer of 1997 indicate that the UAM-FM may be a better predictor of peak ozone concentrations when concentrations are high (> 0.095 ppmv), and the team may be a better predictor of ozone concentrations when concentrations are low (< or = 0.095 ppmv). The UAM-FM is also discussed in the context of other forecasting tools, primarily linear regression models and a no-skill, persistence-based technique.  相似文献   

12.
ABSTRACT

Twenty-four to forty-eight-hour ozone air quality forecasts are increasingly being used in metropolitan areas to inform the public about potentially harmful air quality conditions. The forecasts are also behind “ozone action day” programs in which the public and private sectors are encouraged or mandated to alter activities that contribute to the formation of ground-level ozone. Presented here is a low-cost application of the Urban Airshed Model (UAM), an Eulerian 3-dimensional photochemical-transport grid model for generating next-day peak ozone concentration forecasts. During the summer of 1997, next-day peak ozone concentrations in Atlanta, GA, were predicted both by a team of eight forecasters and by the Urban Airshed Model in Forecast Mode (UAM-FM). Results are presented that compare the accuracy of the team and the UAM-FM. The results for the summer of 1997 indicate that the UAM-FM may be a better predictor of peak ozone concentrations when concentrations are high (> 0.095 ppmv), and the team may be a better predictor of ozone concentrations when concentrations are low (< 0.095 ppmv). The UAM-FM is also discussed in the context of other forecasting tools, primarily linear regression models and a no-skill, persistence-based technique.  相似文献   

13.
The intercomparison of seven chemical mechanisms for their suitability for air quality policy formulation and assessment is described. Box modeling techniques were employed using 44 sets of background environmental conditions covering North America to constrain the chemical development of the longer lived species. The selected mechanisms were modified to enable an unbiased assessment of the adequacy of the parameterizations of photochemical ozone production from volatile organic compound (VOC) oxidation in the presence of NOx. Photochemical ozone production rates responded differently to 30% NOx and VOC reductions with the different mechanisms, despite the striking similarities between the base-case ozone production rates. The 30% reductions in NOx and VOCs also produced changes in OH. The responses in OH to 30% reductions in NOx and VOCs appeared to be more sensitive to mechanism choice, compared with the responses in the photochemical ozone production rates. Although 30% NOx reductions generally led to decreases in OH, 30% reductions in VOCs led to increases in OH, irrespective of mechanism choice and background environmental conditions. The different mechanisms therefore gave different OH responses to NOx and VOC reductions and so would give different responses in terms of changes in the fate and behavior of air toxics, acidification and eutrophication, and fine particle formation compared with others, in response to ozone control strategies. Policymakers need to understand that there are likely to be inherent differences in the responses to ozone control strategies between different mechanisms, depending on background environmental conditions and the extents of NOx and VOC reductions under consideration.

Implications: The purpose of this paper is to compare predicted ozone responses to NOx and VOC reductions with seven chemical mechanisms under North American conditions. The good agreement found between the tested mechanisms should provide some support for their application in the air quality models used for policymaking.  相似文献   


14.
At present, major efforts in air pollution control for urban areas are oriented to reduce ozone levels to below standards. Models are a useful tool for air quality assessment and they can help to select the best strategy plan to reduce ozone levels in a polluted area. Like other large cities in the world, Sao Paulo Metropolitan Area (SPMA) has registered high levels of ozone and particulate matter for several decades. In order to establish appropriate strategy plans, a photochemical model has been used for an episode that occurred in 1999. Simple emission control strategies have been examined.  相似文献   

15.
China is taking major steps to improve Beijing's air quality for the 2008 Olympic Games. However, concentrations of fine particulate matter and ozone in Beijing often exceed healthful levels in the summertime. Based on the US EPA's Models-3/CMAQ model simulation over the Beijing region, we estimate that about 34% of PM2.5 on average and 35–60% of ozone during high ozone episodes at the Olympic Stadium site can be attributed to sources outside Beijing. Neighboring Hebei and Shandong Provinces and the Tianjin Municipality all exert significant influence on Beijing's air quality. During sustained wind flow from the south, Hebei Province can contribute 50–70% of Beijing's PM2.5 concentrations and 20–30% of ozone. Controlling only local sources in Beijing will not be sufficient to attain the air quality goal set for the Beijing Olympics. There is an urgent need for regional air quality management studies and new emission control strategies to ensure that the air quality goals for 2008 are met.  相似文献   

16.
This paper gives an overview of the set up, methodology and the obtained results of the CityDelta (phase 1 and 2) project. In the context of the Clean Air For Europe programme of the European Commission, the CityDelta project was designed to evaluate the impact of emission-reduction strategies on air quality at the European continental scale and in European cities. Ozone and particulate matter (PM) are the main components that have been studied. To achieve this goal, a model intercomparison study was organized with the participation of more than 20 modelling groups with a large number of modelling configurations. Two following main topics can be identified in the project. First, in order to evaluate their strengths and weaknesses, the participating models were evaluated against observations in a control year (1999). An accompanying paper will discuss in detail this evaluation aspect for four European cities. The second topic is the actual evaluation of the impact of emission reductions on levels of ozone and PM, with particular attention to the differences between large-scale and fine-scale models. An accompanying paper will discuss this point in detail. In this overview paper the main input to the intercomparison is described as well as the use of the ensemble approach. Finally, attention is given to the policy relevant issue on how to implement the urban air quality signal into large-scale air quality models through the use of functional relationships.  相似文献   

17.
Climate change is forecast to adversely affect air quality through perturbations in meteorological conditions, photochemical reactions, and precursor emissions. To protect the environment and human health from air pollution, there is an increasing recognition of the necessity of developing effective air quality management strategies under the impacts of climate change. This paper presents a framework for developing risk-based air quality management strategies that can help policy makers improve their decision-making processes in response to current and future climate change about 30-50 years from now. Development of air quality management strategies under the impacts of climate change is fundamentally a risk assessment and risk management process involving four steps: (1) assessment of the impacts of climate change and associated uncertainties; (2) determination of air quality targets; (3) selections of potential air quality management options; and (4) identification of preferred air quality management strategies that minimize control costs, maximize benefits, or limit the adverse effects of climate change on air quality when considering the scarcity of resources. The main challenge relates to the level of uncertainties associated with climate change forecasts and advancements in future control measures, since they will significantly affect the risk assessment results and development of effective air quality management plans. The concept presented in this paper can help decision makers make appropriate responses to climate change, since it provides an integrated approach for climate risk assessment and management when developing air quality management strategies. Implications: Development of climate-responsive air quality management strategies is fundamentally a risk assessment and risk management process. The risk assessment process includes quantification of climate change impacts on air quality and associated uncertainties. Risk management for air quality under the impacts of climate change includes determination of air quality targets, selections of potential management options, and identification of effective air quality management strategies through decision-making models. The risk-based decision-making framework can also be applied to develop climate-responsive management strategies for the other environmental dimensions and assess costs and benefits of future environmental management policies.  相似文献   

18.
At the onset of the 2010 statutory deadline for the respect of the European National Emission Ceiling directive, two questions arise. Will the engaged regulations for the respect of ozone air quality thresholds be fully efficient on the most polluted regions? How can we design the continuation of ozone control in those areas? This study is based on refined 3D modelling studies over a French Mediterranean region. It compares 2001 and 2003 situations with several prospective 2010 emission scenarios with, for the first time, the evaluation of local action plans. The degree of compliance with air quality regulation is investigated and the impact of emission control on the local potential for ozone formation is discussed. The results show that current efforts on emissions, although substantial and efficient, are not sufficient yet to abrogate all the ozone threshold exceedances. They also highlight the gap between regulatory and effective emission control, as well as the need for regional regulations to complete national efforts. Finally, the simulations indicate that large-scale emission control significantly helps reducing rural ozone (?20 ppbv) but affects much fewer (?2 to ?10 ppbv) the highest peaks. The continuation and the strengthening of ozone policies under their current form in such regions are considered.  相似文献   

19.
This study examined the potential of using the Simplified Ozone Modeling System (SOMS) (Venkatram et al., 1994. Atmospheric Environment 28, 3665–3678) to generate long-term ozone predictions that may be used to complement the results from more complex air quality models for creating control strategies and establishing long-term trends. A sensitivity study was performed using SOMS to study the application of a model, which is an exponential function of temperature, to estimate the intra-annual biogenic VOC concentration at the receptor in a 1-year run (i.e. 1988). The predictions were made for a core urban site in Baltimore, Maryland. After the sensitivity analyses was completed, the daily maximum ozone concentration (DMOC) was predicted for a 3-year (1987–1989) period for the Baltimore site. The results of the 3-year model prediction were compared with observations.  相似文献   

20.
Currently, outdoor ozone levels in many U.S. cities exceed the primary health-based national ambient air quality standard. While outdoor ozone levels are an important measure of the severity of those exceedances, people typically spend more than 80 percent of their time Indoors, where ozone levels are lower. Indoor ozone levels range from 10 to 80 percent of outdoor levels, with many people receiving a substantial portion of their ozone exposure while indoors. This paper uses an Indoor air quality model (IAQM) to estimate indoor ozone levels by mlcroenvlronment type (home, office, and vehicle) and configuration (windows open, windows closed, older construction, weatherized, and air conditioned). The formulation of IAQM is discussed, along with specification of model parameters for ozone. The multicompartment version of IAQM is described, with a single-compartment version used for the analyses. IAQM-calculated ozone indoor-outdoor ratios compare well with research-reported values. Results indicate that ozone peak-concentration indoor-outdoor ratios range as follows: home—0.65 (windows open), 0.36 (air conditioned), 0.23 (typical construction, windows closed), and 0.05 (energy-efficient construction, windows closed); office—0.82 (heat-Ing, ventilation and air conditioning systems supplying 100 percent outdoor air), 0.60 (typical HVAC), and 0.32 (energy-efficient HVAC); and vehicle—0.41 (85 mph), 0.33 (55 mph), and 0.21 (10 mph). Analysis results are presented to characterize IAQM’s sensitivity to assumed model parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号